Альтернативные источники электроэнергии: Альтернативные источники энергии
Содержание
Альтернативные источники энергии
В условиях постоянного ухудшения экологической обстановки на планете человечество вынуждено искать альтернативные источники энергии. Все больше стран делают выбор в их пользу. Конечно, перестраивать энергетическую инфраструктуру — затратное дело, но стоит рассматривать этот процесс как вклад в будущее всей планеты.
Что такое альтернативная энергия?
Энергию можно разделить на два больших класса: невозобновляемая и возобновляемая. К первой категории относится использование таких энергоносителей, как нефть и каменный уголь. Рано или поздно из запасы на планете будут исчерпаны. К тому же, их применение связано с выбросами в атмосферу углекислого газа и глобальным потеплением. Возобновляемые, или альтернативные источники энергии — неисчерпаемые ресурсы, например, ветер или солнечный свет. Их применение имеет меньше «побочных эффектов», а риск истощения запасов отсутствует полностью. В наши дни большая часть энергии вырабатывается за счет сжигания нефти и газа, а также благодаря работе атомных электростанций. Все эти источники потенциально опасны для окружающей среды. Поэтому востребованной становится альтернативная энергетика, позволяющая получать энергию более экологичным способом, наносящим минимальный вред окружающей среде.
Энергия ветра
Ветровая энергетика — преобразование энергии движущихся воздушных масс в электричество, которое может быть использовано потребителем. Подсчитано, что запасов ветровой энергии в 100 раз больше, чем энергетических запасов всех рек нашей планеты. Основа установки для получения энергии — ветровые генераторы и ветровые мельницы. Особенно развит этот способ в Германии, Дании и Ирландии.
Основные плюсы ветровой энергетики — экологичность и низкая стоимость получаемой энергии. Но есть и существенный минус. Предсказать силу ветра невозможно, она непостоянна и зависит от множества факторов. Поэтому приходится использовать дополнительные источники получения энергии. Есть у ветрогенераторов еще одно неприятное свойство: они могут вызывать радиопомехи. Наконец, ветровая энергетика может потенциально оказывать влияние на климат планеты, так как ветрогенераторы забирают часть кинетической энергии движущихся воздушных масс. Однако ученые все еще не могут определить, насколько выраженным может быть это влияние и приведет оно к позитивным или негативным последствиям.
Сила воды
Основа гидроэнергетики — преобразование энергии водных масс в электричество. В качестве примера можно привести гидроэлектростанции, которые устанавливаются на крупных реках. Движущаяся вода воздействует на лопасти турбины, вращая их. Возникающая во время вращения энергия и преобразуется в электричество. Строительство ГЭС обходится государству очень дорого. Однако затраты быстро окупаются, так как цена полученной энергии получается сравнительно низкой (например, по сравнению с атомными электростанциями).
Строить гидроэлектростанции можно только на реках, которые никогда не пересыхают и имеют быстрое течение. Для возведения ГЭС необходимо обустроить плотину, позволяющую добиться определенного напора воды.
В России доля электрической энергии, вырабатываемой гидроэлектростанциями, составляет около 20% от всей энергетической генерации, а суммарная мощность всех ГЭС составляет 48085 МВт. В последние годы появилась идея использовать энергию приливов. Строятся приливные станции, преобразующие кинетическую энергию движущейся морской воды. В России самая крупная приливная электростанция функционирует в Мурманской области. Ее установленная мощность достигает 1,7 МВт. Наконец, есть способы генерации энергии из волн.
Эффективными оказались только три из них: поплавки, искусственные атоллы и подводные камеры. Такие электростанции передают кинетическую энергию по кабелю на станцию, где происходит выработка электричества. Есть у волновой энергетики два недостатка. Себестоимость полученное энергии довольно высока, а позволить себе обустройство станции могут только страны, имеющие продолжительную береговую линию. По этой причине этот вид используется редко.
Геотермальная энергетика
Наша планета вырабатывает большое количество тепла. Для получения энергии, в частности, используются геотермальные источники, располагающиеся в сейсмически опасных территориях и вулканических районах. Горячая вода может быть использована для непосредственного отопления зданий. Также ее перерабатывают в электроэнергию при вращении горячим паром турбины, идущей к генератору. Больше всего таких станций во Франции, Мексике и Америке.
Энергия осмотической диффузии
Этот вид альтернативной энергии стал разрабатываться сравнительно недавно. Осмотические электростанции устанавливаются в устьях рек и извлекают энергию из энтропии жидкостей в процессе взаимодействия соленой и пресной воды. Когда концентрация солей выравнивается, возникает избыточное давление, благодаря которому вращаются лопасти турбины. Пока в мире существует только одна осмотическая электростанция, функционирующая в Норвегии.
Биотопливо
Биотопливо производится из органических продуктов, в процессе переработки которых получается электрическая энергия. Выделяют твердое и жидкое биотопливо. К первой группе относятся дрова, топливные брикеты. Жидкое биотопливо — это биодизель, биобутанол, диметиловый эфир и т. д. Топливо можно получать непосредственно из биомассы (остатков растительного и животного происхождения), которые во время брожения выделяют горючий газ. Такие биогенераторы устанавливаются в сельских местностях. В России в последние годы построено множество заводов, которые перерабатывают древесные отходы в топливные брикеты и пеллеты, применяемые как топливо для различных видов котлов.
Гравитационная энергетика
Гравитационная энергетика — преобразование потенциальной энергии гравитационного поля планеты в электроэнергию. На данный момент уже разработан проект гравитационной электростанции, которая представляет собой подъемный кран со стрелами. Двигатели приходят в действие, когда опускаются блоки. Подъем блоков осуществляется, когда в сеть поступает избыток энергии.
Солнечная энергия, солнечные электростанции
Солнечную энергию преобразуют в электрическую посредством солнечный батарей. Удивительно, но всей планете на год хватило бы энергии, которую Солнце отправляет на Землю в течение одного дня. При этом выработка электроэнергии солнечными батареями не превышает 2% от общего количества. Однако солнечная энергия — одна из самых экологичных, безопасных и недорогих по себестоимости.
Пожалуй, единственным недостатком солнечной энергии является зависимость ее получения от времени суток и погодных условий. В северных странах строительство солнечных электростанция экономически невыгодно. По крайней мере, на данном этапе: ученые не исключают, что удастся создать солнечные батареи, которые будут улавливать фотоны даже в пасмурные дни.
Есть еще одна проблема: фотоэлементы необходимо вовремя утилизировать, так как в них содержатся мышьяк, галлий и свинец. Далеко не все страны могут позволить себе создание производств по переработке отработанных солнечных батарей. Наиболее широкое распространение солнечное электричество получает там, где оно обходится дешевле всех других видов. Например, солнечные электростанции устанавливаются на отдаленных фермерских участках, на комических станциях. Используется оно и в странах, где высока себестоимость других видов энергии. В качестве примера можно привести Израиль, где примерно 90% воды нагревается за счет энергии Солнца.
Солнечные батареи в последние годы активно используются для создания экологически безопасных автомобилей, самолетов и даже поездов. Солнечными батареями нередко оснащаются так называемые «умные дома», которые самостоятельно могут регулировать мощность установки в зависимости от потребностей обитателей жилья. В нашей стране солнечная энергетика получает все большее распространение в качестве резервного источника электрической энергии.
В России суммарная мощность электростанций, работающих на энергии Солнца, составляет 400,0 МВт. Проектируются новые станции, мощность которых будет составлять 850,0 МВт. Широко обсуждается проект создания космических солнечных электростанций. В открытом космосе преграды для солнечной радиации в виде атмосферного слоя отсутствуют. Поэтому возможен запуск на орбиту установок, оснащенных солнечными батареями, улавливающими энергию Солнца и пересылающих их на землю. КПД таких станций потенциально обещает быть приближенным к 100%, однако на данный момент их создание и запуск обойдется настолько дорого, что себестоимость энергии для потребителей получится слишком высокой.
Плюсы и минусы использования
Главными плюсами использования альтернативных источников энергии являются:
• возобновляемость ресурсов. Если поставить получение альтернативной энергии на поток, человечество никогда не столкнется с тем, что природные запасы исчерпают себя;
• экологическая безопасность. Альтернативная энергетика предполагает отсутствие опасных выбросов в окружающую среду;
• доступность по цене. На данный момент разработано множество способов получения альтернативной энергии. Поэтому любое государство может подобрать те варианты, которым наилучшим образом соответствуют его климатическим условиям.
Есть у альтернативной энергетики и минусы, затрудняющие ее широкое распространение:
• высокая стоимость необходимого оборудования. Не все государства могут позволить себе строительство и монтаж солнечных и ветровых электростанций;
• зависимость от внешних условий и климата. Солнечная энергия, которая признается наиболее перспективной, недоступна в странах с невысокой продолжительностью светового дня, сейсмическая и геотермальная энергия может быть получена лишь в вулканических, сейсмически нестабильных регионах и т.д.;
• небольшая мощность установок. Единственным исключением из этого правила являются гидроэлектростанции, мощность которых можно сравнить с аналогичным показателем АЭС;
• воздействие на климат. Даже альтернативные источники энергии оказывают воздействие на климатические условия. Например, высокий спрос на биотопливо может стать причиной уменьшения площади посевных площадей, а строительство плотин для гидроэлектростанций оказывает влияние на речные биотопы.
Перспективы в России
Россия может получать из ветра около 10% всей энергии и примерно 15% — за счет солнечного света. Однако широкого распространения альтернативные источники энергии в нашей стране не получают. Связано это с доступностью невозобновляемых ресурсов (нефти и газа). Отсутствует и экономическая стимуляция строительства альтернативных электростанций. Во многих странах Европы имеется стимулирующий тариф, по которому государство приобретает полученную альтернативными способами энергию. В России подобный тариф не введен. Тем не менее, в России успешно реализуется ряд проектов, связанных с альтернативной энергетикой. Например, в 2017 году в Химках был запущен проект по созданию Центра альтернативной энергетики. Задачей центра будет обеспечение энергией промышленных предприятий. В 2019 году в Мурманске начал строиться ветропарк, который начнет функционировать в 2021 году. Планируется, что мощность парка составит 201 МВт. Ученые уверены в том, что в ближайшие годы человечество вынуждено будет стремиться к полному переходу на альтернативные источники энергии. Это даст возможность сохранить планету для будущих поколений и избежать кризиса, связанного с исчерпанием невозобновляемых ресурсов. Согласно прогнозам, будущее энергетики связано с энергией Солнца и ветра. Остается надеяться на то, что людям удастся успеть научиться полностью обходиться возобновляемыми источниками энергии до момента, когда запасы нефти и газа на планете подойдут к концу.
© Компания «Реалсолар». Все права защищены. Перепечатка документа запрещена. Статья занесена в поисковые системы как уникальный текст.
Альтернативные источники энергии: что надо знать
«Зеленую» энергию выбирают страны, города, компании и граждане. Рассказываем, как возобновляемые источники переходят из категории альтернативных в основные, как они развиваются в России и мире и какое будущее их ждет
Что такое альтернативные источники энергии
Возобновляемую энергию получают из устойчивых источников, таких как гидроэнергия, энергия ветра, солнечная энергия, геотермальная энергия, биомасса и энергия приливов и отливов. В отличие от ископаемых видов топлива — например, нефти, природного газа, угля и урановой руды, эти источники энергии не истощаются, поэтому их называют возобновляемыми. Только за 2019 год по всему миру установлено объектов возобновляемых источников энергии (ВИЭ) общей мощностью 200 ГВт.
Доля источников энергии в мировом потреблении
(Фото: REN21)
Полная версия отчета Renewables 2020 в формате PDF (см. стр. 32)
Виды альтернативных источников энергии
1. Солнечная энергия
Солнце — главный источник энергии на Земле, ведь около 173 ПВт (или 173 млн ГВт) солнечной энергии попадает на нашу планету ежегодно, а это более чем в 10 тыс. раз превышает общемировые потребности в энергии. Фотоэлектрические модули на крыше или на открытых территориях преобразуют солнечный свет в электрическую энергию с помощью полупроводников — в основном, кремния. Солнечные коллекторы вырабатывают тепло для отопления и производства горячей воды, а также для кондиционирования воздуха.
Солнечные панели могут вырабатывать энергию и в пасмурную погоду, и даже в снегопад. Для наибольшей эффективности их стоит устанавливать под определенным углом — чем дальше от экватора, тем больше угол установки панелей.
2. Энергия ветра
Использование ветра в качестве движущей силы — давняя традиция. Ветряные мельницы использовались для помола муки, лесопильных работ) и в качестве насосной или водоподъемной станции. Современные ветрогенераторы вырабатывают электроэнергию за счет энергии ветра. Сначала они превращают кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию.
Ветроэнергетика является одной из самых быстроразвивающихся технологий возобновляемой энергетики. По последним данным IRENA, за последние два десятилетия мировые мощности по производству энергии ветра на суше и на море выросли почти в 75 раз — с 7,5 ГВт в 1997 году до примерно 564 ГВт к 2018 году.
3. Энергия воды
Еще в древнем Египте и Римской империи энергия воды использовалась для привода рабочих машин, в том числе мельниц. В средние века водяные мельницы применялись в Европе на лесопильных и целлюлозно-бумажных предприятиях. С конца XIX века энергию воды активно используют для получения электроэнергии.
4. Геотермальная энергия
Геотермальная энергия использует тепло Земли для производства электричества. Температура недр позволяет нагревать верхние слои Земли и подземные водоемы. Извлекают геотермальную энергию грунта с помощью мелких скважин — это не требует больших капиталовложений. Особенно эффективна в регионах, где горячие источники расположены недалеко к поверхности земной коры.
5. Биоэнергетика
Биоэнергетика универсальна. Тепло, электричество и топливо могут производиться из твердой, жидкой и газообразной биомассы. При этом в качестве возобновляемого сырья используются отходы растительного и животного происхождения.
6. Энергия приливов и отливов
Приливы и волны — еще один способ получения энергии. Они заставляют вращаться генератор, который и отвечает за выработку электричества. Таким образом для получения электроэнергии волновые электростанции используют гидродинамическую энергию, то есть энергию, перепад давления и разницу температур у морских волн. Исследования в этой области еще ведутся, но специалисты уже подсчитали — только побережье Европы может ежегодно генерировать энергии в объеме более 280 ТВт·ч, что составляет половину энергопотребления Германии.
Как разные страны мира выполняют планы по энергопереходу
Страны по всему миру поставили себе амбициозные задачи по переходу на возобновляемую энергию. Цели стали частью и Парижского соглашения — к 2030 году решения с нулевым выбросом углерода могут быть конкурентоспособными в секторах, на которые приходится более 70% глобальных выбросов. Сделать это планируется за счет энергетического перехода — процесса замены угольной экономики возобновляемой энергетикой. В 2020 году, несмотря на пандемию и экономическую рецессию, многие города, страны и компании продолжали объявлять или осуществлять планы по декарбонизации.
Ожидается, что в 2021 году Индия внесет самый большой вклад в развитие возобновляемой энергетики. Здесь планируют запустить ряд ветряных и солнечных проектов.
В Евросоюзе также прогнозируется скачок в приросте мощностей в 2021 году. Здесь даже в условиях пандемии не забывают о Green Deal — крупнейшей в истории ЕС коррекции экономического курса. Цель проекта — сформировать в ЕС углеродно-нейтральное пространство к 2030 году. Для этого планируется сократить на 40% объем выбросов парниковых газов от уровня 1990 года и увеличить долю энергии из возобновляемых источников до 32% в общей структуре энергопотребления. Как посчитала Еврокомиссия, достичь этих задач можно будет с помощью ежегодных инвестиций в размере €260 млрд. Доля ВИЭ в энергосистеме ЕС также постоянно растет. Так, около 40% электроэнергии в первом полугодии 2020 года в ЕС было произведено из возобновляемых источников.
Пока же в лидерах инвестиций в развитие возобновляемой энергетики — Китай, США, Япония и Великобритания. С тех пор, как BloombergNEF начал отслеживать эти данные, глобальные инвестиции в ветровую и солнечную энергетику, биотопливо, биомассу и отходы, малую гидроэлектроэнергетику увеличились почти на порядок. В годовом выражении вложения в чистую энергию выросли с $33 млрд до более чем $300 млрд за 20 лет.
Китай за десять лет стал главным производителем оборудования для возобновляемой энергетики. В первую очередь, речь идет о солнечных панелях. Семь из десяти крупнейших мировых производителей солнечных батарей — это китайские компании. В целом развитие технологий удешевило стоимость строительства новых объектов ВИЭ. Это приближает планы Китая стать углеродно нейтральным к 2060 году.
Ставка на солнце и уголь: два лица энергетики Китая
Серьезных шагов в сторону энергоперехода ожидают и от президента США Джо Байдена. Он не только вернул страну в Парижское соглашение, но и заявил о том, что намерен добиться чистых выбросов парниковых газов и перехода на 100% экологичной энергии к 2050 году.
Также к 2050 году планируют использовать только ВИЭ Япония, Южная Корея, Новая Зеландия и Великобритания. Прошедший 2020 год уже стал самым экологичным для энергосистемы Великобритании со времен промышленной революции. Страна целых 67 дней смогла обходиться без угля. От традиционных источников энергии Британия планирует отказаться уже к 2025 году.
Активно развиваются ВИЭ в Испании — по прогнозам, сектор только солнечной энергетики в стране будет расти примерно вдвое быстрее, чем в Германии.
В 2020 году Шотландия получила 97% электроэнергии из возобновляемых источников. С помощью произведенной «зеленой» энергии получилось обеспечить электронужды более чем 7 млн домохозяйств. Шотландия планирует стать углеродной нейтральной уже к 2030 году.
Этот же год выбран временем полного отказа от традиционной энергетики для Австрии, а Саудовская Аравия запланировала к 2030 году получать 50% электроэнергии от ВИЭ.
Национальные цели по доле ВИЭ среди источников энергии
(Фото: REN21)
Полная версия отчета Renewables 2020 в формате PDF (см. стр. 57)
Геотермальная энергия в Рейкьявике и солнечные батареи для Берлина
Отдельные города по всему миру также стремятся стать климатически нейтральными. По данным CDP, из более чем 570 городов мира, по которым ведется статистика, более 100 получают по крайней мере 70% электроэнергии из возобновляемых источников — энергии воды, геотермальной, солнечной и ветровой энергии.
В списке присутствуют такие города, как Окленд, Найроби, Осло, Сиэтл, Ванкувер, Рейкьявик, Порту, Базель, Богота и другие.
Например, Берлингтон (штат Вермонт, США) уже получает 100% электроэнергии от ветра, солнца, воды и биомассы. Вся электроэнергия Рейкьявика производится за счет гидроэлектростанций и геотермальных источников. К 2040 году весь общественный и личный транспорт столицы должен стать свободным от ископаемого топлива.
100% энергии из возобновляемых источников для швейцарского Базеля обеспечивает собственная энергоснабжающая компания. Большая часть электроэнергии поступает от гидроэнергетики и 10% — от ветра. В мае 2017 года Швейцария проголосовала за постепенный отказ от атомной энергетики в пользу ВИЭ.
Мировые столицы также не остаются в стороне. Например, Сенат Берлина утвердил план мероприятий по развитию солнечной энергетики в столице Германии «Masterplan Solarcity». В соответствии с общей стратегией развития города Берлин должен стать климатически нейтральным к 2050 году. В конце 2018 года в Берлине работали солнечных электростанций, которые покрывали 0,7% потребления электроэнергии, к 2050 году 25% энергопотребления города будут обеспечиваться за счет солнечной энергетики.
«Мы продвигаем расширение возобновляемых источников энергии в Берлине. Сейчас на рассмотрении Сената столицы находятся два законопроекта. Закон о солнечной энергии обязывает владельцев частных домов устанавливать солнечные системы на крышах. Законопроект Администрации по окружающей среде и климату сделает использование солнечной энергии в общественных зданиях обязательным уже в 2023 году. Это радикально сократит выбросы CO2 в Берлине», — рассказала руководитель фракции «Зеленые» в берлинском Сенате Зильке Гебель.
Как бизнес формирует положительный имидж, инвестируя в ВИЭ
Компании по всему миру также создают стратегии и определяют «зеленые» цели, которых они хотят достичь в течение определенного периода времени. Появилось осознание: нужно действовать ответственно и подавать экологичный пример потребителям. Конечно, использование ВИЭ может не только помочь в формировании положительного имиджа для компаний, но и снизить затраты на электроэнергию.
Полная версия отчета Renewables 2019 в формате PDF (см. стр. 47)
Так, новые серверы Facebook, а также компания General Motors будут получать энергию от солнечной электростанции. Ее строят в штате Кентукки в рамках масштабной программы Green Invest.
IKEA запланировала производить больше электроэнергии на основе возобновляемых источников, чем она потребляет, к 2030 году. В 14 странах на магазинах размещены 920 тыс. солнечных панелей, а также более 530 ветряных турбин. Ingka, материнская компания IKEA, инвестировала около $2,8 млрд в различные проекты ВИЭ и стала владельцем 1,7 ГВт мощностей. Она также продолжит вкладывать средства в строительство ветропарков и солнечных электростанций.
Химический концерн BASF будет постепенно переходить на возобновляемые источники энергии, а также планирует инвестировать в ветропарки.
Компания Intel получает энергию от ветра, солнца, воды и биомассы. С 2012 года Intel инвестировал $185 млн в 2 000 проектов по энергосбережению, а 100% электроэнергии, потребляемой корпорацией в США и ЕС, поступает из ВИЭ.
Apple также ставит перед собой цель стать углеродно нейтральной. Она приобрела несколько солнечных ферм, обеспечивая устойчивую энергию для своих центров обработки данных. С 2018 года все розничные магазины, офисы и центры обработки данных Apple работают на 100% возобновляемой энергии.
Microsoft ежегодно использует более 1,3 млрд. кВт·ч «зеленой» энергии при разработке ПО, работы центров обработки данных и производства. Компания обязалась сократить выбросы углекислого газа на 75% к 2030 году.
Альтернативные источники энергии
В современном мире, с растущими показателями потребления и как следствие — ограниченными энергоресурсами, стремительные обороты набирает развитие технологий добычи энергии из альтернативных, возобновляемых источников. К таким источникам относятся, в первую очередь, солнечная и ветровая энергии, геотеримальное тепло, энергия морских волн и приливов.
Сегодня альтернативные источники энергии уже широко используются для решения проблем энергоснабжения не только в промышленных масштабах, но и в частном секторе. Доступность технологий получения энергии из неисчерпаемых источников позволяет строить энергонезависимые дома с экологически чистой инфраструктурой в удаленных районах и решать проблемы энергоснабжения уже существующих объектов.
Виды альтернативных источников энергии
Такие альтернативные источники энергии, как энергия солнечного света и ветра используются для энергоснабжения и нагрева воды, геотермальное тепло земли — для отопления и кондиционирования зданий. Преобразование солнечной энергии в электрическую происходит при помощи фотоэлектрических пластин из кремния — самого распространенного элемента на планете. Солнечные батареи, на основе кремниевых пластин имеют продолжительный ресурс жизни — более 25 лет и, в зависимости от технологии производства, сохраняют до 80% своей эффективности в течении всего ресурса. Количество энергии, получаемой от солнечных батарей, различается и напрямую зависит от месторасположения и солнечной активности в различные сезоны года. Эффективность преобразования энергии у солнечных батарей достигает 20% и зависит от технологии их производства и чистоты кремния. Технология стремительно развивается и показатель эффективности постоянно растет.
Эксплуатация ветро-установок (ветрогенераторов) для получения электричества, целесообразна в районах с высоким значением средней скорости ветра или в периоды низкой солнечной активности. Эффективность преобразования энергии ветра не уступает эффективности гелиоустановок, но зависит от точки расположения объекта и корректно рассчитанного потенциала местности.
Широко используется для отопления зданий и геотермальное тепло земли. Тепловые насосы позволяют получать тепло окружающей среды: земли, воды или воздуха. В зимний период геотермальное тепло используется для отопления зданий, а в летние месяцы позволяет эффективно отводить тепло, производя кондиционирование.
Альтернативные источники энергии и выгоды их использования
Эффективность использования тех или иных альтернативных источников энергии напрямую зависит от региона, в котором необходима установка. Качественный мониторинг энергопотенциала позволяет определять наиболее подходящую технологию и рассчитывать ее окупаемость на годы вперед, а так же исключает ошибки связанные с региональными особенностями.
Конечно, первоначальную цену энергонезависимого дома, с экологически чистыми, возобновляемыми источниками энергоснабжения, сегодня нельзя назвать низкой, но по истечении двух — пяти лет эксплуатации альтернативные источники энергии полностью окупают свою стоимость и приносят ощутимую финансовую выгоду в течении многих лет. Не стоит забывать о экологичности альтернативных технологий добычи энергии. Солнечные, ветровые и гелиоустановки не производят вредных выбросов в атмосферу, не загрязняют воду и безопасны для человека.
Производство солнечных батарей набирает обороты
Нехватка ресурсов в удаленных регионах, в совокупности с быстрыми темпами развития технологии привело к ситуации, когда производство солнечных батарей быстро набирает обороты, а стоимость конечных изделий с каждым годом становится все более доступной для потребителей со средним уровнем доходов. И если вчера технология гелиоустановок была доступна лишь для космических программ, то уже сегодня мини-солнечные электростанции, как грибы после дождя, растут на крышах домов и садовых участках.
Альтернативные источники энергии: почему они нужны всем
МОСКВА, 19 дек — ПРАЙМ. Использовать возобновляемые источники энергии (ВИЭ) человечество стало раньше, чем научилось добывать уголь, нефть и газ. Однако со временем потребление энергии росло — человеку индустриального общества требовалось уже в 100 раз больше энергии, чем в первобытную эпоху. И тогда обеспечить стабильную поставку таких мощностей стало возможным благодаря сжиганию ископаемого топлива.
Сейчас человечество снова задумалось об использовании альтернативных источников энергии, так как запасы нефти и газа исчерпаемы, а их использование наносит большой вред окружающей среде, но уже на совершенно другом уровне. Ведь перемолоть муку на ветряной мельнице или обеспечить электроэнергией целый город с помощью ветрогенераторов — задачи разного масштаба.
К основным видам ВИЭ сегодня относят гидроэнергетику, ветроэнергетику, гелиоэнергетику. В некоторых местах можно развивать волновую и геотермальную энергетику.
САМЫЕ РАСПРОСТРАНЕННЫЕ ВИЭ
Гидроэнергетика — самый распространенный способ добычи энергии из неисчерпаемого источника, теоретический потенциал которого оценивается в 30-40 ТВт·ч в год. Для ее работы необходимо построить плотину, разместить турбины, которые будет крутить вода. Явным преимуществом является стабильность выработки энергии и возможность ее контролировать, изменяя скорость потока воды. Среди недостатков — резкое изменение уровня воды в искусственных водохранилищах, нарушение нерестового цикла рыб и снижение количества кислорода в воде, что вредит флоре и фауне водоема.
Хитрости бизнеса. Как офшоры помогают компаниям экономить на налогах
Еще один перспективный источник — ветроэнергетика. Для добычи энергии таким способом необходимо установить специальные турбины, которые будет вращать ветер, за счет чего будет вырабатываться электричество. Ветряные турбины легко и дешево обслуживать, они не занимают много места, вращаются на высоте от 100 м, то есть, под ними можно, например, вести сельскохозяйственную деятельность.
Иногда ветроэлектростанции (ВЭС) строят прямо в море. Такой проект в 2017 году разработали Дания, Нидерланды и Германия. Они собираются к 2050 году соорудить в море остров площадью 6 кв. км и разместить на нем турбины. Планируется, что такая станция сможет вырабатывать до 30 ГВт·ч в год энергии, а в перспективе — до 100 ГВт·ч в год.
Однако у этого источника дешевой и чистой энергии есть несколько существенных недостатков — нестабильность и зависимость от места размещения. Ветер дует не везде и не всегда. А в местах, где ветер дует часто и с большой силой, как правило, не располагаются населенные пункты. Это повышает расходы на строительство линий электропередач и транспортировку энергии. Поэтому ветроэнергетика хороша именно как дополнительный источник энергии.
Альтернатива ВЭС — солнечные электростанции (СЭС), которые могут работать по нескольким принципам. В одном случае с помощью сфокусированных солнечных лучей нагревают резервуар с водой (температура пара в нем может доходить до 7000С), в другом — используются фотобатареи. Второй тип гораздо проще соорудить, устанавливать фотоэлементы можно практически везде, а стоимость их продолжает снижаться с развитием технологии производства.
Что такое валютные войны и зачем их ведут
Главными недостатками СЭС является большая зависимость от места расположения, времени суток и сезона. Например, станция не будет вырабатывать энергию ночью, значительно меньше — в зимнее время года. Полностью обеспечить себя электричеством с помощью СЭС могут даже не все африканские страны. Поэтому солнечная энергетика на данном этапе тоже может служить только в качестве вспомогательного источника.
КАК ИСПОЛЬЗУЮТ ДРУГИЕ ИСТОЧНИКИ ЭНЕРГИИ
В волновой энергетике используются специальные модули, которые качаются на волнах и таким образом приводят в действие специальные поршни. Потенциал этого вида ВИЭ оценивают более чем в 2 ТВт·ч в год. Волновые электростанции защищают берега и набережные от разрушения, уменьшают воздействие на опоры и мосты. При правильной установке они не вредят окружающей среде, к тому же практически незаметны в море.
Среди недостатков — нестабильность (то есть станция вырабатывает меньше энергии во время штиля), шум, незаметность для водного транспорта, из-за чего необходимо дополнительно устанавливать сигнальные элементы.
В некоторых местах устанавливают геотермальные станции (ГеоТЭС). Общий потенциал геотермальной энергии оценивается в 47 ТВт·ч в год, что соответствует выработке примерно 50 тысяч АЭС, но сейчас технологии позволяют получить доступ только к 2% от него — 840 ГВт·ч в год. Чтобы это сделать, роют две скважины, по одной из них подается вода, которая, нагреваясь от тепла земли, превращается в пар. Затем пар по трубе направляется в турбины. На разных этапах происходит его очистка от примесей.
Главное преимущество геотермальной энергетики — стабильность, которую не могут обеспечить многие ВИЭ, и компактность, что удобно для районов со сложным рельефом. С другой стороны, вода, которая проходит через скважины, несет большое количество тяжелых металлов и других вредных веществ. При неправильной эксплуатации станции или при возникновении чрезвычайной ситуации, попадание в атмосферу и в почву этих веществ, может привести к экологической катастрофе локального масштаба.
Кроме того, стоимость энергии ГеоТЭС выше, чем у ВЭС и СЭС, а мощность довольно невысокая.
Основная проблема практически всех перечисленных выше источников заключается в их нестабильности. Современные аккумуляторы не позволяют накапливать такое количество энергии, чтобы без потерь мощности использовать ее в ночное время или во время штиля. Один из вариантов — во время пиковых нагрузок поднимать воду в верхнюю часть водохранилища и потом во время затишья использовать ее для выработки энергии на ГЭС.
Зарабатываем и делимся: популярно о дивидендах
АЛЬТЕРНАТИВНАЯ ЭНЕРГИЯ В РОССИИ И В МИРЕ
На данный момент использование ВИЭ активно развивается в Европе, где страны вынуждены закупать топливо для работы традиционных электростанций. Но, по мнению некоторых экспертов, в развитии альтернативной энергетики заинтересованы и государства, чья экономика зависит от экспорта нефти и газа. Ведь если в некоторых регионах использовать ВИЭ вместо газа, это топливное сырье можно будет отправить на экспорт.
Тем не менее, в России этот сектор энергетики развивается очень медленно. По данным аналитической компании Enerdata, в Норвегии около 97% электроэнергии добывается из альтернативных источников с учетом гидроэнергетики, около 80% — в Новой Зеландии и Бразилии. В Европе 30-40% энергии ВИЭ вырабатывается в Германии, Италии, Испании и Великобритании. В России этот показатель составляет всего 17,2%, из них доля СЭС и ВЭС — менее 1%.
Альтернативные источники энергии: альтернативы нет — Энергетика и промышленность России — № 7 (11) июль 2001 года — WWW.EPRUSSIA.RU
Газета «Энергетика и промышленность России» | № 7 (11) июль 2001 года
Дефицит энергии и ограниченность топливных ресурсов с всё нарастающей остротой показывают неизбежность перехода к нетрадиционным, альтернативным источникам энергии. Они экологичны, возобновляемы, основой их служит энергия Солнца и Земли.
Основные причины, указывающие на важность скорейшего перехода к АИЭ:
* Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI века.
* Политический: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы;
* Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, на традиционную — постоянно растут;
* Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, — всё это увеличивает социальную напряженность.
* Эволюционно-исторический: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.
Источники энергии
Сегодня суммарное потребление тепловой энергии в мире составляет >200 млрд. кВт/ч в год, (эквивалентно 36 млрд. т усл. топлива). В России сегодня общее потребление топлива составляет около 5 % мирового энергобаланса.
Геологические запасы органического топлива в мире более 80 % приходится на долю угля, который становится все менее популярным. А известные запасы топливных ресурсов к 2100 г. будут исчерпаны. По данным экспертов, в начале XXI в. добыча нефти и природного газа начнет сокращаться: их доля в топливно-энергетическом балансе снизится к 2020 г. с 66,6 % до 20 %. На долю гидроэнергетики приходится всего 1,5 % общего производства энергии в мире, и она может играть только вспомогательную роль. Таким образом, ни органическое топливо, ни гидроэнергия не могут решить проблемы энергетики в перспективе.
Что касается ядерной энергии, все известные запасы урана, пригодного для реакторов, действующих на тепловых нейтронах, будут исчерпаны в первом десятилетии XXI в. Создание и эксплуатация АЭС на реакторах-размножителях значительно дороже и не менее безопасны, чем на тепловых нейтронах. От населения до сих пор скрывают не только реальную опасность атомной энергетики, но и ее реальную стоимость. Учитывая все затраты на добычу топлива, нейтрализацию, утилизацию и захоронение отходов, консервацию отработавших реакторов (а их ресурс не более 30 лет), расходы на социальные, природоохранные нужды, то стоимость энергии АЭС многократно превысит любой экономически допустимый уровень. По оценкам специалистов, только затраты на вывоз, захоронение и нейтрализацию накопившихся на российских предприятиях отходов ядерной энергетики составят около 400 млрд. долл. Затраты на обеспечение необходимого уровня технологической безопасности составят 25 млрд. долл. С увеличением числа реакторов повышается вероятность аварий: по прогнозам МАГАТЭ, из-за увеличения количества реакторов в 2000 г. вероятность крупной аварии повысится до одной в 10 лет. В районах расположения АЭС, уранодобывающих и производящих предприятий постоянно растет уровень заболеваемости, особенно детской. АЭС служит одним из основных «нагревателей» атмосферы: в процессе деления 1 кг урана выделяется 18,8 млрд. ккал. Таким образом, тезис о безопасности и дешевизне атомной энергии — пустой и опасный миф, а атомная энергетика по причине огромной потенциальной опасности и низкой рентабельности не имеет долгосрочной перспективы.
Что касается электростанций на основе термоядерного синтеза, то, по оценкам специалистов, в ближайшие 50 лет они вряд ли будут технологически освоены, а пагубное тепловое влияние на климат планеты будет не меньшим, чем от ТЭС и АЭС.
К так называемым нетрадиционным источникам энергии относятся: тепло Земли (геотермальная энергия), Солнца (в том числе энергия ветра, морских волн, тепла морей и океанов), а также «малая» гидроэнергетика: морские приливы и отливы, биогазовые, теплонасосные установки и другие преобразователи энергии.
Но только возобновляемые источники энергии, могут представлять реальную альтернативу традиционным технологиям сегодня и в перспективе.
Солнечная энергия
Общее количество солнечной энергии, достигающее поверхности Земли в, 6,7 раза больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. На Севере технический потенциал солнечной энергии в России (2,3 млрд. т усл. топлива в год) приблизительно в 2 раза выше сегодняшнего потребления топлива.
Ветровая энергия
В России валовой потенциал ветровой энергии — 80 трлн. кВт/ч в год, а на Северном Кавказе — 200 млрд. кВт/ч (62 млн. т усл. топлива). Эти величины существенно больше соответствующих величин технического потенциала органического топлива.
Таким образом, потенциала солнечной радиации и ветровой энергии в принципе достаточно для нужд энергопотребления как страны, так и регионов. К недостаткам этих видов энергии можно отнести нестабильность, цикличность и неравномерность распределения по территории; поэтому использование солнечной и ветровой энергии требует, как правило, аккумулирования тепловой, электрической или химической. Однако возможно создание комплекса электростанций, которые отдавали бы энергию непосредственно в единую энергетическую систему, что дало бы огромные резервы для непрерывного энергопотребления.
Наиболее стабильным источником может служить геотермальная энергия. Валовой мировой потенциал геотермальной энергии в земной коре на глубине до 10 км оценивается в 18 000 трлн. т усл. топлива, что в 1700 раз больше мировых геологических запасов органического топлива. В России ресурсы геотермальной энергии только в верхнем слое коры глубиной 3 км составляют 180 трлн. т усл. топлива. Использование только около 0,2 % этого потенциала могло бы покрыть потребности страны в энергии. Вопрос только в рациональном, рентабельном и экологически безопасном использовании этих ресурсов. Именно из-за того, что эти условия до сих пор не соблюдались при попытках создания в стране опытных установок по использованию геотермальной энергии, мы сегодня не можем индустриально освоить такие несметные запасы энергии.
Таким образом, альтернативные возобновляемые источники энергии позволяют долгосрочно обеспечить всю страну.
Состояние АПЭ в мире
По прогнозу Мирового энергетического конгресса. в 2020 году на долю альтернативных преобразователей энергии (АПЭ) придется 5,8 % общего энергопотребления. При этом в развитых странах (США, Великобритании и др.) планируется довести долю АПЭ до 20 % (20 % энергобаланса США — это примерно все сегодняшнее энергопотребление в России). В странах Европы планируется к 2020 г. обеспечить экологически чистое теплоснабжение 70 % жилищного фонда. Сегодня в мире действует 233 геотермальные электростанции (ГеоТЭС) суммарной мощностью 5136 мВт, строятся 117 ГеоТЭС мощностью 2017 мВт. Ведущее место в мире по ГеоТЭС занимают США (более 40 % действующих мощностей в мире). Там работает 8 крупных солнечных ЭС модульного типа общей мощностью около 450 мВт, энергия поступает в общую энергосистему страны. Выпуск солнечных фотоэлектрических преобразователей (СФАП) достиг в мире 300 мВт в год, из них 40 % приходится на долю США. В настоящее время в мире работает более 2 млн. гелиоустановок горячего водоснабжения. Площадь солнечных (тепловых) коллекторов в США составляет 10, а в Японии — 8 млн. м2. В США и в Японии работает более 5 млн. тепловых насосов. За последние 15 лет в мире построено свыше 100 тыс. ветроустановок суммарной мощностью 70000 мВт (10 % энергобаланса США). В большинстве стран приняты законы, создающие льготные условия как для производителей, так и для потребителей альтернативной энергии, что является определяющим фактором успешного внедрения.2, 3000 тепловых насосов (от 10 кВт до 8 мВт).
Итак, по всем видам АПЭ Россия находится на одном из последних мест в мире. В нашей стране отсутствует правовая база для внедрения АПЭ, нет никаких стимулов для развития этого направления. В стране отсутствует отрасль, объединяющая все разрозненные разработки в единый стратегический замысел. В концепции Минтопэнерго АПЭ отводится третьестепенная, вспомогательная роль. В концепциях РАН РФ, ведущих институтов, отраженных в программе «Экологически чистая энергетика» (1993 г.), практически отсутствует стратегия полномасштабного перехода к альтернативной энергетике и по-прежнему делается ставка на малую, автономную энергетику, причем в весьма отдаленном будущем. Что, конечно, скажется на экономическом отставании страны, а также на экологической обстановке как в стране, так и в мире в целом.
Альтернативные источники энергии — Энергетика и промышленность России — № 3 (31) март 2003 года — WWW.EPRUSSIA.RU
Газета «Энергетика и промышленность России» | № 3 (31) март 2003 года
На пороге ХХI века человек все чаще и чаще стал задумываться о том, что станет основой его существования в новой эре. Энергия была и остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. Homo Sapiens прошел путь от первого костра до атомных электростанций, освоил добычу основных традиционных энергетических ресурсов — угля, нефти и газа, научился использовать энергию рек, освоил «мирный атом», но все активнее обсуждаются вопросы использования новых нетрадиционных, альтернативных видов энергии. По оценкам специалистов, мировые ресурсы угля составляют 15, а по неофициальным данным 30 триллионов тонн, нефти — 300 миллиардов тонн, газа — 220 триллионов кубометров. Разведанные запасы угля составляют 1685 миллиардов тонн, нефти — 137 миллиардов тонн, газа — 142 триллионов кубометров. Почему же наблюдается тенденция к освоению альтернативных видов энергии, при таких, казалось бы, внушительных цифрах, при том, что в последние годы в шельфовых зонах морей открыты огромные запасы нефти и газа? Есть несколько ответов на этот вопрос. Во-первых, непрерывный рост промышленности как основного «клиента» энергетической отрасли. Существует точка зрения, что при нынешней ситуации запасов угля хватит примерно на 270 лет, нефти на 35-40 лет, газа на 50 лет. Во-вторых, необходимость значительных финансовых затрат на разведку новых месторождений, так как часто эти работы связаны с организацией глубокого бурения (в частности, в морских условиях) и другими сложными и наукоемкими технологиями. И, в третьих, экологические проблемы, связанные с добычей энергетических ресурсов. Склады нефтепродуктов и окружающие их территории подчас напоминают «города мертвых», а кадры кинохроники о плавающих в нефтяной пленке морских птицах и животных тревожат не только Greenpeace.
В настоящее время выдвигаются множество различных идей и предложений по использованию всевозможных возобнавляемых видов энергии. Разработка некоторых проектов еще только начинается. Так, существуют предложения по использованию энергии разложения атомных частиц, искусственных смерчей и даже энергии молнии. Проводятся эксперименты по использованию «биоэнергетики», например, энергии парного молока для обогрева коровников.
Но существуют и «традиционные» виды альтернативной энергии. Это энергия Солнца и ветра, энергия морских волн, приливов и отливов. Есть проекты преобразования в электроэнергию газа, выделяющегося на мусорных свалках, а также из навоза на звероводческих фермах. Основным видом «бесплатной» неиссякаемой энергии по справедливости считается Солнце. В Солнце сосредоточено 99, 886% всей массы Cолнечной системы. Солнце ежесекундно излучает энергию в тысячи миллиардов раз большую, чем при ядерном взрыве 1 кг U235 .
Солнце — неисчерпаемый источник энергии — ежесекундно дает Земле 80 тысяч миллиардов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Нужно только уметь пользоваться им. Например, Тибет — самая близкая к Солнцу часть нашей планеты — по праву считает солнечную энергию своим богатством. На-сегодня в Тибетском автономном районе Китая построено уже более пятидесяти тысяч гелиопечей. Солнечной энергией отапливаются жилые помещения площадью 150 тысяч квадратных метров, созданы гелиотеплицы общей площадью миллион квадратных метров.
Хотя солнечная энергия и бесплатна, получение электричества из нее не всегда достаточно дешево. Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании «Боинг». Созданный там солнечный элемент преобразует в электроэнергию 37 процентов попавшего на него солнечного света.
Это достижение стало возможным, с одной стороны, благодаря использованию двухслойной конструкции. Верхний слой — из арсенаида галлия. Он поглощает излучение видимой части спектра. Нижний слой — из антимонида галлия и предназначен улавливать инфракрасное излучение, которое обычно теряется. С другой стороны, высокая эффективность достигается благодаря специальному покрытию, преломляющему свет и фокусирующему его на активные области солнечной ячейки.
Компактная передвижная электростанция сконструирована германским инженером Хербертом Бойерманом. При собственном весе 500 кг она имеет мощность 4 КВт, иначе говоря, способна полностью обеспечить электротоком достаточной мощности загородное жилье. Это довольно хитроумный агрегат, где энергию вырабатывают сразу два устройства — ветрогенератор нового типа и комплект солнечных панелей. Первый оснащен тремя полусферами, которые (в отличие от обычного ветрового колеса) вращаются при малейшем движении воздуха, второй — автоматикой, аккуратно ориентирующей солярные элементы на светило. Добытая энергия накапливается в аккумуляторном блоке, а тот стабильно снабжает током потребителей.
Глядя вперед, в те времена, когда штат Калифорния будет нуждаться в удобных станциях для подзарядки электробатарей, «Южнокалифорнийская компания Эдисон» планирует начать испытание специальной автостанции для машин, работающих на солнечной энергии, которая в конечном счете должна стать обычной заправочной станцией со множеством парковочных мест и различными магазинами. Солнечные панели на крыше станции, расположенной в городе Даймонд-Баре, обеспечат энергию для зарядки электромобилей в течение всего рабочего дня даже зимой. А излишек, получаемый от этих панелей, будет использоваться для нужд самой автостанции. Ожидается, что к 2000 году на дорогах Калифорнии появится около 200000 электромобилей. Возможно, и нам стоит подумать об использовании солнечной энергии в широких масштабах. В частности, в Крыму с его «солнцеобильностью».
На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может «работать» зимой и летом, днем и ночью, на севере и на юге. Но ветер — это очень рассеянный энергоресурс. Природа не создала «месторождения» ветров и не пустила их, подобно рекам, по руслам. Ветровая энергия практически всегда «размазана» по огромным территориям. Основные параметры ветра — скорость и направление — меняются подчас очень быстро и непредсказуемо, что делает его менее «надежным», чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность «ловить» кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом. Существуют интересные разработки по созданию принципиально новых механизмов для преобразования энергии ветра в электрическую. Одна из таких установок (патент РФ № 1783144, см. рис) порождает искусственный сверхураган внутри себя при скорости ветра в 5 м/с!
В последнее время в некоторых странах снова обратили внимание на те проекты, которые были отвергнуты ранее как малоперспективные. Так, в частности, в 1982 г. британское правительство отменило государственное финансирование тех электростанций, которые используют энергию моря: часть таких исследований прекратилась, часть продолжалась при явно недостаточных ассигнованиях от Европейской комиссии и некоторых промышленных фирм и компаний. Причиной отказа в государственной поддержке называлась недостаточная эффективность способов получения «морского» электричества по сравнению с другими его источниками, в частности — атомными.
В мая 1988 г. в этой технической политике произошел переворот. Министерство торговли и промышленности Великобритании прислушалось к мнению своего главного советника по энергетике Т. Торпа (T. Thorpe), который сообщил, что три из шести имеющихся в стране экспериментальных установок усовершенствованы и ныне стоимость 1 КВт/ч на них составляет менее 6 пенсов, а это ниже минимального уровня конкурентоспособности на открытом рынке. Цена «морской» электроэнергии с 1987 г. снизилась вдесятеро.
Наиболее совершенен проект «Кивающая утка», предложенный конструктором С. Солтером (S. Salter; Эдинбургский университет, Шотландия). Поплавки, покачиваемые волнами, дают энергию стоимостью всего 2,6 пенса за 1 КВтч, что лишь незначительно выше стоимости электроэнергии, которая вырабатывается новейшими электростанциями, сжигающими газ (в Британии это — 2,5 пенса), и заметно ниже, чем дают АЭС (около 4,5 пенса за 1 КВтч).
Следует заметить, что использование источников альтернативных, возобновляемых видов энергии может достаточно эффективно снизить процент выбросов в атмосферу вредных веществ, то есть в какой-то степени решить одну из важных экологических проблем. Энергия моря может с полным основанием быть причисленной к таким источникам.
Энергия малых рек также в ряде случаев может стать источником электроэнергии. Возможно, для использования этого источника необходимы специфические условия (например, речки с сильным течением), но в ряде мест его, где обычное электроснабжение невыгодно, установка мини-ГЭС могла бы решить множество локальных проблем. Бесплотинные ГЭС для речек и речушек уже существуют (см. фото 3). Этот двухметровый агрегат есть не что иное, как бесплотинная ГЭС мощностью в 0,5 КВт. В комплекте с аккумулятором она обеспечит энергией крестьянское хозяйство или геологическую экспедицию, отгонное пастбище или небольшую мастерскую… Была бы поблизости речушка!
Роторная установка диаметром 300 мм и весом всего 60 кг выводится на стремнину, притапливается на придонную «лыжу» и тросами закрепляется с двух берегов. Остальное — дело техники: мультипликатор вращает автомобильный генератор постоянного тока напряжением 14 вольт, и энергия аккумулируется.
Бесплотинная мини-ГЭС успешно зарекомендовала себя на речках Горного Алтая, доработана до уровня опытного образца.
Одним из наиболее необычных видов использования отходов человеческой деятельности является получение электроэнергии из мусора. Проблема городских свалок стала одной из наиболее актуальных проблем современных мегаполисов. Но, оказывается, их можно еще использовать для производства электроэнергии. Во всяком случае именно так поступили в США, в штате Пенсильвания. Когда построенная для сжигания мусора и одновременной выработки электроэнергии для 15000 домов печь стала получать недостаточно топлива, было решено восполнить его мусором с уже закрытых свалок. Вырабатываемая из мусора энергия приносит округу около $ 4000 прибыли еженедельно. Но главное объем закрытых свалок сократился на 78%.
Разлагаясь на свалках, мусор выделяет газ, 50-55 % которого приходится на метан, а 45-50% — на углекислый газ и около одного процента — на другие соединения. Если раньше выделяемый газ просто отравлял воздух, то теперь в США его начинают использовать в качестве горючего в двигателях внутреннего сгорания с целью выработки электроэнергии. Только в мая 1993 года 114 электростанций, работающих на газе от свалок, произвели 344 мегаджоуля электроэнергии. Самая крупная из них, в городе Уиттиер, производит за год 50 мегаджоулей. Станция мощностью 12 мегаватт способна удовлетворить потребность в электроэнергии жителей 20 тысяч домов. По подсчетам специалистов, газа на свалках США хватит для работы небольших станций на 30-50 лет. Не стоит ли и нам задуматься над проблемой вторичного использования мусора? При наличии эффективной технологии мы могли бы сократить количество мусорных «курганов», а заодно значительно пополнить и восполнить запасы энергии, благо «дефицита сырья» для ее производства не предвидится.
Казалось бы, что может быть неприятнее навоза? Много проблем связано с загрязнением водоемов отходами звероводческих хозяйств. Большие количества органического вещества, попадающие в водоемы, способствуют их старению.
Известно, что теплоцентрали — активные загрязнители окружающей среды, свинофермы и коровники — тоже. Однако из этих двух зол можно составить нечто хорошее. Именно это произошло в английском городе Пиделхинтоне, где разработана технология переработки навоза свиней в электроэнергию. Отходы идут по трубопроводу на электростанцию, где в специальном реакторе подвергаются биологической переработке. Образующийся газ используется для получения электроэнергии, а переработанные бактериями отходы — для удобрения. Перерабатывая 70 тонн навоза ежедневно, можно получить 40 киловатт.
Кроме замены традиционных источников энергии альтернативными, существуют проекты по созданию экологически чистых и сбалансированных городов и деревень будущего. Основой для их создания будут служить применение экономичных материалов, а также оптимальный режим использования энергии, который смогут поддерживать с помощью компьютерных программ.
Хранителем домашнего очага и незримым существом в доме, по старинным поверьям, служит теплый домовой. Техническую помощь ему в скандинавских странах, в первую очередь в Швеции, оказывает теперь программно управляемая бытовая теплоцентраль «Аквае 47 ОД». Разработанная шведской фирмой «Электро стандард», эта установка довольствуется скромным местом, скажем, площадью кухни.
Тепловые насосы и узел нагрева воды вмонтированы в нее еще на заводе-изготовителе. Принцип экономного вторичного обогрева таков: из использованного воздуха ванной комнаты, кухни и подсобок тепловая энергия возвращается в систему отопления традиционного типа и утилизируется водогрейным котлом. Дополнительные калории от внешних источников газа или жидкого топлива отбираются на эти цели лишь по мере необходимости. Особые клапаны в наружных стенах, снабженные противопылевым фильтром и входящие в комплект установки, обеспечивают подвод чистого воздуха и равномерную безвытяжную смену его в доме. Это достижение компьютерной теплотехники предназначено прежде всего для односемейных домов, например, для загородных коттеджей; оно сокращает наполовину обычный расход энергии.
В испанском поселке Сант-Джосеп на острове Ивиса сооружается первая в мире экологическая деревня будущего, где поселятся четыреста человек. В проекте участвуют специалисты из всех стран Европы. Чтобы оптимально использовать солнечный свет, «умные» дома сами станут регулировать внутреннюю температуру. Это позволяет как новая технология, так и сами материалы — каркас из алюминия и поликарбоната с огромными застекленными поверхностями, где циркулирует прозрачная жидкость. Получится своеобразный щит, впускающий солнечный свет, но удерживающий тепло. Температура зимой и летом будет одинаковая — 20-22 градуса. Избыток энергии поступит в термический теплонакопитель. Электроэнергию там станут вырабатывать также ветряные мельницы и солнечные батареи, избыток ее опять же сберегут огромные аккумуляторы. Биоочистная установка превратит органические отходы — мусор и сточные воды, в метан, преобразуемый затем в электричество. Структура здания гарантирует сохранность свыше 85 процентов энергии. На гигантской биоферме будут выращивать скот, рыбу, а так же овощи, фрукты и злаки.
Возможно, такие проекты пока невозможно реализовать в значительных масштабах. До серийного производства «умных» экологически чистых домов еще далеко, но уже сейчас реализация некоторых проектов (постройка мини-ГЭС, солнечных, ветровых, мусорных электростанции) вполне реальна.
Как встретишь Новый год, так его и проведешь! Перефразируя это изречение, можно сказать, что как встретишь новую эру, так ее и проведешь. Как же встретит человечество ХХI век: в дыму труб теплостанций или в шелесте «ветряков» на фоне солнечных зеркал? Будет ли оно использовать традиционные ресурсы или перейдет на источники, пополнять которые сможет сама Природа? Ответ не за горами. В любом случае человек должен помнить: какие бы природные ресурсы он ни использовал, делать это надо бережно, помня о тех, кто идет следом.
10 альтернативных источников энергии, о которых вы ничего не знали
Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.
Джоули из турникетов
Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.
Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.
В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.
Водоросли отапливают дома
Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.
Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.
По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.
«Лежачие полицейские» освещают улицы
Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.
В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.
Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.
Больше, чем просто футбол
Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.
Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.
Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.
Скрытая энергия вулканов
Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.
На данный момент существуют лишь две небольшие действующие электростанции подобного типа – во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).
Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.
Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.
Энергия из тепла человека
Принцип термоэлектрических генераторов, работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.
Такой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.
Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.
В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.
Шаги по «умной» тротуарной плитке
На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.
Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.
Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.
Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.
Велосипед, заряжающий смартфоны
Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.
Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.
Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.
Польза от сточных вод
Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод, загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.
Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.
Для производства электричества может использоваться почти любой тип органического отходного материала – не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.
«Бумажная» энергия
Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.
Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).
Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало – его хватает лишь на питание небольших портативных гаджетов.
Смотреть далее: 10 самых красивых ветряных электростанций мира
11 Альтернативные источники энергии (с примерами)
Потенциальные проблемы, связанные с использованием ископаемого топлива, особенно с точки зрения изменения климата, были рассмотрены раньше, чем вы думаете. Шведский ученый Сванте Аррениус еще в 1896 году первым заявил, что использование ископаемого топлива может способствовать глобальному потеплению. . Сегодня наблюдается общий сдвиг в сторону экологической осведомленности, и источники нашей энергии становятся предметом более пристального изучения.
Это привело к увеличению количества альтернативных источников энергии. Хотя жизнеспособность каждого из них можно оспорить, все они вносят положительный вклад по сравнению с ископаемым топливом.
Более низкие выбросы, более низкие цены на топливо и уменьшение загрязнения — все это преимущества, которые часто может обеспечить использование альтернативных видов топлива.
Здесь мы исследуем одиннадцать наиболее известных альтернативных источников топлива и смотрим на преимущества, которые они предлагают, и потенциал для увеличения потребления в ближайшие годы.
Вот несколько примеров альтернативных источников энергии и их значение.
1. Водородный газ
В отличие от других форм природного газа, водород является полностью экологически чистым топливом. После производства водородные газовые ячейки при использовании выделяют только водяной пар и теплый воздух.
Основная проблема, связанная с этой формой альтернативной энергии, заключается в том, что она в основном происходит за счет использования природного газа и ископаемого топлива. Таким образом, можно утверждать, что выбросы, создаваемые для его извлечения, противодействуют выгодам от его использования.
Процесс электролиза, который необходим для расщепления воды на водород и кислород, делает эту проблему менее важной. Однако электролиз по-прежнему уступает ранее упомянутым методам получения водорода, хотя исследования продолжают делать его более эффективным и экономичным.
2. Приливная энергия
Хотя приливная энергия использует энергию воды для выработки энергии, как и в случае с гидроэлектрическими методами, ее применение во многих случаях имеет больше общего с ветряными турбинами.
Хотя это довольно новая технология, ее потенциал огромен. Согласно отчету, подготовленному в Соединенном Королевстве, приливная энергия может удовлетворить до 20% текущих потребностей Великобритании в электроэнергии.
Наиболее распространенной формой генерации приливной энергии является использование генераторов приливных потоков. Они используют кинетическую энергию океана для питания турбин, не производя отходов ископаемого топлива и не будучи столь же восприимчивыми к элементам, как другие формы альтернативной энергии.
3.Энергия биомассы
Энергия биомассы бывает разных форм. Сжигание древесины использовалось в течение тысяч лет для создания тепла, но в результате недавних достижений также были обнаружены отходы, например, на свалках, и спиртосодержащие продукты, используемые для аналогичных целей.
Если говорить о сжигании дров, то выделяемое тепло может быть эквивалентно теплу в системе центрального отопления. Кроме того, связанные с этим затраты, как правило, ниже, и количество углерода, выделяемого этим видом топлива, оказывается ниже количества, выделяемого ископаемым топливом.
Однако есть ряд проблем, которые необходимо учитывать при использовании этих систем, особенно если они установлены дома. Важным фактором может быть техническое обслуживание, к тому же вам может потребоваться разрешение местных властей на его установку.
4. Энергия ветра
Этот вид производства энергии становится все более популярным в последние годы. Он предлагает те же преимущества, что и многие другие альтернативные источники топлива, поскольку в нем используется возобновляемый источник и не образуются отходы.
Текущие ветроэнергетические установки приводят в действие примерно двадцать миллионов домов в Соединенных Штатах в год, и это число растет. В большинстве штатов страны в настоящее время в той или иной форме созданы ветроэнергетические установки, и инвестиции в эту технологию продолжают расти.
К сожалению, эта форма производства энергии также сопряжена с проблемами. Ветровые турбины ограничивают обзор и могут быть опасны для некоторых видов диких животных.
5. Геотермальная энергия
По сути, геотермальная энергия — это извлечение энергии из земли вокруг нас.Он становится все более популярным, и в 2015 году в этом секторе в целом наблюдался пятипроцентный рост.
В настоящее время по оценкам Всемирного банка, около сорока стран могут удовлетворить большую часть своих потребностей в электроэнергии с помощью геотермальной энергии.
Этот источник энергии обладает огромным потенциалом, но мало что делает, чтобы разрушить землю. Однако высокие первоначальные затраты на создание геотермальных электростанций привели к более медленному внедрению, чем можно было ожидать от столь многообещающего источника топлива.
6. Природный газ
Источники природного газа использовались в течение нескольких десятилетий, но благодаря развитию технологий сжатия он становится более жизнеспособным альтернативным источником энергии. В частности, он используется в автомобилях для снижения выбросов углерода.
Спрос на этот источник энергии растет. В 2016 году 48 нижних штатов США достигли рекордных уровней спроса и потребления.
Несмотря на это, с природным газом все же есть проблемы.Потенциал загрязнения выше, чем при использовании других альтернативных источников топлива, и природный газ по-прежнему выделяет парниковые газы, даже если их количество меньше, чем при использовании ископаемого топлива.
7. Биотопливо
В отличие от источников энергии биомассы, биотопливо использует животный и растительный мир для производства энергии. По сути, это топливо, которое можно получить из какой-либо формы органического вещества.
Их можно возобновлять в тех случаях, когда используются растения, так как их можно отращивать ежегодно.Однако им действительно требуется специальное оборудование для добычи, которое может способствовать увеличению выбросов, даже если самого биотоплива нет.
Биотопливо находит все большее применение, особенно в Соединенных Штатах. На их долю приходилось примерно семь процентов потребления топлива на транспорте по состоянию на 2012 год.
8. Волновая энергия
Вода снова доказывает, что вносит ценный вклад в альтернативные топливные источники энергии с волновыми преобразователями энергии. Они имеют преимущество перед источниками энергии приливов, поскольку их можно размещать в океане в различных ситуациях и местах.
Как и в случае с приливной энергией, преимущества заключаются в отсутствии отходов. Кроме того, он более надежен, чем многие другие виды альтернативной энергии, и при правильном использовании обладает огромным потенциалом.
Опять же, стоимость таких систем является основным фактором, способствующим замедлению их внедрения. У нас также пока недостаточно данных, чтобы выяснить, как преобразователи волновой энергии влияют на природные экосистемы.
9. Гидроэнергетика
Гидроэлектрические методы фактически являются одними из самых первых способов получения энергии, хотя их использование начало сокращаться с ростом использования ископаемых видов топлива.Несмотря на это, они по-прежнему составляют примерно семь процентов энергии, производимой в Соединенных Штатах.
Гидроэнергетика имеет ряд преимуществ. Это не только чистый источник энергии, что означает, что он не создает загрязнений и множества проблем, которые из-за этого возникают, но и является возобновляемым источником энергии.
Еще лучше, он также предлагает ряд вторичных преимуществ, которые не сразу очевидны. Плотины, используемые для производства гидроэлектроэнергии, также способствуют борьбе с наводнениями и ирригационным технологиям.
10. Ядерная энергия
Атомная энергия — одна из самых распространенных форм альтернативной энергии. Это создает ряд прямых выгод с точки зрения выбросов и эффективности, а также способствует росту экономики за счет создания рабочих мест при создании и эксплуатации заводов.
Тринадцать стран полагались на ядерную энергию для производства не менее четверти своей электроэнергии по состоянию на 2015 год, и в настоящее время в мире насчитывается 450 действующих станций.
Недостаток в том, что когда что-то идет не так с атомной электростанцией, существует вероятность катастрофы.Ситуация в Чернобыле и Фукусиме — тому пример.
11. Солнечная энергия
Когда большинство людей думают об альтернативных источниках энергии, они обычно используют солнечную энергию в качестве примера. С годами эта технология претерпела огромные изменения и теперь используется для крупномасштабного производства энергии и выработки электроэнергии для отдельных домов.
Ряд стран выступили с инициативами по развитию солнечной энергетики. Один из примеров — «Льготный тариф» Соединенного Королевства, а также «Налоговый кредит на инвестиции в солнечную энергию» в Соединенных Штатах.
Этот источник энергии является полностью возобновляемым, и затраты на установку перевешиваются деньгами, сэкономленными на счетах за электроэнергию от традиционных поставщиков. Тем не менее солнечные элементы склонны к износу в течение длительного периода времени и не так эффективны в неидеальных погодных условиях.
Заключение
По мере того, как проблемы, возникающие в результате использования традиционных ископаемых видов топлива, становятся все более заметными, альтернативные источники топлива, подобные упомянутым здесь, вероятно, будут приобретать еще большее значение.
Их преимущества устраняют многие проблемы, вызванные использованием ископаемого топлива, особенно когда речь идет о выбросах. Однако развитие некоторых из этих технологий замедлилось из-за количества инвестиций, необходимых для их жизнеспособности.
Объединив их все, мы сможем положительно повлиять на такие проблемы, как изменение климата, загрязнение и многие другие.
Пожалуйста, внесите свой вклад в обсуждение ниже и поделитесь с нами своими мыслями об альтернативных источниках энергии в разделе комментариев или поделившись этой статьей в социальных сетях.
Ресурсы
Возобновляемые источники энергии | Типы, формы и источники
В настоящее время наиболее популярными возобновляемыми источниками энергии являются:
- Солнечная энергия
- Ветровая энергия
- Гидроэнергетика
- Приливная энергия
- Геотермальная энергия
- Энергия биомассы
Как эти типы возобновляемых источников энергии Энергетическая работа
1) Солнечная энергия
Солнечный свет — один из самых богатых и свободно доступных энергетических ресурсов нашей планеты.Количество солнечной энергии, которая достигает поверхности Земли за один час, превышает общие потребности планеты в энергии за год. Хотя это звучит как идеальный возобновляемый источник энергии, количество солнечной энергии, которое мы можем использовать, варьируется в зависимости от времени суток и сезона года, а также географического положения. В Великобритании солнечная энергия становится все более популярным способом дополнить потребление энергии. Узнайте, подходит ли это вам, прочитав наше руководство по солнечной энергии.
2) Ветровая энергия
Ветер — изобильный источник чистой энергии.Ветряные фермы становятся все более привычным явлением в Великобритании, поскольку ветроэнергетика вносит постоянно растущий вклад в национальную энергосистему. Чтобы использовать электричество из энергии ветра, турбины используются для приведения в действие генераторов, которые затем подают электроэнергию в национальную энергосистему. Несмотря на то, что существуют бытовые или «внесетевые» системы выработки электроэнергии, не каждая недвижимость подходит для использования в качестве домашней ветряной турбины. Узнайте больше о ветроэнергетике на нашей странице о ветроэнергетике.
3) Гидроэнергетика
Как возобновляемый источник энергии, гидроэнергетика является одним из наиболее коммерчески развитых.Построив плотину или барьер, можно использовать большой резервуар для создания контролируемого потока воды, который будет приводить в движение турбину, вырабатывающую электричество. Этот источник энергии часто может быть более надежным, чем солнечная или ветровая энергия (особенно если это приливно-отливная энергия, а не река), а также позволяет хранить электроэнергию для использования, когда спрос достигает пика. Как и энергия ветра, в определенных ситуациях гидроэнергетика может быть более жизнеспособной в качестве коммерческого источника энергии (в зависимости от типа и по сравнению с другими источниками энергии), но в очень большой степени в зависимости от типа собственности ее можно использовать для бытовых, автономных ‘ поколение.Узнайте больше, посетив нашу страницу о гидроэнергетике.
4) Приливная энергия
Это еще одна форма гидроэнергетики, в которой для привода турбогенераторов используются приливные течения два раза в день. Хотя приливный поток, в отличие от некоторых других источников гидроэнергии, не является постоянным, он очень предсказуем и поэтому может компенсировать периоды, когда приливное течение невелико. Узнайте больше, посетив нашу страницу морской энергетики.
5) Геотермальная энергия
Используя естественное тепло под поверхностью земли, геотермальную энергию можно использовать для непосредственного обогрева домов или для выработки электроэнергии.Хотя геотермальная энергия использует энергию прямо у нас под ногами, она имеет незначительное значение в Великобритании по сравнению с такими странами, как Исландия, где геотермальное тепло гораздо более доступно.
6) Энергия биомассы
Это преобразование твердого топлива из растительных материалов в электричество. Хотя по сути, биомасса включает сжигание органических материалов для производства электроэнергии, и в настоящее время это гораздо более чистый и энергоэффективный процесс.Преобразуя сельскохозяйственные, промышленные и бытовые отходы в твердое, жидкое и газовое топливо, биомасса вырабатывает электроэнергию с гораздо меньшими экономическими и экологическими затратами.
Что не является возобновляемым источником энергии?
Ископаемое топливо не является возобновляемым источником энергии, потому что оно не безгранично. Кроме того, они выделяют в нашу атмосферу углекислый газ, который способствует изменению климата и глобальному потеплению.
Сжигать дрова вместо угля немного лучше, но это сложно.С одной стороны, древесина является возобновляемым ресурсом — при условии, что она поступает из устойчиво управляемых лесов. Древесные пеллеты и прессованные брикеты производятся из побочных продуктов деревообрабатывающей промышленности, поэтому, возможно, это отходы вторичной переработки.
Топливо из сжатой биомассы также производит больше энергии, чем бревна. С другой стороны, при сжигании древесины (будь то необработанная древесина или переработанные отходы) частицы попадают в нашу атмосферу.
Будущее возобновляемых источников энергии
По мере роста населения мира растет и спрос на энергию для обеспечения наших домов, предприятий и сообществ.Инновации и расширение возобновляемых источников энергии являются ключом к поддержанию устойчивого уровня энергии и защите нашей планеты от изменения климата.
На сегодняшний день возобновляемые источники энергии составляют 26% мировой электроэнергии, но, по данным Международного энергетического агентства (МЭА), к 2024 году ожидается, что их доля достигнет 30%. «Это поворотный момент для возобновляемых источников энергии», — говорится в заявлении МЭА. исполнительный директор, Фатих Бирол.
В 2020 году Великобритания совершит новую удивительную веху в области возобновляемых источников энергии.В среду, 10 июня, страна впервые отметила два месяца работы исключительно на возобновляемых источниках энергии. Это большой шаг в правильном направлении для возобновляемых источников энергии. (1)
Ожидается, что в будущем количество возобновляемых источников энергии будет продолжать расти, поскольку мы видим рост спроса на электроэнергию. Это снизит цены на возобновляемые источники энергии — отлично для нашей планеты и для наших кошельков.
Объяснение использования возобновляемых источников энергии — Управление энергетической информации США (EIA)
Что такое возобновляемая энергия?
Возобновляемая энергия — это энергия из источников, которые восполняются естественным образом, но с ограниченным потоком; возобновляемые ресурсы практически неисчерпаемы по продолжительности, но ограничены по количеству энергии, доступной в единицу времени.
Скачать изображение
Потребление первичной энергии в США по источникам энергии, 2020 всего = 92,94 квадриллиона Британские тепловые единицы (БТЕ) всего = 11,59 квадриллион БТЕ 2% — геотермальные 11% — солнечные26% — ветровые 4% — отходы биомассы 17% — биотопливо 18% — древесина22% — гидроэлектрическая биомасса 39% возобновляемые источники энергии 12% природный газ 34% нефть35% ядроэлектроэнергия9% уголь10% Источник: Управление энергетической информации США, Ежемесячный обзор энергетики, таблицы 1.3 и 10.1, апрель 2021 г., предварительные данные Примечание: сумма компонентов может не равняться 100% из-за независимого округления.
Какую роль играют возобновляемые источники энергии в Соединенных Штатах?
До середины 1800-х годов древесина была источником почти всех потребностей страны в энергии для отопления, приготовления пищи и освещения. С конца 1800-х годов до сегодняшнего дня ископаемое топливо — уголь, нефть и природный газ — были основными источниками энергии. Гидроэнергетика и древесина были наиболее используемыми возобновляемыми источниками энергии до 1990-х годов. С тех пор объем потребления энергии в США от биотоплива, геотермальной энергии, солнечной энергии и энергии ветра увеличился.Общее производство и потребление возобновляемой энергии в США достигло рекордных значений в 2020 году.
В 2020 году возобновляемая энергия обеспечила около 11,59 квадриллиона британских тепловых единиц (БТЕ) (1 квадриллион — это цифра 1, за которой следуют 15 нулей), что составляет 12% от общего потребления энергии в США. На электроэнергетический сектор приходилось около 60% от общего потребления возобновляемой энергии в США в 2020 году, и около 20% от общего объема производства электроэнергии в США приходилось на возобновляемые источники энергии.
Возобновляемые источники энергии могут сыграть важную роль в U.С. Энергетическая безопасность и сокращение выбросов парниковых газов. Использование возобновляемых источников энергии может помочь сократить импорт энергии и сократить использование ископаемого топлива, которое является крупнейшим источником выбросов углекислого газа в США. В годовом прогнозе развития энергетики на 2021 год Базовый пример EIA прогнозирует, что потребление возобновляемой энергии в США будет продолжать расти до 2050 года. В базовом сценарии обычно предполагается, что действующие законы и постановления, влияющие на энергетический сектор, включая законы с датами окончания, остаются неизменными. на протяжении всего прогнозного периода.Потенциальные последствия предлагаемого законодательства, нормативных актов или стандартов не включены в AEO2021.
Последнее обновление: 20 мая 2021 г.
Объяснение
Solar — Управление энергетической информации США (EIA)
Энергия солнца
Солнце производило энергию в течение миллиардов лет и является основным источником всех источников энергии и топлива, которые мы используем сегодня. Люди тысячелетиями использовали солнечные лучи (солнечное излучение) для обогрева и сушки мяса, фруктов и зерна.Со временем люди разработали технологии сбора солнечной энергии для производства тепла и преобразования ее в электричество.
Лучистая энергия солнца питала жизнь на Земле многие миллионы лет.
Источник: NASA
Сбор и использование солнечной тепловой (тепловой) энергии
Примером раннего устройства сбора солнечной энергии является солнечная печь (ящик для сбора и поглощения солнечного света).В 1830-х годах британский астроном Джон Гершель использовал солнечную печь для приготовления еды во время экспедиции в Африку. В настоящее время люди используют множество различных технологий для сбора и преобразования солнечного излучения в полезную тепловую энергию для различных целей.
- Вода для использования в домах, зданиях или плавательных бассейнах
- Внутри домов, теплиц и других построек
- Жидкости для высоких температур на солнечных тепловых электростанциях
Солнечные фотоэлектрические системы преобразуют солнечный свет в электричество
Солнечные фотоэлектрические (PV) устройства или солнечные элементы преобразуют солнечный свет непосредственно в электричество.Небольшие фотоэлементы могут приводить в действие калькуляторы, часы и другие небольшие электронные устройства. Размещение многих солнечных элементов в фотоэлектрических панелях и размещение нескольких фотоэлектрических панелей в фотоэлектрических массивах может производить электричество для всего дома. Некоторые фотоэлектрические электростанции имеют большие массивы, занимающие много акров, для производства электроэнергии для тысяч домов.
Солнечная энергия имеет преимущества и некоторые ограничения
- Солнечные энергетические системы не производят загрязнителей воздуха или углекислого газа.
- Солнечные энергетические системы в зданиях оказывают минимальное воздействие на окружающую среду.
- Количество солнечного света, попадающего на поверхность земли, непостоянно. Количество солнечного света зависит от местоположения, времени суток, времени года и погодных условий.
- Количество солнечного света, достигающего квадратного фута поверхности земли, относительно невелико, поэтому для поглощения или сбора полезного количества энергии требуется большая площадь поверхности.
Последняя проверка: 9 декабря 2020 г.
Объяснение биомассы — Управление энергетической информации США (EIA)
Биомасса — возобновляемая энергия растений и животных
Биомасса — это возобновляемый органический материал, получаемый из растений и животных. Биомасса была крупнейшим источником общего годового потребления энергии в США до середины 1800-х годов. Биомасса продолжает оставаться важным топливом во многих странах, особенно для приготовления пищи и обогрева в развивающихся странах.Использование топлива из биомассы для транспорта и производства электроэнергии расширяется во многих развитых странах в качестве средства предотвращения выбросов углекислого газа в результате использования ископаемого топлива. В 2020 году биомасса обеспечивала почти 5 квадриллионов британских тепловых единиц (БТЕ) и около 5% от общего объема потребления первичной энергии в Соединенных Штатах.
Биомасса содержит накопленную химическую энергию солнца. Растения производят биомассу посредством фотосинтеза. Биомассу можно сжигать непосредственно для получения тепла или преобразовывать в возобновляемое жидкое и газообразное топливо с помощью различных процессов.
- Отходы древесины и деревообработки — дрова, древесные гранулы и щепа, древесные опилки и отходы мебельных заводов, а также черный щелок целлюлозно-бумажных комбинатов
- Сельскохозяйственные культуры и отходы — кукуруза, соя, сахарный тростник, просо, древесные растения и водоросли, а также остатки сельскохозяйственных культур и пищевых продуктов
- Биогенные материалы в твердых бытовых отходах — бумага, изделия из хлопка и шерсти, а также пищевые, дворовые и древесные отходы
- Навоз животных и бытовые сточные воды
Источник: по материалам Национального энергетического образовательного проекта (общественное достояние)
Источник: по материалам Национального энергетического образовательного проекта (общественное достояние)
Преобразование биомассы в энергию
Биомасса преобразуется в энергию с помощью различных процессов, в том числе:
- Прямое сжигание (сжигание) для получения тепла
- Термохимическая конверсия для производства твердого, газообразного и жидкого топлива
- Химическая конверсия для производства жидкого топлива
- Биологическая конверсия для производства жидкого и газообразного топлива
Прямое сжигание — наиболее распространенный метод преобразования биомассы в полезную энергию.Всю биомассу можно сжигать непосредственно для отопления зданий и воды, для получения тепла в промышленных процессах и для выработки электроэнергии в паровых турбинах.
Термохимическая конверсия биомассы включает пиролиз и газификацию . Оба являются процессами термического разложения, в которых исходные материалы биомассы нагреваются в закрытых емкостях под давлением, называемых газификаторами , при высоких температурах. В основном они различаются температурами процесса и количеством кислорода, присутствующего в процессе конверсии.
- Пиролиз включает нагрев органических материалов до 800–900 ° ° F (400–500 ° ° C) при почти полном отсутствии свободного кислорода. При пиролизе биомассы производятся такие виды топлива, как древесный уголь, бионефть, возобновляемое дизельное топливо, метан и водород.
- Гидроочистка используется для обработки бионефти (произведенной с помощью быстрого пиролиза ) водородом при повышенных температурах и давлениях в присутствии катализатора для производства возобновляемого дизельного топлива, возобновляемого бензина и возобновляемого реактивного топлива.
- Газификация включает нагрев органических материалов до 1400–1700 o F (800–900 o ° C) с нагнетанием контролируемых количеств свободного кислорода и / или пара в емкость для получения монооксида углерода и газа, богатого водородом, называемого синтез-газом. или синтез-газ . Синтез-газ можно использовать в качестве топлива для дизельных двигателей, для отопления и для выработки электроэнергии в газовых турбинах. Его также можно обработать, чтобы отделить водород от газа, и водород можно сжигать или использовать в топливных элементах.Синтез-газ может быть дополнительно переработан для производства жидкого топлива с использованием процесса Фишера-Тропша.
Процесс химического преобразования, известный как переэтерификация , используется для преобразования растительных масел, животных жиров и жиров в метиловые эфиры жирных кислот (FAME), которые используются для производства биодизеля.
Биологическое преобразование включает ферментацию для преобразования биомассы в этанол и анаэробное сбраживание для получения возобновляемого природного газа. Этанол используется в качестве автомобильного топлива.Возобновляемый природный газ — также называемый биогазом или биометаном — производится в анаэробных метантенках на очистных сооружениях, а также на молочных и животноводческих предприятиях. Он также образуется на свалках твердых отходов и может улавливаться ими. Правильно очищенный возобновляемый природный газ используется так же, как ископаемый природный газ.
Исследователи работают над способами улучшения этих методов и разработки других способов преобразования и использования большего количества биомассы для получения энергии.
Сколько биомассы используется для получения энергии?
В 2020 году биомасса обеспечила около 4532 триллионов британских тепловых единиц (TBtu), или около 4.5 квадриллионов британских тепловых единиц, что составляет около 4,9% от общего потребления первичной энергии в США. Из этого количества около 2101 TBtu приходилось на древесину и древесную биомассу, 2000 TBtu приходилось на биотопливо (в основном этанол) и 430 TBtu приходилось на биомассу в городских отходах.
Суммы — в TBtu — и процентные доли от общего потребления энергии биомассы в США по потребляющим секторам в 2020 году составили:
На промышленность и транспорт приходится наибольшая доля энергии с точки зрения содержания энергии и наибольшая процентная доля от общего годового U.Потребление биомассы S. В деревообрабатывающей и бумажной промышленности биомасса используется в теплоэлектроцентралях для производства тепла и электроэнергии для собственных нужд. На жидкое биотопливо (этанол и дизельное топливо на основе биомассы) приходится большая часть потребления биомассы транспортным сектором.
В жилом и коммерческом секторах для отопления используются дрова и древесные гранулы. Коммерческий сектор также потребляет, а в некоторых случаях продает возобновляемый природный газ, произведенный на муниципальных очистных сооружениях и на свалках отходов.
В электроэнергетике используются отходы древесины и биомассы для производства электроэнергии для продажи другим секторам.
Последнее обновление: 8 июня 2021 г.
Определение возобновляемых источников энергии и типы возобновляемых источников энергии
Перейти к разделу
Ветряные турбины и большая солнечная панель в Палм-Спрингс, Калифорния
Возобновляемые источники энергии стремительно развиваются, поскольку инновации снижают затраты и начинают реализовывать перспективы экологически чистой энергии в будущем.Американская солнечная и ветровая генерация бьет рекорды и интегрируется в национальную электросеть без ущерба для надежности.
Это означает, что возобновляемые источники энергии все больше вытесняют «грязное» ископаемое топливо в энергетическом секторе, предлагая выгоду от более низких выбросов углерода и других видов загрязнения. Но не все источники энергии, которые продаются как «возобновляемые», полезны для окружающей среды. Биомасса и большие плотины гидроэлектростанций создают трудные компромиссы при рассмотрении воздействия на дикую природу, изменения климата и других проблем.Вот что вам следует знать о различных типах возобновляемых источников энергии и о том, как вы можете использовать эти новые технологии у себя дома.
Что такое возобновляемая энергия?
Возобновляемая энергия, часто называемая чистой энергией, поступает из природных источников или процессов, которые постоянно пополняются. Например, солнечный свет или ветер продолжают светить и дуть, даже если их наличие зависит от времени и погоды.
В то время как возобновляемые источники энергии часто считают новой технологией, использование энергии природы уже давно используется для отопления, транспортировки, освещения и многого другого.Ветер привел в движение лодки для плавания по морям и ветряные мельницы для измельчения зерна. Солнце согревало днем и помогало разжигать костры до вечера. Но за последние 500 лет или около того люди все чаще обращались к более дешевым и грязным источникам энергии, таким как уголь и фракционный газ.
Теперь, когда у нас появляются все более инновационные и менее дорогие способы улавливания и сохранения энергии ветра и солнца, возобновляемые источники энергии становятся все более важным источником энергии, на их долю приходится более одной восьмой U.Поколение С. Расширение возобновляемых источников энергии также происходит в больших и малых масштабах: от солнечных панелей на крышах домов, которые могут продавать электроэнергию обратно в сеть, до гигантских оффшорных ветряных электростанций. Даже некоторые целые сельские общины полагаются на возобновляемые источники энергии для отопления и освещения.
Поскольку использование возобновляемых источников энергии продолжает расти, ключевой целью будет модернизация энергосистемы Америки, сделав ее более умной, безопасной и более интегрированной в разных регионах.
Грязная энергия
Невозобновляемая или «грязная» энергия включает ископаемые виды топлива, такие как нефть, газ и уголь.Невозобновляемые источники энергии доступны только в ограниченном количестве, и их восполнение занимает много времени. Когда мы перекачиваем газ на станцию, мы используем ограниченный ресурс, полученный из сырой нефти, которая существует с доисторических времен.
Невозобновляемые источники энергии также обычно встречаются в определенных частях мира, что делает их более распространенными в одних странах, чем в других. Напротив, в каждой стране есть доступ к солнцу и ветру. Приоритет невозобновляемых источников энергии может также повысить национальную безопасность за счет уменьшения зависимости страны от экспорта из стран, богатых ископаемым топливом.
Многие невозобновляемые источники энергии могут угрожать окружающей среде или здоровью человека. Например, для бурения нефтяных скважин может потребоваться вскрытие бореальных лесов Канады, технологии, связанные с гидроразрывом, могут вызывать землетрясения и загрязнение воды, а угольные электростанции загрязняют воздух. В довершение всего, все эти действия способствуют глобальному потеплению.
Виды возобновляемых источников энергии
Солнечная энергия
Люди использовали солнечную энергию на протяжении тысяч лет — чтобы выращивать урожай, сохранять тепло и сушить пищу.По данным Национальной лаборатории возобновляемых источников энергии, «за один час на Землю падает больше энергии солнца, чем используется всеми людьми в мире за один год». Сегодня мы используем солнечные лучи по-разному — для обогрева домов и предприятий, для подогрева воды или питания устройств.
Солнечные панели на крышах Восточного Остина, Техас
Солнечные или фотоэлектрические элементы изготавливаются из кремния или других материалов, которые преобразуют солнечный свет непосредственно в электричество.Распределенные солнечные системы вырабатывают электроэнергию на местном уровне для домов и предприятий, используя панели на крышах или общественные проекты, которые обеспечивают электроэнергией целые кварталы. Солнечные фермы могут генерировать электроэнергию для тысяч домов, используя зеркала для концентрации солнечного света на акрах солнечных элементов. Плавучие солнечные фермы — или «плавучие гелиоэлектрики» — могут эффективно использовать очистные сооружения и водоемы, которые не являются экологически уязвимыми.
Солнечная энергия поставляет чуть более 1 процента США.производство электроэнергии . Но почти треть всех новых генерирующих мощностей в 2017 году приходилась на солнечную энергию, уступая только природному газу.
Солнечные энергетические системы не производят загрязнителей воздуха или парниковых газов, и до тех пор, пока они правильно расположены, большинство солнечных панелей оказывают незначительное воздействие на окружающую среду за пределами производственного процесса.
Энергия ветра
Мы далеко ушли от старых ветряных мельниц. Сегодня турбины высотой с небоскребы — с турбинами почти такого же диаметра — привлекают внимание во всем мире.Энергия ветра вращает лопасти турбины, которая питает электрический генератор и производит электричество.
Ветер, на который приходится немногим более 6 процентов генерации в США, стал самым дешевым источником энергии во многих частях страны. В число ведущих штатов ветроэнергетики входят Калифорния, Техас, Оклахома, Канзас и Айова, хотя турбины можно размещать в любом месте с высокими скоростями ветра — например, на вершинах холмов и открытых равнинах — или даже на открытом море в открытом море.
Другие альтернативные источники энергии
Hydroelectric Power
Гидроэнергетика является крупнейшим возобновляемым источником электроэнергии в Соединенных Штатах, хотя вскоре ожидается, что энергия ветра выйдет на первое место.Гидроэнергетика полагается на воду — обычно быстро движущуюся воду в большой реке или быстро спускающуюся воду с высокой точки — и преобразует силу этой воды в электричество, вращая лопасти турбины генератора.
На национальном и международном уровнях большие гидроэлектростанции или мегаплотины часто считаются невозобновляемыми источниками энергии. Мегаплотