Вентиляция бассейна расчет онлайн: Вентиляция бассейна — расчет онлайн калькулятор. Подбор вентиляции для бассейна

Вентиляция бассейна расчет онлайн: Вентиляция бассейна — расчет онлайн калькулятор. Подбор вентиляции для бассейна

Содержание

расход воздуха и испарение влаги

Расчет расхода воздуха по пловцам и зрителям (подробнее)

Пловцов, чел:

Зрителей, чел:

Расход воздуха по санитарным нормам: м³/ч

Расчет испарения влаги с зеркала водной поверхности (подробнее)

Площадь поверхности бассейна, м²:

Вид бассейна:

Закрытая поверхность бассейна
Неподвижная поверхность бассейна
Небольшие частные бассейны с ограниченным
количеством купающихся
Общественные бассейны с нормальной
активностью купающихся
Бассейны для отдыха и развлечений
Бассейны с водяными горками и значительным
волнообразованием
Давление водяных паров насыщенного воздуха при температуре воды в бассейне, мбар:

Парциальное давление водяных паров при заданных температуре и влажности воздуха, мбар:

Испарение влаги: г/ч

Расчет расхода воздуха для ассимиляции влаги (подробнее)

Интенсивность влаговыделения, м²/с:

Температура воздуха:

Температура воды:

Давление водяных паров насыщенного воздуха, Па:

Парциальное давление водяных паров при заданных температуре и влажности воздуха, Па:

Площадь зеркала воды, м²:

Влагосодержание внутреннего воздуха, г/кг

Влагосодержание наружного воздуха, г/кг

Расход наружного воздуха: кг/ч


Расход воздуха по пловцам и зрителям

Расход наружного воздуха не может быть меньше санитарной нормы в соответствиии со СНиП 41-01-2003. Согласно СП 31-113-2004 удельный расход приточного воздуха должен быть не менее 80 м3/ч на пловца и 20 м³/ч на зрителя.

Испарение влаги с зеркала водной поверхности

W = ε· S· (Pнас – Pуст), где:

S – площадь водной поверхности бассейна, м²;
Pнас – давление водяных паров насыщенного воздуха при температуре воды в бассейне, мбар;
Pуст – парциальное давление водяных паров при заданных температуре и влажности воздуха, мбар (Pнас * влажность);
ε – эмпирический коэффициент, г/м2· ч · мбар:
закрытая поверхность бассейна — 0,5;
неподвижная поверхность бассейна — 5;
небольшие частные бассейны с ограниченным количеством купающихся — 15;
общественные бассейны с нормальной активностью купающихся — 20;
бассейны для отдыха и развлечений — 28;
бассейны с водяными горками и значительным волнообразованием — 35.

Зависимость давления паров от температуры

Расход наружного воздуха для ассимиляции влаги

M = S * B * (Pн — Pв) / R0 * T * (Xв — Xн), где:

S — площадь зеркала воды, м²;
B — интенсивность влаговыделения в рабочее или нерабочее вермя, м²/ч;
Pn — давление водяных паров насыщенного воздуха при температуре воды, Па;
— парциальное давление водяных паров при заданных температуре и влажности воздуха, Па (Pn * влажность);
R0 — газовая постоянная, для водяного пара принимают равной 461,52 Дж/кг*К;
T — среднее арифметическое между температурой воздуха и воды, К;
— влагосодержание в зале с ванными бассейна, г/кг;
— влагосодержание наружного воздуха, г/кг.

Интенсивность влаговыделения Давление водяных паровВлагосодержание насыщенного воздуха

«Вентиляция бассейнов. Пример расчета» – самая популярная статья Библиотеки проектировщика

Число проектировщиков, активно использующих материалы нашей библиотеки в своей работе, неуклонно растет. Мы решили узнать: какой же раздел и статья пользуются наибольшей популярностью? В результате исследования статистки посещаемости нашего ресурса, мы выяснили, что таковыми являются раздел проектировщику/проектирование систем ОВиК, статья «Вентиляция бассейнов. Пример расчета» и «Вентиляция бассейнов. Пример расчета2». Ниже приводим эти популярные статьи.

Плавательные бассейны эксплуатируют обычно круглый год. Температура воды в ванне басcейна составляет tw = 26°C, а температура воздуха в рабочей зоне tв = 27°С при относительной влажности ?в = 65% в теплый.

Открытая поверхность воды, мокрые ходовые дорожки отдают в воздух помещения большое количество водяных паров.

Обычно большая площадь остекления создает условия для мощного потока солнечной радиации.

Расчет воздухообмена в теплый период желательно выполнять по параметрам Б и в холодный тоже по Б.

Помещение бассейна оборудуется системой водяного отопления, полностью снимающей тепловые потери помещения. Для предотвращения конденсации влаги на внутренней поверхности окон, отопительные приборы должны устанавливаться непрерывной цепочкой под окнами, с тем, чтобы внутренняя поверхность стекол была нагрета на 1-1,5°С выше температуры точки росы.

Температуру точки росы tт.р удобно вычислять по эмпирической формуле:

(23.1)

либо сканировать с J-d диаграммы. Для теплого периода tт.р = 18°С, для холодного tт.р = 16°С.

На испарение воды затрачивается значительное количество тепла из воздуха помещения.

Температура поверхности воды на 1°С ниже температуры в ванне.

Подвижность воздуха в помещении бассейна должны составлять величину и быть уж ни как не выше V = 0,2 м/с по оси приточной струи у входа ее в рабочую зону.

Рис. 23.1

 

Конструктивно ванна бассейна окружена ходовыми дорожками с электро или теплоподогревом и температура их поверхности составляет tо.д = 31°С.

На конкретном примере рассчитаем воздухообмен для помещения бассейна.

Исходные данные.

Район строительства: Московская область.

Теплый период: tн = 28, 5°С Jн = 54 кДж/кг dн = 9,9 г/кг

Холодный период: tн = — 26°С Jн = — 25, 3 кДж/кг dн = 0,4 г/кг

Геометрические размеры и площадь ванны бассейна: 6х10 м = 60 м2

Площадь обходных дорожек: 36 м2

Размеры помещений: 10х12 м = 120 м2, высота 5 м.

Число пловцов: N = 10 человек.

Температура воды: tw = 26°C

Температура воздуха рабочей зоны: tв = 27°С

Температура воздуха удаляемого из верхней зоны помещения: tу = 28°С

Тепловые потери помещения: 4680 Вт.

Расчет воздухообмена в теплом периоде.

Поступления явного тепла.

1. Теплопоступления от освещения в холодный период года:

(23.2)

2. От солнечной радиации (подсчитано ранее) Qcр

3. От пловцов: Qпл =qя ·N(1-0,33)=60·10·0,67 = 400 Вт (23.3)

где коэффициент 0,33 — доля времени, проводимая пловцами в бассейне.

4. От обходных дорожек:

(23.4)

?хд = 10 Вт/м2°С — коэффициент теплоотдачи обходных дорожек

5. Теплопотери на нагрев воды в ванне:

(23.5)

Q = 4,0 Вт/м2°С — коэффициент теплоотдачи явного тепла

tпов = tw — 1°C = 26 -1 = 25°C — температура поверхности (23.6)

6. Избытки явного тепла (днем):

(23.7)

Поступление влаги.

1. Влаговыделения от пловцов:

Wпл = q · N (1- 0,33) = 200 · 10(1- 0,33) = 1340 г/ч (23. 8)

2. Поступление влаги с поверхности бассейна:

(23.9)

где А — опытный коэффициент, который учитывает интенсификацию испарения с поверхности воды при наличии купающихся по сравнению со спокойной

поверхностью. Для оздоровительных плавательных бассейнов А = 1,5;

F = 60 м2 — площадь зеркала воды;

? — коэффициент испарения кг/м2 ч

(23.10)

где V — подвижность воздуха над ванной бассейна, V = 0,1 м/с

dв = 13,0 г/кг при tв = 27°С и ?в = 60 %

dw =20,8 при ? = 100% и tпов = tw — 1°C

Температура поверхности ванны: tпов = 26 — 1 = 25°С

3. Поступление влаги с обходных дорожек.

Площадь смоченной части обходных дорожек составляет 0,45 от всей их площади. Количество испаряемой влаги рассчитывается по формуле:

Wод = 6,1(tв — tмт) · F, г/ч (23.11)

где температура мокрого термометра tмт = 20,5°С

Wод = 6,1(27 — 20,5) · 36 · 0,45 = 650 г/ч

4. Общее поступление влаги:

W = Wпл + WБ + Wод = 1,34 +18,9 + 0,65 = 20,9 кг/ч (23.12)

Полное тепло.

1.

(23.13)

(23.14)

Qскр.пл =0,67 · 10(197 — 60)3,6 = 3300 кДж/ч

2. Тепловлажностное отношение:

(23.15)

Проводим луч процесса через (.) В и на пересечении с dн = const лежит точка приточного воздуха, а на пересечении с tу = 28°С — (.) У (рис. 23.1)

 

Параметры точек:

Точки t, °С J, кДж/кг D, г/кг φ, %
В 27 61 13 60
У 28 67 15 65
П 25,6 51 9,9 50
Н 28,5 54 9,9 42

 

3. Воздухообмен по влаге:

    или L = 3420 м3/ч                (23.16)

4.Воздухообмен по полному теплу:

                                                   (23.17)

5. Нормативный воздухообмен:

Lн = N · 80 м3/ч = 10 · 80 = 800 м3/ч или 960 кг/ч                                         (23.18)

Это значительно меньше расчетного.

 

Рис. 23.2

 

Вывод:
наружный воздух в наиболее жаркое время дня должен быть охлажден до 25,6°С в воздухоохладителе. Если этого не делать, температура воздуха в бассейне возрастает до 30°С. Однако в ночные часы температура наружного воздуха понизится на 10,4°С (.) Н1 и воздух придется нагревать или применять утилизацию тепла.

Количество холода:

        или 3,4 кВт.

Холодный период года.

Задаемся относительной влажностью φв = 50% следовательно dв = 10,8 г/кг, и сохраняем остальные параметры по теплому периоду.

 

Рис. 23.3

 

1. Явное тепло:

2. Поступление влаги:

  • — от пловцов: Wпл = 1340 г/ч (по Т.П.)
  • — с поверхности бассейна:

C обходных дорожек:

Общее поступление влаги:

W = Wпл + WБ + Wод = 1,34 + 24,2 + 0,79 = 26,3 кг/ч

3. Полное тепло:

Qскр.Б = 24,2(2501,3 — 2,39 · 25) = 59080 кДж/ч

Qскр.од = 0,79 · (2501,3 — 2,39 · 31) = 1920 кДж

Qскр.пл = 330 кДж/ч ( по Т.П)

4. Тепловлажностное отношение:

5. Построение процесса и определение воздухообмена.

Наносим (.) В на J-d диаграмму и проводим луч процесса через нее до пересечения с линией d = const из (.) Н — это (.) К (рис. 23.2)

В холодный период используем рециркуляцию.

Градиент влагосодержания в рабочей зоне в холодный период принимаем равный теплому периоду:

                                       (23.19)

Таким образом влагосодержание смеси приточного воздуха в холодный период года:

                                   (23.20)

На пересечении dсм и лежит точка смеси С, одновременно являющаяся по теплому периоду Gn кг/ч.

Влагосодержание удаляемого воздуха dу составит:

                             (23.1)

На пересечении dу с ε лежит (.) У.

Параметры точек:

 

Точки t, °С J, кДж/кг D, г/кг φ, %
В 27 55 10,8 50
У 27,5 64 14,1 63
П, С 26,3 46 7,7 37
К 25 26 0,4 3
Н -26 -25,3 0,4 80
МТ 19 55 14 100

 

Количество приточного наружного воздуха можно определить из уравнения смеси:

                    (23. 22)

что выше нормативной величины Gн = 960 кг/ч. Следует предусмотреть утилизацию удаляемого воздуха. В общем виде схема вентиляции бассейна примет вид показанный на рисунке 23.3.

Регулирование выполняется по температуре и относительной влажности в рабочей зоне бассейна.

Вентиляция бассейна. Онлайн расчет системы вентиляции для помещений частных и общественных бассейнов.

Параметры воздушной среды

Система вентиляции должна поддерживать в помещении бассейна опредленные параметры воздушной среды:

Более подробно о параметрах воздушной среды и правилах проектирования систем вентиляции в помещении бассейна можно прочитать в уже упоминавшихся рекомендациях

Выбор системы вентиляции бассейна

Для вентиляции бассейна можно с успехом использовать вентиляционные установки различной комплектации, стоимость которых может отличаться в несколько раз. Самый простой и недорогой вариант — это обычная приточная установка и синхронизированный с ней по скорости вращения вытяжной вентилятор. Снижение влажности производится автономным осушителем воздуха (летом ассимиляция влаги наружным воздухом не всегда возможна). Недостатком такой системы является высокое энергопотребление, например, для бассейна с площадью зеркала воды 20 м² потребуется приток воздуха на уровне 600–800 м³/ч, что будет означать потребление около 13 кВт·ч в зимний период. Снизить энергопотребление в несколько раз позволяют современные специализированные установки, но такая система вентиляции обойдется дороже. Энергосбережение обеспечивают не только многоступенчатые системы рекуперации (несколько каскадов пластинчатого рекуператора + тепловой насос / осушитель воздуха), но и гибко изменяемые настройки системы в зависимости от параметров наружного воздуха и выбранного режима работы. Даже при относительно низких тарифах на газ и электроэнергию стоимость владения (начальные затраты + эксплуатация) современной системой вентиляции скорее всего окажется ниже, чем недорогой прямоточной системой. Заметим, что стоимость вентиляционной установки может возрасти дополнительных функций, таких как охлаждение воздуха или нагрева воды в бассейне избыточным теплом, образующимся при работе холодильной машины в режиме осушения.

Можно ли использовать для вентиляции бассейна обычные вентустановки? Если это приточная система, в которую поступает только наружный воздух, то особой разницы нет. Однако установки и приточные установки с камерой смешения должны иметь антикоррозионную защиту теплообменников, поскольку транспортировка теплого и влажного воздуха может приводить к коррозии необработанных металлических поверхностей. Так, например, пластинчатый рекуператор должен быть выполнен из инертного материала типа полипропилена, если же применяется традиционный рекуператор из алюминия, то он, как и остальные теплообменники (водяной калорифер, испаритель, конденсатор) должен иметь специальную антикоррозийную защиту.

Режимы работы вентиляционной установки

В современных специализированных установках с цифровой системой автоматики настройка всех режимов работы производится один раз при . Пользователю в дальнейшем не нужно менять в настройках системы: для управления ему будет достаточно переключать рабочий и дежурный режим работы (это можно делать как с пульта, так и использовать для этих целей обычный выключатель).

Если же для вентиляции бассейна применяется вентустановка с упрощенной системой автоматики или же модель, не предназначенная для этих целей, то пользователю придется самостоятельно управлять скоростью вентилятора и режимом работы калорифера, задавать влажность воздуха в зависимости сезона, менять другие настройки. И такая система вентиляции неоптимальных настроек, скорее всего, не позволит поддерживать комфортный микроклимат при минимально возможном энергопотреблении.

Специализированные модели установок для бассейнов работают в двух основных режимах:

Некоторые модели имеют аварийный режим работы. Если возникает неисправность встроенного или автономного осушителя, и влажность воздуха повышается выше критического уровня, подача наружного воздуха увеличивается для ассимиляции влаги.

Более подробно с каждый режимом работы и особенностям оборудования вы можете ознакомиться в документации на сайтах производителей.

Варианты технических решений для вентиляции бассейна

Выше мы уже кратко рассказали о различиях между обычными вентиляционными установками и специализированными моделями, предназначенными для организации вентиляции бассейна. Сейчас мы более подробно рассмотрим применяемые на практике технические решения на базе различного оборудования.

1. Приточная и вытяжная установка, автономный осушитель воздуха.

Это один из наиболее простых и недорогих вариантов. Приточная и вытяжная установки поддерживают в помещении необходимый по санитарным нормам приток свежего воздуха, а также обеспечивают требуемое разряжение. Влажность воздуха поддерживается отдельным (автономным) настенным осушителем, который также создает необходимую подвижность воздуха: вентилятор осушителя работает непрерывно, а компрессор включается по команде от гигростата, когда влажность воздуха превышает заданное значение. В Дежурном режиме вентиляция не нужна и её следует отключать для экономии энергии.

Если в регионе, где расположен бассейн, температура наружного воздуха может длительное время превышать температуру воздуха в помещении, то потребуется использовать приточную установку с фреоновым охладителем, работающую совместно с ККБ.

Достоинством рассмотренного варианта является только возможность использования распространенного неспециализированного оборудования. Недостатков же у него немало:

Необходимо отметить, что до появления настенных осушителей воздуха снижение влажности производилось только за счет ассимиляции влаги наружным воздухом: в бассейнах применялась описываемая здесь система, только без осушителя. Серьезным недостатком такой системы являлась необходимость обеспечения подвижности воздуха приточным воздухом, что приводило к колоссальным потерям энергии в холодный период года. Если же снизить производительность приточной установки до санитарной нормы, то велик риск появления конденсата на окнах и в углах помещения, где воздух плохо перемешивается. Ниже, в таблице с результатами расчетов энергопотребления, вариант без осушителя приведен под номером 0 для демонстрации экономической нецелесообразности подобного решения.

Можно ли обойтись без дорогостоящего осушителя, если климатические условия позволяют ассимилировать влагу приточным воздухом? Да, для этого достаточно использовать приточную установку с камерой смешения, как в следующем варианте.

2. Приточная установка с камерой смешения, вытяжная установка, автономный осушитель воздуха.

Если оснастить приточную установку камерой смешения, где в заданной пропорции будут смешиваться наружный и рециркуляционный воздух, то требуемая подвижность воздуха может быть обеспечена системой вентиляции, а осушитель будет нужен только для снижения влажности воздуха в летний период, когда влагосодержание наружного воздуха становится слишком высоким. Так мы избавились от проблемы с равномерным распределением воздуха: смесь приточного и рециркуляционного воздуха подается через распределители, расположенные по всему помещению.

Если в регионе, где расположен бассейн, не бывает периодов (или же они очень непродолжительны), когда высокое влагосодержание наружного воздуха не позволяет снижать влажность воздуха ассимиляцией, то осушитель воздуха можно не устанавливать. Это позволит существенно снизить общую стоимость системы. А в те дни, когда на улице слишком жарко и влажно просто не следует пользоваться бассейном (поверхность воды при это должна быть укрыта пленкой для снижения испарения влаги).

3. Канальный осушитель воздуха с подмесом наружного воздуха, вытяжная установка.

Причиной большинства недостатков первых двух вариантов было использование автономного осушителя воздуха. Если вместо него установить канальный осушитель с калорифером и возможностью подмеса наружного воздуха, то от приточной установки можно будет отказаться: вся обработка приточного воздуха будет происходить в канальном осушителе. Этот вариант уже можно рекомендовать для применения в небольших частных бассейнах, поскольку по стоимости он примерно такой же, как и первые два варианта, но при этом лишен всех их недостатков, кроме высокого энергопотребления, которое остается точно таким же. Действительно, управление всей системой производится с одного пульта, а шум от оборудования будет не слышен, если расположить осушитель в отдельном помещении.

4. ПВУ с осушителем / тепловым насосом.

Если объединить канальный осушитель из предыдущего варианта с вытяжной установкой, то мы получим установку с осушителем, который может работать как тепловой насос, давая примерно кратный выигрыш в потреблении энергии. Такая возможность появляется при размещении конденсатора осушителя в вытяжном канале, а испарителя — в приточном. Поток теплого воздуха нагревает конденсатор, компрессор переносит тепло в испаритель, который нагревает приточный воздух. Осушение при этом работает: при охлаждении влажного воздуха на испарителе происходит конденсация влаги (более подробно о работе холодильной машины можно прочитать в разделе Принцип работы кондиционера)

Другое важное преимущество — использование одного агрегата для обработки как приточного, так и вытяжного потока. Это не только упрощает балансировку скоростей приточного и вытяжного вентиляторов для поддержания требуемого разряжения, но и позволяет гибко менять режимы работы всех компонентов для достижения максимального комфорта и энергоэффективности. В ПВУ обычно реализуется возможность сценарного управления, когда переключение режимов работы производится по таймеру, поддерживаются режимы Проветривания, каскадного регулирования и другие. Кроме этого, опционально возможно использование холодильной машины для охлаждения приточного воздуха.

5. ПВУ с рекуператором и осушителем / тепловым насосом.

Предыдущий вариант почти идеален, но для нагрева воздуха используется тепловой насос, которому для работы нужна электроэнергия. А в большинстве регионов России обогреваться газом в несколько раз выгоднее, чем электричеством. Если для получения некоторого количества тепла при использовании газового котла нужно заплатить в 3–4 раза меньше, чем при использовании электрического калорифера, то преимущество теплового насоса теряется и нагревать воздух становиться экономически выгоднее водяным калорифером (тепловой насос вырабатывает тепла от 2 до 5 раз больше, чем потребляет электроэнергии, точное значение зависит от применяемого оборудования и температуры наружного воздуха — чем она ниже, тем меньше COP). В этом случае мы рекомендуем использовать ПВУ с пластинчатым рекуператором, который экономит тепло и не потребляет электроэнергию. А компрессор осушителя включается только когда нужно снизить влажность воздуха или охладить его.

Заметим, что если бассейн расположен в регионе с холодным климатом, где летом можно эффективно осушать воздух ассимиляцией влаги, то осушитель становится не нужен, и от него можно отказаться для удешевления системы. Тогда оптимальным будет использование специализированной ПВУ с пластинчатым рекуператором без осушителя.

Специализированные ПВУ обычно комплектуются всеми необходимыми датчиками для контроля состояния окружающей среды, что позволяет им поддерживать заданные параметры воздуха с максимальной энергоэффективностью. В рамках этого обзора мы не можем подробно рассказать обо всех возможностях ПВУ для бассейнов, но эта информация есть в документации на сайтах производителей.

Итоговая таблица с преимуществами и недостатками различных технических решений

Расчет энергопотребления различных технических решений

При описании всех вариантов мы говорили об энергоэффективности — одном из важнейших показателей системы вентиляции бассейна. Для наглядности мы определили энергопотребление для каждого варианта в зимний период на примере небольшого частного бассейна с площадью зеркала воды 14 м² и свели эти данные в таблицу. Мы рассчитали требуемую мощность для нагрева наружного воздуха до заданной температуры, а также полную мощность, которая включает мощность системы отопления бассейна (полная мощность определяется по температуре и влажности удаляемого воздуха). Разница между этими двумя параметрами объясняется тем, что подаваемый воздух имеет практически нулевое влагосодержание, поэтому сначала (внутри вентустановки) энергия расходуется на нагрев сухого воздуха, а затем — на его увлажнение в процессе испарения воды из бассейна (энергия поступает из системы подогрева воды и отопления). Заметим, что обычно вентиляция работает в режиме поддержания заданной температуры на выходе приточного канала (для этого варианта и проводились расчеты). Однако система вентиляции может выполнять функцию отопления и работать в режиме поддержания заданной температуры в помещении (режим каскадного регулирования), тогда расходуемая мощность для нагрева будет выше, чем указано в таблице, но полная мощность не изменится. В таблице также приводится полная мощность для дежурного режима, когда бассейн не эксплуатируется.

Итак, исходные данные:

Таблица с результатми расчета требуемой мощности для различных технических решений

В регионах с очень холодным, либо жарким и влажным климатом для эффективной работы оборудования могут потребоваться дополнительные опции:

  • Если температура воздуха на длительное время опускается ниже −20°С может понадобится дополнительный преднагреватель.
  • Там где летом жарко и влажно, например, в Сочи, будут полезны опции для охлаждения приточного воздуха. Для этих целей могут использоваться различные технические решения: охладитель с внешним ККБ, осушитель (холодильная машина) с выносным конденсатором и другие.

Практические рекомендации

Для вентиляции помещений бассейна применяют как специализированное оборудование, так и обычные установки. Во втором случае удается заметно снизить стоимость системы, но эксплуатировать бассейн без осушителя воздуха рискованно, поскольку выпавший конденсат может повредить отделку помещения.

Недорогую систему можно собрать по варианту № 2: приточная установка + камера смешения, вытяжная установки и, опционально, автономный осушитель воздуха. Эту систему можно устанавливать поэтапно: сначала смонтировать систему вентиляции, а потом, уже после начала эксплуатации, решить, нужен ли осушитель. Приточная установка может быть любой, но лучше использовать модель со встроенной камерой смешения и регулируемым подмесом наружного воздуха, например, Breezart Pool Mix. Выбор автономного осушителя не представляет труда, среди популярных марок можно выделить DanVex, Dantherm, Cotes, Microwell.

Если же вы твердо решили использовать осушитель воздуха, то вместо предыдущего решения лучше выбрать вариант № 3 на базе канального осушителя — это уже будет специализированная модель с подмесом наружного воздуха, предназначенная для применения в помещениях бассейна. Канальные осушители для бассейнов выпускают Dantherm (серия CDP), Calorex (серия Variheat), Breezart (серия Pool DH), Aerial и другие.

Максимальной функциональностью и низким энергопотреблением отличается техническое решение, описанное в варианте № 5: ПВУ с осушителем / тепловым насосом и рекуператором. Однако и стоимость такой ПВУ будет раза выше стоимости канального осушителя. Подобное оборудование предлагают Menerga (серия ThermoCond), Dantherm (серия DanX), Frivent (серия AquaVent), Breezart (серия Pool Pro) и другие.

На сайте Breezart есть , который позволяет оценить энергозатраты различных вариантов оборудования при заданных условиях.

Консультации и помощь в подборе оборудования

Вы можете бесплатно проконсультироваться у наших специалистов по телефону или в офисе для выбора оптимального технического решения в рамках заданного бюджета. Также возможна платная консультация на объекте (3–5 т.р.) для привязки к плану мест размещения оборудования, коммуникаций и распределителей воздуха. Перед консультацией, пожалуйста, подготовьте:

Источник

Расчет осушителя для бассейна — онлайн калькулятор


Автор Евгений Апрелев На чтение 3 мин. Просмотров 10.6k.

Самостоятельный расчет интенсивности испарения

Любой бассейн представляет собой большую емкость с водой, где с ее поверхности постоянно происходит испарение влаги. Объем испаряемой воды зависит от множества факторов:

  • Разницы между температурой окружающего воздуха и водой.
  • Площадь поверхности воды.
  • Влажность воздуха в помещении бассейна.
  • Скорости воздушных потоков.
  • Активности находящихся в бассейне людей.

Вся испаряемая влага попадает в воздух, который может поглотить только определенное ее количество. Остальная влага оседает на стенах, потолке и на полу, образуя лужи. Кроме этого, влага оседает на окнах, создавая эффект «запотевания», оборудовании и конструктивных элементах здания, что постепенно приводит их в негодность. Решить проблему излишней влаги позволяет система осушения воздуха, куда включается осушитель, работающий в тандеме с вентиляционной системой бассейна.

В такой системе осушитель удаляет излишнюю влагу из помещения как при отсутствии купающихся, так и во время эксплуатации бассейна людьми. Система вентиляции создает необходимый воздухообмен, из расчета 80 м3 на одного купающегося, удаляет неприятные запахи и различные примеси, испаряющиеся из воды, и создает приток свежего воздуха.

Для того чтобы самостоятельно произвести расчет необходимой производительности осушителя воздуха для бассейна, необходимо воспользоваться одной из нескольких возможных методик. При этом следует использовать формулы, коэффициенты и переменные, данные СНиП и т.д. Можно обратиться к профессионалам, которые рассчитают необходимую именно для вашего бассейна производительность осушителя воздуха. Есть и еще один вариант – это воспользоваться онлайн-калькулятором, размещенным на сайте.

Для того чтобы рассчитать количество влаги, выделяющееся в бассейне, нужно заполнить поля онлайн калькулятора, где указать: длину и ширину бассейна, температуру воды, температуру воздуха в помещении, а также тип бассейна и желаемый показатель влажности воздуха. В результате пересчета вы получите данные, сколько влаги испарилось с зеркала бассейна за определенных промежуток времени. На основании этого можно выбирать осушитель воздуха.

Методика стандарта VDI 2089 (Общество немецких инженеров)

W = е х S х (РнасРуст) г/ч

где:

S — плошадь водной поверхности бассейна, м2;
Рнас — давление водяных паров насыщенного воздуха при температуре воды в бассейне, мбар
Руст — парциальное давление водяных паров при заданных температуре и влажности воздуха, мбар
е — эмпирический коэффициент, г/(м2 х час х мбар):
0,5 — закрытая поверхность бассейна.
5 — неподвижная поверхность бассейна.
15 — небольшие частные бассейны с ограниченным количеством купающихся.
20 — общественные бассейны с нормальной активностью купающихся.
28 — бассейны для отдыха и развлечений.
35 — бассейны с водяными горками и значительным волнообразованием.

Формула Бязина-Крумме

Для периода, когда в бассейне находятся купающиеся:

Wотк = (0,118 + 0,01995 х а х (РнасРуст)/1,333) x S л/ч 

Для периода, когда в бассейне нет купающихся (поверхность воды зашторена или заполнена плавающими шарами/плотиками): 

Wзак = (- 0,059 + 0,0105 (Рнас — Руст)/1,333) x S л/ч

где:

Рнас — давление водяных паров насыщенного воздуха при температуре воды в бассейне, мбар;
Руст — давление водяных паров насыщенного воздуха при заданных температуре и влажности воздуха, мбар
а — коэффициент занятости бассейна людьми:
1,5 — для игровых бассейнов с активным волнообразова­нием,
0,5 — для больших общественных бассейнов,
0,4 — для бассейнов отелей,
0,3 — для небольших частных бассейнов

оптимальные значения микроклимата, особенности проектирования

Решаясь на строительство бассейна, необходимо учитывать все факторы, влияющие на комфортное пребывание в помещении. Чтобы правильно рассчитать вентиляционные системы бассейна, вам потребуется изучить всё оборудование и сооружения в комплексе. А именно: площадь зеркала, расположение водоподготовительных систем, дверные и оконные проёмы, вид чаши (скиммерная, переливная и др.), конструкция помещения (дерево, бетон, кирпич), наличие примыкающих помещений (баня, сауна, хаммам и др.), наличие подвального помещения для подачи приточного подпора, наличие осушительной системы и т. д.

Грамотный расчёт системы вентиляции, установка необходимого оборудования, настройка его функционирования, является важным фактором, влияющим на создание комфортного микроклимата в помещении. Отсутствие внимания к этим деталям приводит к неприятным последствиям.

Пример водоподготовки переливного бассейна

Микроклимат бассейна

Устройство вентиляции бассейна – крайне важный фактор создания комфортного для человека микроклимата. Отсутствие качественной вентиляционной системы приводит к быстрому распространению грибка и плесени, а накопление в воздухе большого числа микроорганизмов приводит к возникновению различных заболеваний.

Повышенная влажность в закрытом помещении бассейна приводит к коррозии металлических и гниению деревянных конструкций, разрушению грибком отделки и стен

Влажность в помещении бассейна должна находиться на уровне 50–60%, в этом случае достигается умеренный уровень испарения влаги с поверхности воды, что влияет на условия комфорта в помещении. При данной влажности и температуре воздуха 28—30 °С (характерная для помещений бассейнов температура) роса будет образовываться при 16—21 °С. Это заметно выше чем для обычных помещений, в которых температура воздуха находится на уровне 24 °С, влажность 50%, точка образования росы на уровне 13 °C. Для помещений бассейнов превышение влагосодержания воздуха считается нормой.

Температура и влажность воздуха для бассейна

Рекомендуемые параметры воздуха в помещениях крытых бассейнов:

  • Вода в бассейне в пределах 24–28 °С.
  • Воздух в помещении бассейна должен быть на 2–3 °С выше температуры воды. При снижении температуры воздуха возникает опасность простуды. При повышении влажности возможно возникновение ощущения духоты. Также не рекомендуется снижать температуру воздуха ночью в целях экономии энергии, так как повышается расход тепла.
  • Во избежание сквозняков, рекомендуемая скорость движения воздуха должна находиться в пределах 0,15–0,3 м/с.

Все эти и многие другие условия принимаются во внимание при проектировании, и предлагаются решения для снижения конденсации влаги на потолке и стенах. Сложность ситуации состоит в том, что когда люди, к примеру, в ночное время не используют бассейн, тепло и влажность никуда не исчезают. Бассейн не получится «выключить» на ночь. Единственной возможностью снизить количество испарений, использовать покрытия поверхности воды, но данные устройства недолговечны и редко используются.

Скорость испарения воды с поверхности бассейна в зависимости от способа его эксплуатации
Тип бассейнаПустойС купающимися
Обычный или скиммерный бассейн10-20 грамм/м²/час130-270 грамм/м²/час

При достижении уровня 80–90% влажности при температуре 29–30 °С, возникает риск обострения хронических заболеваний, резкого ухудшения самочувствия. Поэтому, при правильно рассчитанной и спроектированной схеме вентиляции частного бассейна, из воздуха удаляется излишняя влага, он очищается за счёт интенсивного воздухообмена, но при этом не пересушивается.

Осушение воздуха до нужных параметров осуществляется осушителями, по параметрам влаговыделения. Осушители бывают моноблочными и встроенными в систему вентиляции (при рекуперации воздуха).

Пример расчёта испарений воды из бассейна в сутки

Исходные данные:

  • Размер зеркала 4,2 × 14 м.
  • температура воздуха в помещении +28 °C;
  • температура воды в бассейне +26 °C;
  • относительная влажность 60%.

Расчёт:

  1. Площадь поверхности бассейна 58,8 м².
  2. Бассейн используется для купания 1,5 часа в день.
  3. Испарение воды во время купания составит 270 грамм/м²/час х 58,8 м² х 1,5 часа = 23 814 грамм.
  4. Испарение в состоянии покоя в остальные 22,5 часа составит 20 грамм/м²/ч х 58,8 м² х 22,5 часа = 26 460 грамм.
  5. Итого в сутки: 23 814 грамм + 26 460 грамм /1 000 = 50,28 килограмма воды в сутки.

Правила проектирования вентиляции

Вентиляционная система, установленная в бассейне, должна быть автономной, и не зависящей от вентиляции остальной части дома. Если вентиляция дома должна обеспечивать приток свежего воздуха и удаление отработанных воздушных масс, то вентиляция бассейнов, помимо этих функций, должна поддерживать относительную влажность атмосферы в пределах установленных норм.

Правила проектирования вентиляции

Вентиляционная система, установленная в бассейне, должна быть автономной, и не зависящей от вентиляции остальной части дома. Если вентиляция дома должна обеспечивать приток свежего воздуха и удаление отработанных воздушных масс, то вентиляция бассейнов, помимо этих функций, должна поддерживать относительную влажность атмосферы в пределах установленных норм.

Классический вариант вентилирования бассейна в частном доме малого зеркала

При строительстве бассейна проект разрабатывается индивидуально. Основным требованием является обеспечение безопасности и комфортного пребывания людей внутри помещения.

Чтобы вентиляционные установки для бассейнов работали эффективно, необходимо проектировать их установку с учётом:

  • Размеров помещения.
  • Количества людей, пользующихся бассейном.
  • Площади водной поверхности бассейна.
  • Требований уровня температуры воздуха и воды.
  • Скорости испарения воды, которая зависит от её температуры. Чем теплее вода, тем быстрее она испаряется.

С учётом данных параметров производится выбор соответствующей мощности приточно-вытяжной вентиляции для бассейна. Если оборудование будет выбрано неправильно, это приведёт к нарушению баланса влажности воздуха и температуры. Это будет способствовать оседанию конденсата и созданию неблагоприятной атмосферы для здоровья человека.

Схема вентиляции бассейна

Расчёт вентиляции в бассейне ведётся с учётом двух особенностей:

  1. Нагретые влажные воздушные потоки устремляются кверху.
  2. На всех прохладных и влажных поверхностях оседает конденсат.

Оборудование для вентиляции устанавливается любым удобным образом: на стенах, сверху бассейна, под его чашей или вокруг неё. Часто приточная вентиляция располагается вокруг бассейна или с двух сторон, чтобы отработанный воздух быстрее поднимался к вытяжке.

Вытяжная установка должна работать так, чтобы объем удаляемого ею воздуха был равен объёму приточных воздушных масс. Благодаря такому функционированию не будут возникать сквозняки, нарушающие комфортный микроклимат. Приточную вентиляцию рекомендуется устанавливать под окнами, воздух подаётся с цокольного помещения, через щелевые напольные решётки. Такое размещение вентканалов позволит предотвратить образование конденсата на стёклах. Вытяжные вентканалы монтируются посередине зеркала под потолком где собирается влага и тепло, не приближаясь к притоку, чтобы рециркуляция воздушных масс была более эффективной.

Пример проекта вентиляции бассейна

Расчёт вентиляции

Чтобы спроектировать правильную вентиляционную систему, профессионалы рекомендуют разделить процесс установки на несколько этапов:

  1. Подбор оборудования и материалов для монтажа вентиляционной системы. На этом же этапе следует определиться с выбором хорошего специалиста, который будет выполнять работы.
  2. Создание рабочего проекта, проектирование схемы для монтажа с устройством необходимых технологических отверстий.
  3. Создание исполнительной документации, включающей чертежи, инструкции для установленного оборудования.

Определение производительности вентиляции и мощности нагревателя воздуха в зависимости от площади поверхности бассейна

Можно привести пример расчёта вентиляции бассейна:

  • За исходные данные берутся значения температуры рабочей зоны помещения, воды в чаше бассейна, уровень влажности, площадь чаши, а также среднесуточные показатели температуры и влажности воздуха.
  • Производится расчёт воздухообмена на количество человек, которые пользуются помещением. Кратность воздухообмена рассчитывается по формуле: интенсивность испарения делится на удельную плотность воздуха, которая умножается на разницу показателей влажности воздуха снаружи и внутри помещения. Для 1 человека норма воздухообмена составляет 80 м³/ч, следовательно, для 10 пользователей этот показатель будет составлять 800 м³/ч.
  • Определяется расход приточного воздуха для поддержания оптимального уровня влажности (например, в исходных данных он равен 60%). Он сравнивается с нормой воздухообмена, представленной выше. Из этих значений выбирается большее.
  • Определяется уровень поступления и потери тепла. Поступление тепла происходит от освещения, находящихся внутри помещения пловцов, прилагаемых помещений (баня, сауна, хамам), плотности обходных дорожек, дверных и оконных проёмов. Теплопотери происходят при нагревании водоёма.
  • Затем рассчитывается количество испарений с поверхности водоёма. Определяется коэффициент испарения.

Рассчитав все показатели, можно сделать вывод, насколько градусов следует охладить или нагреть поступающий воздух, чтобы соблюдался баланс с температурой внутри помещения.

Оптимальный уровень влажности

Комфортный уровень влажности воздуха в бассейне не должен превышать 65%. Чтобы понизить влажность до оптимального уровня, можно использовать осушающую установку, приточно-вытяжную вентиляцию, или и то, и другое вместе. Для осушения воздуха используют два метода: конденсацию и ассимиляцию:

  1. Конденсация представляет собой метод, при котором воздух пропускается через осушитель, где его температура достигает точки росы. После конденсации влаги воздух прогревается и возвращается в помещение. При этом необходима теплоизоляция всех воздуховодов для предотвращения стекания конденсата внутри помещения. Часто вентиляция бассейна в коттедже с такой установкой оснащена гигростатом, запускающим компрессор тогда, когда влажность достигает определённого уровня. Когда влажность понизится, компрессор автоматически отключается. Вентилятор при этом продолжает работать. Конденсационные осушители бывают трёх видов: настенными, скрытыми, стационарными. Для последнего типа требуется отдельное помещение или встраиваются в приточно-вытяжную систему.
  2. Работа приточно-вытяжных устройств по принципу ассимиляции основана на свойстве воздуха вбирать водяные пары. Преимущество метода ассимиляции состоит в эффективном очищении воздуха, но есть два недостатка. Первый связан с зависимостью от погоды: при высоком уровне влажности атмосферы воздух, попадая в помещение бассейна, не впитывает в себя влагу. Второй недостаток заключается в том, что приточный воздух необходимо нагревать.

Интенсивность испарения воды с поверхности бассейна (литров/квадратный метр в час)

Оптимальным вариантом для поддержания необходимого уровня влажности помещения бассейна, специалисты считают комбинированный метод осушения с использованием принудительной установки и осушителя. Однако, этот метод эффективен только для малых объёмов чаши, и требует тщательного расчёта, иначе могут возникнуть проблемы с решением вопроса (отказ техники, неопытное подключение системы и др.).

Способы поддержания оптимальной температуры воздуха

Температура воздуха в бассейне должна быть выше атмосферной. Часто для этого используются системы отопления: приточный воздух нагревается до температуры, которая поддерживается отопительной системой с применением соответствующих датчиков, что ведёт к удорожанию проекта. Этот способ лучше применять как дополнительный к основной отопительной системе. Наиболее эффективным способом поддержания оптимальной температуры воздуха в бассейне является приточно-вытяжная система с рекуператором тепла. Он отбирает тепло у вытяжного воздуха (35–40%) и отдаёт его холодному приточному воздуху через отфильтрованные системы. При этом необходимо помнить, что тепла возвратного воздуха недостаточно, и в любом случае необходимо установить дополнительный подогрев (электронагреватель, водяной калорифер).

Подведя итоги, следует отметить: для создания благоприятного микроклимата внутри помещения бассейна необходимо совершить сложный процесс расчётов, проектирования, установки систем вентиляции. Но на эффективность работы вентиляционной системы влияет множество факторов, между которыми должен соблюдаться определённый баланс, соответствующий нормам воздухообмена, оптимального уровня влажности, температуры воздуха.

Этот процесс требует профессионального подхода к системе вентилирования помещений с бассейном:

  • Кратность приточно-вытяжной вентиляции рассчитывается исходя из конкретных индивидуальных условий.
  • Осушитель воздуха подбирается по параметрам, указанным выше.
  • Обязательно присутствие специалиста.

Вентиляция бассейнов. Пример расчета — Мир Климата и Холода

Начало статьи см. в № 24, стр. 65-67.

Параметры точек:

 

Точки t, °СJ, кДж/кгD, г/кг φ, %
В27611360
У28671565
П25,6519,950
Н28,5549,942

 

3. Воздухообмен по влаге:

    или L = 3420 м3/ч                (23.16)

4.Воздухообмен по полному теплу:

                                                   (23.17)

5. Нормативный воздухообмен:

Lн = N · 80 м3/ч = 10 · 80 = 800 м3/ч или 960 кг/ч                                         (23.18)

Это значительно меньше расчетного.

 

Рис. 23.2

 

Вывод: наружный воздух в наиболее жаркое время дня должен быть охлажден до 25,6°С в воздухоохладителе. Если этого не делать, температура воздуха в бассейне возрастает до 30°С. Однако в ночные часы температура наружного воздуха понизится на 10,4°С (.) Н1 и воздух придется нагревать или применять утилизацию тепла.

Количество холода:

        или 3,4 кВт.

Холодный период года.

Задаемся относительной влажностью φв = 50% следовательно dв = 10,8 г/кг, и сохраняем остальные параметры по теплому периоду.

 

Рис. 23.3

 

1. Явное тепло:

2. Поступление влаги:

  • — от пловцов: Wпл = 1340 г/ч (по Т.П.)
  • — с поверхности бассейна:

C обходных дорожек:

Общее поступление влаги:

W = Wпл + WБ + Wод = 1,34 + 24,2 + 0,79 = 26,3 кг/ч

3. Полное тепло:

Qскр.Б = 24,2(2501,3 – 2,39 · 25) = 59080 кДж/ч

Qскр.од = 0,79 · (2501,3 – 2,39 · 31) = 1920 кДж

Qскр.пл = 330 кДж/ч ( по Т.П)

4. Тепловлажностное отношение:

5. Построение процесса и определение воздухообмена.

Наносим (.) В на J-d диаграмму и проводим луч процесса через нее до пересечения с линией d = const из (.) Н – это (.) К (рис. 23.2)

В холодный период используем рециркуляцию.

Градиент влагосодержания в рабочей зоне в холодный период принимаем равный теплому периоду:

                                       (23. 19)

Таким образом влагосодержание смеси приточного воздуха в холодный период года:

                                   (23.20)

На пересечении dсм и лежит точка смеси С, одновременно являющаяся по теплому периоду Gn кг/ч.

Влагосодержание удаляемого воздуха dу составит:

                             (23.1)

На пересечении dу с ε лежит (.) У.

Параметры точек:

 

Точки t, °СJ, кДж/кгD, г/кг φ, %
В275510,850
У27,56414,163
П, С26,3467,737
К25260,43
Н-26-25,30,480
МТ195514100

 

Количество приточного наружного воздуха можно определить из уравнения смеси:

                    (23. 22)

что выше нормативной величины Gн = 960 кг/ч. Следует предусмотреть утилизацию удаляемого воздуха. В общем виде схема вентиляции бассейна примет вид показанный на рисунке 23.3.

Регулирование выполняется по температуре и относительной влажности в рабочей зоне бассейна.

В следующих номерах журнала редакция продолжит публикацию отдельных глав из книги компании .

Вентиляция бассейнов — профессиональный расчет вентиляции бассейна — Вентиляция бассейна на лучшем оборудовании

Воздух в помещении бассейна

В любом бассейне постоянно испаряется вода, тем самым, увеличивая влажность воздуха. Слишком высокая влажность приводит к образованию конденсата на потолке, стенах и, конечно же, окнах. Результатом воздействия влаги является коррозия, плесень, грибок и, в итоге, разрушение строительных конструкций. Для человека повышенная влажность неприятна.

При строительстве турецких бань хамам или саун в помещении бассейна надо предусмотреть отдельную вентиляцию.

Избежать испарений с поверхности воды невозможно. Ограничить испарения и создать комфортные условия для отдыха возможно. Неправильно подобранная температура воздуха также как и воды приводит к увеличению испарения, поэтому температуру воздуха устанавливают на 1-2? С выше температуры воды в бассейне.

Для поддержания нормальной влажности (нормируемая относительная влажность 50 – 65 %), необходимо осушение воздуха специальными осушителями. Но и этого не достаточно для оздоровления воздуха.

Воздух в помещении бассейна насыщается продуктами дыхания человека, с поверхности воды выделяется хлор и другие вещества. Эту проблему решает хороший воздухообмен и приток необходимого количества свежего воздуха.

Важную роль для создания комфортных условий играет отсутствие сквозняков. Равномерная подача воздуха в рабочую зону с заданной скоростью и температурой исключает появление сквозняков.

Для избегания запотевания окон в холодное время года и неприятной радиации холода от окон или других наиболее охлажденных поверхностей необходима постоянная циркуляция теплого воздуха и правильная его раздача. Вентиляция организовывается таким образом, что сухой и подогретый воздух в первую очередь препятствует образованию конденсата на поверхностях, для которых такой риск существует.

Раздачу воздуха желательно проводить снизу под окнами, так как окна являются самым слабым звеном строительных конструкций и имеют непосредственный контакт с наружным воздухом.

Вытяжку необходимо делать сверху, где обычно собирается самый влажный и теплый воздух. Влажный воздух удаляется из помещения, а вместе с ним неприятные запахи, вредные примеси и продукты дыхания людей. Примерная схема раздачи и забора воздуха показана на рисунке.

Проект «Вентиляция» должен выполняться параллельно с проектированием бассейна и обязательно перед началом строительства бассейна.

Постоянный и правильно подобранный воздухообмен позволяет снизить до минимума вероятность образования конденсата на окнах и оконных рамах и создать неповторимый комфорт в Вашем бассейне.

Отопление

! > От отопления можно полностью отказаться, так как необходимый воздухообмен, кратностью больше 4, позволяет обычно полностью покрыть трансмиссионные потери при температуре притока примерно 40-45? С в зимний период. Система отопления, по желанию заказчика, проектируется одновременно с вентиляцией.

Наиболее эффективный способ поддержания необходимого климата и создание комфортных условий в помещении бассейна — это обустройство приточно–вытяжной вентиляции с осушением и утилизацией тепла удаляемого воздуха.

Автоматическая система управления вентиляционной установкой самостоятельно (по показателям датчиков) подберет вариант подготовки приточного воздуха, подачу свежего воздуха, выровняет температуру и влажность в помещении.

Правильно подобранная вентиляционная установка и правильно спроектированная вентиляционная система обеспечит живой воздух и благоприятный климат в помещении Вашего бассейна.

При проектировании системы вентиляции и подборе вентиляционного оборудования учитываются все дополнительные испарения в процессе работы оборудования для бассейнов.

Для плавательных бассейнов рекомендуются следующие значения рабочих параметров:

  • Температура воды 26 -29 ? С;
  • Температура в помещении 27 – 31 ? С;
    (на 1-2 градуса выше температуры воды)
  • Относительная влажность 50 – 65 %;
  • Воздухообмен на одного занимающегося > 80 м3/час человека
  • Подвижность воздуха в рабочей зоне < 0. 2 мс;
  • Концентрация свободного хлора в воздухе над зеркалом воды < 0.1 мгм3;

Осушители и вентиляционные установки для помещений бассейнов

1. Осушители конденсационного типа — применяются в бассейнах, где по каким-либо причинам применение приточно-вытяжной вентиляции невозможно.

Осушитель работает по принципу охлаждения ниже точки росы. Забираемый из помещения влажный воздух охлаждается в испарители (морозилке) холодильной машины ниже точки росы, содержащаяся в нем влага конденсируется и отводится в канализацию.

Осушенный таким образом воздух подогревается в конденсаторе холодильной машины и с более низкой влажностью и более высокой температурой возвращается в помещение.

При работе такого осушителя появляется избыток тепла от процесса конденсации и работы компрессора. Выделяемое тепло можно использовать для подогрева воды в бассейне. Недостатком таких установок является отсутствие притока свежего воздуха и перегрев помещения.

2. Приточно-вытяжная вентиляция с утилизацией тепла и осушением помещения бассейна наружным воздухом. Задача вентиляционной установки — поддерживать в помещении бассейна заданные температуру и влажность, а также обеспечить приток свежего воздуха.

Наружный воздух, как правило, содержит меньше влаги, чем воздух в бассейне. Объем приточного воздуха зависит от его влажности и температуры (зимой – сухой и холодный, летом – более влажный и теплый).

Таким обменом наружного воздуха можно обеспечить поддержание влажности в помещении. Для снижения эксплуатационных затрат необходима, также, эффективная система утилизации тепла воздуха, удаляемого из бассейна.

Компания АКВАЛЭНД предлагает очень простое и выгодное решение для частных или небольших гостиничных бассейнов с использованием Комфортного кондиционера без теплового насоса для бассейнов ThermoCond фирмы Menerga типовой ряд 19.

Предлагаемый кондиционер обеспечивает большие возможности при небольшом расходе энергии, он вентилирует, осушает и обогревает без отопительных приборов.

ThermoCond 19 — Режимы работы:

3. Комплексные установки для вентиляции, осушения, отопления помещений плавательных бассейнов и дополнительного подогрева воды в бассейне.

Установки работают как конденсационные осушители, приточно-вытяжные установки и многоступенчатые утилизаторы тепла. Выделяемое из вытяжного воздуха явное и скрытое тепло используется для подогрева приточного воздуха и воды в бассейне.

По заданным Вами параметрам температуры и влажности происходит управление системой вентиляции в автоматическом режиме.

В зависимости от интенсивности использования бассейна и погодных условий на улице процессор вентиляционной установки выбирает самый экономичный режим работы (степень осушения воздуха в бассейне, использование ступеней утилизации тепла, расход наружного воздуха и т.д).

Компания АКВАЛЭНД предлагает Комфортные кондиционеры ThermoCond типовой ряд 29 и 37 (новое поколение кондиционеров для бассейнов) фирмы MENERGA (Германия) с многоступенчатой утилизацией тепла, для использования в частных и общественных бассейнах.

Донные модели ThermoCond были разработаны специально для бассейнов и представляют собой системные комплексы, обеспечивающие требуемый микроклимат в бассейновых помещениях. Они осушают, подогревают и обновляют воздух в требуемых пропорциях, работают как отопительные системы.

Производительность и конфигурация вентиляционной установки подбираются под размеры бассейна. На заводе, при сборке вентустановки, учитываются размеры проходов для удобного проноса в техническое помещение.

Установка полностью укомплектована всеми необходимыми функциями по осушению и обновлению воздуха, функциями подогрева приточного воздуха.

Вентилируют, осушают и отапливают помещение бассейна без дополнительного отопления.

ThermoCond 29 — Режимы работы:

ThermoCond 37 — новое поколение кондиционеров для бассейнов
Режимы работы:

В состав Комфортного кондиционера входит ассиметричный высокоэффективный теплообменник из полипропиленовых пластин, который утилизирует явное тепло и интегрированный тепловой насос, который утилизирует скрытое тепло из удаляемого воздуха.

Выделенное такими способами тепло возвращается для дальнейшего использования (подогрев воздуха, воды), тем самым, экономя затраченную энергию. Материал пластин теплообменника стоек к воздействию кислот и щелочей, что обеспечивает его полную коррозионную стойкость на протяжении всего срока эксплуатации.

Конструкция и все компоненты Комфортного кондиционера рассчитаны на сохранение накопленного тепла и на минимальные затраты энергии. Энергосберегающие вентиляторы (приточный и вытяжной) оптимизированы по мощности и управляются коммутатором.

Осуществляется постоянный контроль вибрации с помощью специальных сенсоров. Корпус кондиционеров покрыт специальным полимерным слоем, что предотвращает его коррозию, а теплоизоляция, проложенная внутри корпусных панелей, сохраняет тепло.

Высокоточная и эффективная система вентиляции, обеспечиваемая такими установками, регистрирует состояние среды и реагирует на малейшие изменения, затрачивая при этом незначительное количество энергии.

Наличие пульта управления с графическим дисплеем (плюс выносной пульт) позволяет просто управлять установкой с выведением данных на дисплей и соответствующей их корректировкой. А наличие встроенного модема позволяет контролировать и управлять кондиционером на расстоянии.

Концепция Комфортного кондиционера, такова, что он содержит все необходимые элементы для вентиляции, осушения воздуха и отопления с соответствующими элементами автоматизации и управления.

Полная автоматизация процессов, самоконтроль, использование энергосберегающих компонентов и самых современных методов утилизации тепла позволяет искусно сохранять, и тем самым, экономить энергию.

Сборка кондиционера на заводе сопровождается соответствующими испытаниями. Для транспортировки кондиционер может доставляться до места эксплуатации по частям и быстро собираться на месте.

Фирма MENERGA уже 30 лет состоит в «высшей лиге» разработчиков и поставщиков вентиляционного оборудования.

Кондиционеры для бассейнов фирмы предназначены как для частных бассейнов, так и для общественных, включая лечебные. Надежность Кондиционеров MENERGA и постоянный online контроль через модем обеспечивает бесперебойную работу вентиляционных систем плавательного бассейна.

Контроль над работой оборудования и сервис осуществляется специалистами фирмы MENERGA.

Рекомендации по вентиляции плавательных бассейнов от Systemair

Типичные условия

Температура в помещении большинства общественных бассейнов поддерживается на уровне 30 ° C. Чтобы ограничить испарение воды с поверхности воды, обычно температура воды в бассейне должна быть на 1-2 ° C ниже, чем температура в зале бассейна. Что касается комфортных условий для купающихся, допускается, чтобы влажность оставалась в диапазоне от 50% до 60%.

Залы для бассейнов требуют больше энергии, чем любое другое общественное здание (на порядок) с практически круглогодичным отоплением (в Великобритании).Потребляемая мощность двигателя вентилятора высока, поскольку система вентиляции работает непрерывно. Обеспечение минимальной энергии для подачи воздуха имеет гораздо большее влияние, чем сосредоточение внимания на воде (которую можно нагревать только со скоростью 0,5 ° C в день, а однократное повышение температуры требует минимальных затрат).

При расчете количества свежего воздуха, необходимого для осушения, учитывайте следующее:

  • Площадь бассейна и характеристики использования бассейна
  • Разница между давлением пара воды в бассейне и давлением насыщенного воздуха в зале бассейна
  • Скорость воздухообмена должна составлять 4-6 в час в соответствии с принципом распределения воздуха
  • В руководстве

  • CIBSE в настоящее время указано 10 л / с на м² общей площади (исходя из общественного бассейна 25 x 13 м).

Для расчета потребности в обогреве бильярдного зала необходимы следующие расчеты:

  • Потеря передачи
  • Потери энергии из-за тепла, необходимого для испарения воды
  • Тепловая энергия, необходимая для покрытия испарения воды
Контроль температуры, влажности и энергопотребления

Большинство бассейновых блоков предназначены для вентиляции, обогрева и осушения помещения.

Чтобы обеспечить наилучшую производительность при минимальных затратах в течение жизненного цикла, следует учитывать несколько ключевых факторов:

  • Полностью управляемые вентиляторы eC с прямым приводом — в наши дни никто не должен использовать ремни
  • Способность постоянно поддерживать небольшое отрицательное давление — за счет различного использования и требований к объему, с максимально сбалансированными воздушными потоками для максимальной рекуперации тепла
  • Высокая эффективность пассивной рекуперации тепла — отсутствие штрафа за попадание наружного воздуха> 95%
  • Минимальное количество (в идеале) металлических частей в воздушных путях во избежание коррозии или воздействия кислоты
  • Рекуператоры на основе полипропилена, арматура и арматура из АБС-пластика, гибкие соединения для воздуховодов, пластиковые демпферные зубцы
  • Точные, автономные системы управления в реальном времени — установка должна быть способна рассчитывать наиболее эффективный режим работы на основе измерений в реальном времени условий наружного и возвратного воздуха в любое время

Распределение воздуха в зале бассейна

Лучший агрегат в мире не может компенсировать плохое распределение воздуха. Распределение воздуха должно позволять направлять испаренную влагу прямо к входному отверстию для возвратного воздуха. Эта функция важна по двум причинам.

Один — для удаления влаги, другой — для избавления от дезинфекции продуктами, попадающими в бассейн с испарением воды. Лучшим способом для этого является использование индукционного диффузора на уровне пола и системы рециркуляции воздуха, выводящей воздух через несколько входов.

Требования к наружному воздуху

Согласно рекомендациям CIBSE Великобритании, минимум 30% наружного воздуха требуется во все время работы для обеспечения общественного плавательного бассейна.В течение большей части года этой доли наружного воздуха достаточно для осушения бассейна.

За счет максимального повышения эффективности рекуперации тепла при необходимости подача большего количества наружного воздуха отсутствует, что обеспечивает эксплуатационные расходы просто на добавление тепла для преодоления потерь при передаче тепла в помещении и мощности для постоянно работающих вентиляторов. Возможность полного обхода наружного воздуха имеет решающее значение для обеспечения круглогодичных хороших условий в Великобритании.

Устраняя необходимость в тепловом насосе, вы можете снизить затраты на электроэнергию, техническое обслуживание и минимизировать количество компонентов, которые могут выйти из строя.

Зачем платить за тепловой насос и дополнительную циркуляционную электроэнергию, если требуемый по закону наружный воздух может осушать для вас расходы на работу вентиляторов?

Щелкните изображение PDF, чтобы просмотреть всю техническую информацию

Вентиляционный воздух для внутренних бассейнов — Рекомендации по применению — TB5

Введение

В этом техническом бюллетене рассматриваются требования к вентиляции наружным воздухом для закрытых бассейнов.В нем содержится подробный анализ того, что означает существующий стандарт и как вентиляционный воздух должен подаваться в систему обработки воздуха / осушения. Также включен обзор рекуперации и сохранения энергии.

Как и в случае со всеми правилами и положениями, толкования различаются. DESERT AIRE предоставил следующее резюме для решения проблемы вентиляционного воздуха. Этот бюллетень предназначен только для обсуждения и не предназначен для отмены мнения инженера-консультанта.

Объем воздуха в системе осушения

Стандарт ASHRAE 62-2019, принятый в отрасли свод правил вентиляции для качества воздуха в помещении, определяет минимальный объем наружного воздуха, который должен подаваться в ограждение внутреннего бассейна.Этот объем обычно составляет лишь небольшой процент от общего объема воздуха, необходимого системе осушения для поддержания влажности в помещении. Скорость воздуха на поверхности бассейна должна быть сведена к минимуму, чтобы избежать чрезмерного испарения. Конструкция осушителя должна быть рассчитана примерно на четыре-шесть воздухообменов в час.

Стандарт вентиляции
Бассейн и влажная площадка: 0. 48 кубических футов в минуту / фут 2
2,4 л / с / м 2
Несмачиваемая площадь палубы: 0,06 куб. Футов / мин / фут 2
0,3 л / с / м 2
Зал для зрителей: 7,5 куб. Футов / мин / зритель + 0,06 куб. Футов / мин. 2
3,8 л / с / зритель + 0.3 л / с / м 2

ASHRAE 62 требует, чтобы объем вентилируемого воздуха составлял 0,48 кубических футов в минуту на квадратный фут бассейна и увлажненной площади палубы плюс 0,06 кубических футов в минуту на квадратный фут не увлажненной площади палубы. В дополнение к этому объему требуется дополнительная сумма, если на объекте есть выделенная зона для зрителей (трибуны). Для этих объектов необходимо ввести 7,5 куб. Футов в минуту на человека в дополнение к 0,06 кубических футов в минуту на квадратный фут площади зрительской зоны в периоды присутствия зрителей.

Определение бассейна и террасы

В соответствии с ASHRAE 62 площадь увлажненной палубы определяется как область вокруг бассейна, которая, как ожидается, будет увлажнена при нормальном использовании бассейна. Выделенные зоны для зрителей не входят в зону влажной палубы. Раздевалки, вестибюли и коридоры в это измерение не входят. Обратите внимание, что площадь несмачиваемой палубы — это не то же самое, что и область увлажненной палубы (см. Рисунок 1.)

Химический состав воды и запах

При планировании нататориев дизайнеры заботятся о том, чтобы не было неприятных запахов.Как правило, они проектируют систему вентиляции, которая подает избыточное количество наружного воздуха, чтобы контролировать любые потенциальные проблемы с запахом. Хотя полный анализ химического состава воды в бассейне выходит за рамки этого бюллетеня, требуется быстрый обзор, чтобы развеять некоторые мифы относительно требований к вентиляционному воздуху. См. Технический бюллетень № 9 Desert Aire для более подробного описания химического состава воды и воздуха в бассейне.

Многие люди часто жалуются на сильный неприятный запах хлора в помещениях бассейнов.На самом деле этот запах не хлор (который не может почувствовать человек, пока он не станет выше токсичного уровня), а промежуточное соединение, образующееся в процессе дезинфекции. Запах создается комбинацией хлора и органических веществ (пота, масел и мочи) в воде. То, что мы чувствуем, — это летучие хлорамины. Они легко выбрасываются в воздух и обнаруживаются людьми в низких концентрациях.

Хлорамины тяжелее воздуха, поэтому использование малой мощности выхлопных газов оказалось эффективным для удаления хлораминов.Устранение запаха, вызывающего появление хлораминов в их источнике, улучшило качество воздуха в нататории и является рекомендуемым решением многих проектировщиков для уменьшения запаха и улучшения качества воздуха. Обратитесь к Руководству по проектированию Natatorium 21st Century Desert Aire, чтобы узнать о предлагаемых схемах распределения воздуха и вытяжки для улучшения качества воздуха в помещении.

Интерпретация вентиляционного кодекса

Стандарт существует для защиты здоровья пользователей пула. Однако правильная интерпретация может также улучшить энергосбережение за счет уменьшения требуемого объема наружного воздуха до минимума, разрешенного кодексом.

Интерпретация основана на следующих предположениях:

  1. , что обычная пользовательская нагрузка пула невелика и толпы зрителей будут обрабатываться как исключение;
  2. , что автоматические системы подачи химикатов установлены и функционируют; и
  3. , что осушитель установлен и работает.

Вентиляцию можно регулировать в зависимости от заполняемости. Когда в помещении никого нет, подача наружного воздуха может быть прекращена.Во время нормальной работы поток наружного воздуха может быть установлен на минимально допустимый уровень. Для более высокой, чем обычно, загруженности (например, заплыва) задействуется повышенная скорость потока наружного воздуха
. (См. Рис. 2.) Оптимизация наружного воздуха сильно повлияет на эксплуатационные расходы на отопление и охлаждение.

Управление заслонками наружного воздуха может осуществляться двумя способами: ручным переключателем или таймером.

Для любого из этих двух методов приведения в действие система установит три точки управления для автоматизации заслонки наружного воздуха: закрытые при отсутствии людей; минимальный код вентиляции для нормальной деятельности; и режим событий для удовлетворения требований к нагрузке на зрителей.Также может быть установлена ​​дополнительная индексация заслонки OA, например, режим Max OA или режим продувки.

На большинстве спортивных сооружений заполняемость зрителей не постоянна, за исключением соревнований по плаванию. Воздух для вентиляции зрителей может подаваться через специальную систему наружного воздуха (DOAS), воздуховод которой обеспечивает зрителей чистым и свежим воздухом. DOAS также может создавать температуру на пару градусов ниже, чем температура в бассейне, чтобы поддерживать прохладу полностью одетых зрителей. Чтобы еще больше снизить затраты на электроэнергию, условную вентиляцию для этой области можно контролировать с помощью переключателя, активируемого вручную, или системы управления зданием с программой планирования.Таким образом, объект может снизить затраты на электроэнергию за счет кондиционирования воздуха только в присутствии зрителей.

Введение наружного воздуха

Динамика павильона для бассейна уникальна из-за необходимости контроля влажности. Большинство других применений могут принимать наружный воздух перед устройством обработки воздуха, не влияя на производительность системы. В случае осушителя это не так. Если наружный воздух попадает в воздуховод рециркуляции, в холодную погоду (зимой) могут возникнуть две проблемы.Первая проблема — это конденсация в воздуховоде, когда холодный воздух встречает влажный возвратный воздух из помещения бассейна. Вторая проблема заключается в том, что температура смешанного воздуха будет ниже, чем температура возвратного воздуха бассейна, что снизит способность осушителя удалять влагу.

Чтобы устранить эти проблемы, наружный воздух следует вводить после испарителя (см. Рисунок 3). Тогда осушитель будет иметь максимальную способность удаления влаги, а змеевики повторного нагрева и дополнительного нагрева могут повысить температуру наружного воздуха, избегая сквозняков в холодную погоду. пловцы.

Экономика отопления и охлаждения

ЗИМА

Крытый бассейн имеет несколько источников потерь энергии:

  1. конвекция через потолок, окна и стены
  2. отработанный воздух
  3. испарение воды из бассейна

Тепловые потери за счет конвекции и теплопотери вытяжного воздуха в ограждении бассейна зависят от прохлады наружного воздуха.Чем больше разница температур в помещении и на улице, тем больше потеря энергии. Неконтролируемая потеря тепла вызывает дискомфорт у пловцов, а также увеличивает скорость испарения воды в бассейне. Потери тепла через потолки, стены и окна можно свести к минимуму, используя соответствующую изоляцию и многослойные окна. Потери тепла через вытяжной воздух можно минимизировать, исключив вытяжку в свободное время и введя минимальное количество наружного воздуха, которое разрешено правилами.

Потери тепла водой можно минимизировать, поддерживая температуру воздуха на несколько градусов выше температуры воды.Ключевым фактором является поддержание относительной влажности в помещении на уровне 50-60 процентов. Если относительная влажность упадет ниже 50 процентов, скорость испарения значительно увеличится. Относительная влажность ниже 50 процентов может возникнуть, если в зимний период поступает дополнительное количество наружного воздуха.

Самый простой метод расчета эффекта вентиляции — это метод полной энтальпии. Этот метод сравнивает разницу в энтальпии (БТЕ / фунт) внутреннего и наружного воздуха при разных скоростях вентиляции.Затем можно рассчитать прямые затраты на электроэнергию.

ЛЕТО

В летние месяцы проблема не в потере тепла, а в получении тепла. Более высокий объем наружного воздуха увеличивает потребность в охлаждении и вносит дополнительную влажность в большинстве климатических условий. Повышенная нагрузка требует большей ощутимой охлаждающей способности, а повышенная влажность требует более крупного осушителя, который должен работать дольше. Этот эффект необходимо учитывать при расчете размеров осушителя.

Вывод

Система осушения в крытом бассейне не только защищает конструкцию и восстанавливает энергию, но также позволяет уменьшить количество наружного воздуха, тем самым увеличивая экономию энергии.Если в вашем штате приняты правила вентиляции ASHRAE 62, то в ваши планы должны быть включены следующие проектные спецификации:

  • Система осушения — обеспечивает от четырех до шести смен воздуха в час при поддержании относительной влажности от 50 до 60 процентов.
  • Автоматическая система подачи химикатов — разработана, чтобы исключить необходимость подачи дополнительного наружного воздуха для контроля запаха обрабатывающих химикатов.
  • Обеспечьте базовую вентиляцию воздуха во время обычного использования и базовую вентиляцию плюс скорость зрительской вентиляции во время заплыва.
  • Наружный воздух, подаваемый после змеевика испарителя в осушитель бассейна, увеличивает производительность агрегата. DOAS можно использовать для измерения объема наружного воздуха для зрителей.
  • Использование вытяжного устройства с захватом источника для поддержания качества воздуха в помещении при минимальном объеме OA.

Коммерческие системы осушения серии ExpertAire ™ обеспечивают высочайшую доступную эффективность удаления влаги и гибкость в регулировании подачи наружного воздуха с экономией энергии.

Системы осушения серий SelectAire ™ и SelectAire Plus ™ позволяют решить самые сложные проблемы с повышенным уровнем влажности благодаря модульной конструкции и гибким возможностям проектирования для индивидуальных и целенаправленных решений.

Циркуляция воздуха для внутренних бассейнов |

При эксплуатации закрытых водных объектов качество воздуха играет важную роль в создании комфортных и безопасных условий для плавания. Приемлемое качество воздуха в помещении не содержит загрязняющих веществ и комфортно для пользователей помещения.Существуют различные методы и процессы, которым должны следовать операторы бассейнов, чтобы создать среду с идеальной циркуляцией воздуха. Это руководство по обслуживанию крытого бассейна может послужить отправной точкой для людей, готовящихся к курсам сертификации CPO®.

Влажность

Первое, что следует учитывать в этом руководстве по обслуживанию крытого бассейна, — это уровни влажности в водном объекте. Рекомендуется поддерживать уровень относительной влажности в диапазоне от 40% до 60%.Когда температура на объекте колеблется выше или ниже этого диапазона, существует большая вероятность увеличения уровня бактерий, вирусов, грибков и других факторов, влияющих на качество воздуха.

Если относительная влажность поддерживается ниже 40%, также увеличивается скорость испарения, что увеличивает потребности бассейна в обогреве. Относительная влажность выше 60% увеличивает проблемы с коррозией, конденсацией, а также создает дискомфорт для тех, кто находится в помещении. Высокая влажность способствует росту плесени и грибка, а также образованию конденсата, который может вызвать коррозию здания до такой степени, что в конечном итоге его использование станет небезопасным.

Вентиляция

Надлежащая вентиляция — еще одна важная часть данного руководства по обслуживанию внутреннего бассейна. Если в помещении используется хлор, хлорамины могут выбрасываться в воздух. В помещении бассейна должна быть соответствующая вентиляция, чтобы этот воздух выводился наружу, а не в раздевалки, ванные комнаты и т. Д. Вентиляция также используется для предотвращения температурного расслоения в помещениях с высокими потолками. Операторы бассейнов также должны использовать низкоуровневые возвратные вентиляционные отверстия для удаления воздуха с поверхности воды.

В помещениях бассейна должно быть небольшое отрицательное давление воздуха и автоматические дверные доводчики для предотвращения попадания загрязненного воздуха в прилегающие зоны здания. Правильное качество воздуха также требует равномерного распределения воздуха по воздуховодам.

Энергосбережение

Важная часть любого руководства по обслуживанию крытого бассейна — это научиться экономить энергию и деньги на водном объекте. Энергосбережение требует оценки систем отопления и охлаждения, двигателей вентиляторов, резервных водонагревателей, насосов и вентиляции с рекуперацией тепла.Когда в нататории установлены фиксированные скорости вентиляции наружного воздуха без осушения, уровни влажности могут колебаться, вызывая более высокие требования к системам вентиляции воздуха.

Когда водное сооружение находится в более холодном климате, требуется большое количество энергии для нагрева воздуха, передаваемого снаружи. За счет установки воздушного теплообменника тепло передается поступающему воздуху, что позволяет экономить энергию. В вентиляции с рекуперацией тепла используется противоточный теплообменник между входящим и выходящим воздухом.Они рекуперируют тепловую энергию из отработанного воздуха и передают ее свежему воздуху, поступающему в здание.

Полное руководство по обслуживанию крытого бассейна

Это руководство по обслуживанию крытого бассейна может послужить отправной точкой для тех, кто рассматривает возможность стать CPO®. Однако окончательное руководство — это прохождение сертификационного курса CPO®. Вы можете узнать у экспертов о циркуляции воздуха, а также о других рекомендациях по безопасности и управлению бассейном. Сертификационный класс CPO® — отличное начало для того, чтобы стать экспертом в области бассейнов.

Удостоенные наград сертификационные курсы CPO®

Pool Operation Management обучат вас тому, как правильно управлять бассейном с максимальной энергоэффективностью. Наши двухдневные курсы предлагают обширную информацию и обучение по всему, от химикатов для бассейнов до энергосбережения и рисков и ответственности. Свяжитесь с нами сегодня, чтобы получить наилучшие результаты в эксплуатации бассейна.


* Эта информация получена из Справочника сертифицированного оператора бассейнов и спа. Эта информация может быть неприменима к вашему бассейну в зависимости от типа и местоположения вашего бассейна.Следует ссылаться на все применимые правила и стандарты для вашего объекта.

Руководство по обслуживанию внутреннего бассейна

: Циркуляция воздуха для внутренних бассейнов2018-05-142020-06-26 https://pooloperationmanagement.com/wp-content/uploads/2016/04/POMlogo_small3.png Управление эксплуатацией бассейна https://pooloperationmanagement.com/wp- content / uploads / 2018/05 / bigstock-218910352.jpg200px200px

Хлорамины и работа в бассейне | Здоровое плавание | Здоровая вода

Хлорамины — это разновидность связанного хлора, который образуется в воде, а затем выделяется в атмосферу над водой.Большинство департаментов здравоохранения городов, округов и штатов ограничивают количество связанного хлора в воде до 0,4 промилле или меньше.

Хлорамины могут накапливаться в воде, что означает, что они могут накапливаться в воздухе, если вокруг бассейнов и других мест, где люди плавают в хлорированной воде, недостаточно свежего воздуха. 1 . Это особенно верно для внутренних водных объектов, где системы кондиционирования воздуха не обеспечивают достаточного притока свежего воздуха и отводят достаточно загрязненного хлорамином воздуха, что является обычным явлением в зимние месяцы, когда возрастают расходы на отопление.Хлорамины, выделяющиеся из воды, тяжелее воздуха. Это означает, что они оседают на поверхности воды, где могут нанести вред здоровью пловцов и зрителей.

Накопление хлораминов в воздухе вызывают три причины:

  • Нарушение поверхности воды (например, когда пловцы движутся в воде или вода разбрызгивается через водные объекты),
  • Ограничение движения свежего воздуха над поверхностью воды и
  • Использование систем кондиционирования воздуха 1,2 для ограничения количества свежего воздуха, подаваемого в зону для купания, и для ограничения количества воздуха, загрязненного хлорамином, выходящего из зоны плавания.Это обычное дело в зимние месяцы, когда расходы на отопление высоки.

Системы кондиционирования воздуха могут удалять влагу из воздуха, но они не обязательно обеспечивают приток достаточного количества свежего воздуха или выброса воздуха, загрязненного хлораминами; Операторам бассейнов необходимо проконсультироваться с техническими представителями о том, как максимально использовать их систему обработки воздуха, чтобы уменьшить накопление хлорамина при одновременном снижении затрат на отопление. Если хлорамины не выводятся наружу, то рециркулируемый воздух, протекающий над водой, может содержать хлорамины.Если воздух, окружающий воду, полон хлораминов, хлорамины не могут выделять газ из окружающего воздуха. Это означает, что хлорамины будут накапливаться в воде и оказывать вредное воздействие на здоровье пловцов.

% PDF-1.7
%
1007 0 объект
>
эндобдж

xref
1007 86
0000000016 00000 н.
0000003505 00000 н.
0000003828 00000 н.
0000003882 00000 н.
0000004012 00000 н.
0000004354 00000 п.
0000004393 00000 н.
0000004508 00000 н.
0000005310 00000 п.
0000005981 00000 п.
0000006252 00000 н.
0000006797 00000 н.
0000007054 00000 н.
0000007611 00000 н.
0000007862 00000 н.
0000008287 00000 н.
0000056251 00000 п.
0000086488 00000 п.
0000123822 00000 н.
0000126473 00000 н.
0000127129 00000 н.
0000127727 00000 н.
0000128342 00000 н.
0000147288 00000 н.
0000147546 00000 н.
0000147990 00000 н.
0000194838 00000 н.
0000330256 00000 н.
0000330331 00000 п.
0000330411 00000 н.
0000330493 00000 п.
0000330538 00000 п.
0000330700 00000 н.
0000330757 00000 н.
0000330939 00000 п.
0000330996 00000 н.
0000331172 00000 н.
0000331229 00000 н.
0000331443 00000 н.
0000331500 00000 н.
0000331630 00000 н.
0000331782 00000 н.
0000331951 00000 н.
0000332007 00000 н.
0000332183 00000 н.
0000332311 00000 н.
0000332427 00000 н.
0000332483 00000 н.
0000332588 00000 н.
0000332632 00000 н.
0000332725 00000 н.
0000332769 00000 н.
0000332866 00000 н.
0000332910 00000 н.
0000333010 00000 н.
0000333054 00000 н.
0000333155 00000 н.
0000333199 00000 н.
0000333257 00000 н.
0000333421 00000 н.
0000333479 00000 п.
0000333625 00000 н.
0000333682 00000 н.
0000333864 00000 н.
0000333921 ​​00000 н.
0000333978 00000 н.
0000334036 00000 н.
0000334222 00000 п.
0000334280 00000 н.
0000334486 00000 н.
0000334544 00000 н.
0000334746 00000 н.
0000334804 00000 н.
0000334964 00000 н.
0000335022 00000 н.
0000335176 00000 п.
0000335234 00000 п.
0000335434 00000 п.
0000335492 00000 п.
0000335678 00000 н.
0000335736 00000 н.
0000335924 00000 н.
0000335982 00000 н.
0000336040 00000 н.
0000003303 00000 н.
0000002061 00000 н.
трейлер
] / Назад 1831412 / XRefStm 3303 >>
startxref
0
%% EOF

1092 0 объект
> поток
h ެ LSW {-% E @) 2_Q Q [= 0e @ l8Vf6l͢S5 # [bls7y | 9s {

Техническая эксплуатация бассейна после закрытия COVID-19

19 июня 2020 г.

Это руководство предназначено специально для общественных бассейнов, как определено в Европейский стандарт BS EN 15288-1 Дизайн плавательного бассейна.Это четвертый из серии технических комментариев PWTAG, касающихся текущей пандемии:

  • TN43 касается временного закрытия пула;
  • TN44 с дезинфекцией коронавирусом;
  • TN45 с немедленными действиями при повторном открытии.

Это техническое примечание следует читать вместе с обновлением, выпущенным в августе 2020 г. и доступным здесь.

В этой записке рассматривается текущая проблема управления бассейном во время стихания пандемии. Он обеспечивает основу передовой практики, рекомендаций и предупреждений, которые могут быть адаптированы менеджерами бассейнов к конкретным требованиям их бассейнов.

Информацию о том, как менеджеры должны безопасно обращаться с пользователями, с точки зрения дистанции и т. Д. По всему зданию и бассейну, можно найти на веб-сайтах Департамента цифровых технологий, культуры, СМИ и спорта (DCMS) и Swim England ( Return to Pools) Руководство ).

Бытовые бассейны, используемые семьями домашних хозяйств, здесь не рассматриваются; у них есть разные типы рисков Covid-19, связанных с их использованием.

1. Оценка рисков

Каждый менеджер пула или лицо, отвечающее за здоровье и безопасность, должны обеспечить оценку риска Covid-19 в соответствии с Законом о здоровье и безопасности на рабочем месте и соответствующим законодательством.Затем они должны убедиться, что рекомендации по оценке рисков разработаны и внедрены для защиты здоровья и безопасности персонала, пользователей и посетителей.

Коронавирус, вероятно, будет с нами в течение некоторого времени, поэтому оценку риска необходимо будет регулярно пересматривать в ответ на изменения. (В Разделе 3 рассматриваются дополнительные соображения по оценке риска бассейнов с использованием циануровой кислоты или хлорированных изоциануратов.)

2. Управление работой технического бассейна

Менеджеры должны адаптировать свои технические эксплуатационные процедуры (ТОРП) бассейнов к изменениям в требованиях к воде в плавательных бассейнах ( подписано старшим менеджером).Изменения должны быть записаны, включая дату и лицо, сделавшее их.

Персонал должен пройти обучение, чтобы убедиться, что они понимают изменения в ПТОП, Плане действий в чрезвычайных ситуациях и Рабочих процедурах безопасности бассейна, а также причины их важности. Необходимо соблюдать новые требования PWTAG и других соответствующих органов.

3. Первичная дезинфекция

При надлежащей дезинфекции воды в бассейне основной риск заражения Covid-19 заключается в респираторной передаче вируса воздушно-капельным путем от человека, являющегося носителем этого вируса, другим людям в критической близости, а не через передачу через воду.Имеющиеся данные показывают, что физический эффект воды в бассейне и соответствующая взаимосвязь между свободным хлором и значением pH должны инактивировать вирус в течение 15-30 секунд. Разведение вируса в объеме воды в бассейне также снижает риск заражения и передачи.

Более подробная информация о научных исследованиях представлена ​​в разделе 12.

В таблице ниже приведены подробные сведения о безопасной эксплуатации бассейна во время этой пандемии для ряда дезинфицирующих средств.(В конце этого раздела также есть примечание о циануровой кислоте и хлорированных изоциануратах.)

Дезинфицирующее средство Минимальный остаточный уровень Значение pH
Газообразный хлор 1,5 мг / л 7,0- 7,4
Гипохлорит натрия / кальция 1,5 мг / л 7,0-7,4
Дигидрат трихлоризоциануровой кислоты / дихлоризоцианурата 5 мг / л 7,0-7,2
BCDMH 7.0-7,4
Бромид натрия с гипохлоритом натрия 3,5 мг / л в виде брома
1,5 мг / л в виде хлора
7,2-8,2

Чем ниже pH, тем легче хлор убивает микроорганизмы. Считается, что для борьбы с вирусом Covid-19 остаточный хлор от 1,5 до 3 мг / л эффективен при pH от 7,0 до 7,4. Характеристики конкретного бассейна и режим его обработки могут влиять на то, насколько точно можно соблюдать эти рекомендуемые уровни.

Если в бассейне реально достичь pH ниже 7,4, минимальный остаток свободного хлора (от гипохлорита или газообразного хлора), возможно, должен достигать 2,7 мг / л до тех пор, пока продолжается пандемия.

В таблице ниже приведены некоторые подробности.

Значение pH Минимальная концентрация свободного хлора
7,0 1,5 мг / л
7,2 1,7 мг / л
7,4 2.0 мг / л
7,6 2,7 мг / л

Операторы должны регулярно проверять воду в бассейне на содержание свободного и связанного хлора и pH. PWTAG рекомендует проводить тестирование перед купанием и каждые два часа после этого.

Результаты должны быть зарегистрированы и подписаны, а старший персонал немедленно уведомлен, если они выходят за пределы указанного диапазона. Все результирующие действия следует документировать.

Концентрация смешанного хлора должна поддерживаться на уровне менее половины от концентрации свободного хлора, но не более 1.0 мг / л и как можно ниже.

ПРИМЕЧАНИЕ: Циануровая кислота и хлорированные изоцианураты

Известно, что циануровая кислота снижает дезинфицирующую эффективность свободного хлора, значительно увеличивая время контакта, необходимое для уничтожения ряда патогенов (например, аденовируса, вируса гепатита А и простейшего Cryptosporidium) . Поэтому разумно предположить, что это также относится к вирусу Covid-19. Такое снижение эффективности, вероятно, обеспечит возможность выживания вируса и, следовательно, перекрестного заражения через воду в бассейне.

PWTAG рекомендует во время этой пандемии в бассейнах с циануровой кислотой или хлорированными изоциануратами, включая открытые бассейны, поддерживать уровень циануровой кислоты ниже 100 мг / л и минимальный уровень свободного хлора 5 мг / л. Это может означать слив и разбавление воды в бассейне больше, чем обычно. Важно, чтобы оценка риска (с участием производителей) учитывала использование хлорированных изоциануратов во время этой пандемии.

4. Вторичная дезинфекция (УФ и озон)

Рекомендуемые уровни свободного хлора и значения pH (в таблицах выше) требуются независимо от того, используется вторичная дезинфекция или нет, поскольку это количество остаточного дезинфицирующего средства, присутствующего в воде бассейна. это очень важно для деактивации вируса в воде бассейна.

5. Циркуляция и гидравлика

Чтобы получить хорошее разбавление любых выпущенных вирусных частиц и обеспечить распределение свободного хлора таким образом, чтобы минимизировать риск заражения, важно поддерживать циркуляцию воды в бассейне на уровне 100 %.

Поскольку вирус, вероятно, инактивируется быстрее, чем может быть физически удален, упор следует делать на поддержании достаточного количества свободного хлора в воде бассейна. Если циркуляция достаточна для обеспечения желаемого остаточного содержания свободного хлора во всех частях бассейна, то основная цель (дезинфекция) достигается.

Также важно как можно скорее удалить любую загрязненную воду из бассейна с помощью гидравлики и циркуляционной системы бассейна. Этого легче достичь в бассейне на уровне палубы с удалением 80–100% поверхностной воды. Бассейны, в которых используются циркуляционные системы, использующие каналы для накипи или скиммеры, не будут обеспечивать такую ​​же скорость удаления загрязнений, поэтому важно, чтобы они содержались в чистоте и не содержали мусора.

6. Аэрозоли, создаваемые оборудованием для бассейнов

Covid-19 легко переносится и передается в виде капель и аэрозолей.Водовороты, водные горки и другие водные объекты могут образовывать аэрозоли. И они являются еще одним источником заражения купальщиками. Чтобы свести к минимуму образование аэрозолей, управляющие бассейнов не должны использовать такое оборудование до тех пор, пока пандемия не закончится.

В противном случае жизненно важно, чтобы все водные системы бассейна поддерживались в соответствии с рекомендациями PWTAG, приведенными в этой заметке и в Интернете. Здесь также важна вентиляция (см. Раздел 9).

Если внутри любого такого оборудования может образоваться стоячая вода, его следует регулярно промывать, чтобы снизить риск распространения других патогенов, передающихся через воду, включая Legionella.

7. Дистанция — вместимость купальщиков

Основными областями риска заражения в условиях бассейна являются замкнутые пространства и раздевалки. В самом бассейне, помимо необходимых уровней свободного хлора и значений pH, также необходимо соблюдать соответствующие расстояния между купающимися. При этом необходимо соблюдать установленную нагрузку на купальщиков в бассейне.

Перед лицом Covid-19 каждый пул должен рассчитать вместимость купальщиков в соответствии с его размером, формой и типом использования, сохраняя при этом установленное законом расстояние между купающимися.По этому поводу есть подробные инструкции от DCMS и Swim England. Управляющие бассейнами должны будут учитывать такие вопросы, как:

  • общее плавание — не только дорожки
  • незапрограммированные занятия — например, детские развлечения / занятия
  • отдельные занятия / занятия для уязвимых групп — например, старше 70 лет
  • люди с ограниченными возможностями
  • водные виды спорта классы упражнений
  • плавание в клубе
  • обучение
  • занятия водными видами спорта в бассейнах с гидротерапией
  • в отелях и на отдыхе
  • плавание для детей
  • доступ для инвалидов.

8. Гигиена купальщиков — душ и т. Д.

Каждый, кто пользуется зданием бассейна, должен мыть или иным образом дезинфицировать руки при входе и выходе. Управляющие пулами должны способствовать этому и поощрять это.

Душ перед плаванием является жизненно важным вкладом в обеспечение доступности свободного хлора в воде бассейна для дезинфекции вируса Covid-19 (а не для окисления органических материалов, исходящих от купающихся). Купальщиков следует активно поощрять принимать душ с мылом и водой, сохраняя при этом установленное законом физическое дистанцирование.Операторы должны предоставить дозаторы мыла, чтобы способствовать этому.

В некоторых случаях менеджеры бассейнов могут рекомендовать принять душ дома перед купанием, но это явно далеко не идеально. Если душ не используется, его следует смывать еженедельно в течение 15 минут.

Купальщицам следует напоминать о необходимости пользоваться туалетом, а затем мыть руки (следуя правилам физического дистанцирования) перед плаванием, а детям должна предоставляться такая возможность через частые промежутки времени во время плавания.

9.Вентиляция

Открытый бассейн с соответствующей дезинфекцией и pH, а купальщики находятся на правильном расстоянии, должны обеспечивать относительно безопасную среду.

Уменьшение рециркуляции и увеличение доли наружного воздуха в целом снижает загрязнение, включая побочные продукты дезинфекции и любые вирусы, переносимые по воздуху.

Рекомендуется, чтобы любая система вентиляции зала бассейна, которая обычно работает с рециркуляцией, по возможности максимально увеличивала приток наружного свежего воздуха.Дальнейшие инструкции можно найти на веб-сайте CIBSE и в Руководстве по возвращению к бассейнам Swim England.

10. Уборка

Будет повышена потребность в уборке бассейна и раздевалок. То, как оператор бассейна выполнит это, зависит от дизайна изменяемых зон, поскольку все они обладают уникальными характеристиками, которые необходимо учитывать и соответствующим образом программировать. Перед открытием необходимо провести полную и глубокую очистку всех участков.

PWTAG Техническая записка 44 ( Дезинфекция коронавируса ) содержит подробную информацию о методологии дезинфекции.На gov.uk есть дополнительные инструкции: COVID-1: очистка немедицинских учреждений .

Использование общих объектов, таких как горки, конструкции для лазания, игровое оборудование, лапша и поплавки, следует оценивать с учетом риска с учетом расстояния, требований к очистке и возможности образования аэрозолей. Должны быть развернуты только те элементы, которые необходимы для предоставления услуги.

Менеджеры могут рекомендовать пользователям принести с собой собственное оборудование, которое перед использованием следует тщательно очистить и продезинфицировать и не передавать людям за пределами их семейной группы.Любое совместно используемое оборудование следует чистить и дезинфицировать каждый раз при его использовании.

Средства для плавания следует дезинфицировать ежедневно, замачивая в течение одного часа в растворе хлора 100 мг / л (подробности в Технической записке 44), а затем ополаскивая перед использованием.

В целях обеспечения здоровья и безопасности как персонала, так и купальщиков, любые контейнеры, используемые для целей очистки, должны иметь маркировку: например, как использованное оборудование, которое еще не было очищено и продезинфицировано; или как очищенное и продезинфицированное оборудование. Дезинфицирующие средства следует хранить безопасно и надежно.

11.

Cryptosporidium

Хотя известно, что вирус Covid-19 может выделяться с фекалиями, это респираторный вирус, и его передача через дыхательные пути является основной проблемой. Тем не менее, случайные выбросы фекалий следует контролировать и принимать меры, в основном для снижения риска распространения устойчивых к хлору организмов Cryptosporidium и Giardia .

Это полностью описано в Технической записке 2 PWTAG ( Фекальное загрязнение) .

Должна быть письменная процедура как часть Плана действий в чрезвычайных ситуациях бассейна, в которой указывается, что делать в случае фекального инцидента. Персонал должен быть обучен этим процедурам, а обучение должно быть записано.

12. Приложение

Covid-19 — вирус в оболочке, который, вероятно, будет более чувствителен к хлорированию, чем, например, вирусы без оболочки, такие как аденовирус ( World Health Organization, 2020: https: //www.who .int / Publications / i / item / water-sanitation-hygiene-and-отходы-менеджмент-для-covid-19-virus-interim-guide ).

В настоящее время нет значений Ct хлора для SARS-CoV-2, но зарегистрированное значение Ct (4-логарифмическое снижение) для аденовируса составляет 0,75 мг.мин / л при pH 7 ( Thurston-Enriquez et al, 2003: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC165174/ ).

Таким образом, предполагалось, что Covid-19 будет по крайней мере иметь 4-логарифмическое снижение при хлорировании со значением Ct 0,75 мг.мин / л при pH 7. Если Covid-19 должен быть инактивирован в течение 30 секунд во время плавания вода в бассейне, то концентрация свободного хлора должна быть не менее 1.5 мг / л при pH 7 и, где возможно, до 3 мг / л, чтобы сократить время инактивации примерно до 15 секунд.

Расчет вентиляции чердака | JLC Онлайн

Q : Я обычно использую коньковые и карнизные вентиляционные отверстия для вентиляции чердаков в домах, которые я строю. Как вы рассчитываете требования для этого типа системы и меняются ли они при изменении уклона крыши?

A : Пол Счелси, ведущий семинаров Air Vent «Спросите эксперта», отвечает: Большинство из нас понимают, что правильная вентиляция чердака может поддерживать охлаждение чердака в теплые месяцы, но также помогает уменьшить влажность и следите за тем, чтобы чердак оставался сухим в холодные месяцы.Правильная вентиляция чердака также может помочь предотвратить образование разрушительных ледяных плотин.

Ключевым моментом является установка сбалансированной системы вентиляции чердака, и один из лучших способов сделать это — использовать парные вентиляционные отверстия конька и карниза. Эта система использует тепловой поток (поднимающийся теплый воздух) плюс эффект ветра, дующего над коньком, чтобы втягивать воздух через конек и забирать свежий воздух через карниз. Но независимо от того, какой тип вентиляции вы используете, для правильной работы система должна быть сбалансирована.

«Сбалансированный» в этом случае означает, что чистая свободная площадь (NFA) воздухозаборника у карниза или низа крыши должна быть равна или больше NFA вытяжного вентиля на коньке или рядом с ним.Таким образом, для типичной двускатной крыши NFA карниза вдоль каждой стороны крыши должна составлять не менее половины NFA конькового отверстия на пике.

В разделе R806.2 IRC говорится, что в большинстве случаев для определения минимальных требований к размеру вентиляционных отверстий следует использовать соотношение 1: 150 (NFA вентиляции к общей площади чердака). Итак, для чердака площадью 1000 квадратных футов вы разделите 1000 на 150, чтобы вычислить, что потребуется 6,6 квадратных футов вентиляции. Чтобы добиться сбалансированной системы, половина этого количества — это потребление, а другая половина — выхлоп, поэтому каждое должно быть 3.3 квадратных фута или 475 квадратных дюймов. Большинство производителей вентиляционных отверстий поставляют NFA для своих продуктов, поэтому используйте их цифры, чтобы определить, сколько погонных футов продукта вам необходимо установить для соответствия требованиям норм.

Вторая часть вашего вопроса посложнее. К сожалению, строительные нормы и правила не учитывают фактический объем пространства под крышей и не требуют, чтобы специалисты по кровле учитывали его. Объем чердака площадью 1000 квадратных футов под скатной крышей 12:12 отличается от объема под скатной крышей 5:12.На учебных семинарах Air Vent и в онлайн-калькуляторе на сайте airvent.com мы рекомендуем увеличить вентиляцию на 20% для крыш с уклоном с 7:12 до 10:12. Для более крутых крыш мы рекомендуем увеличить вентиляцию на 30%.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *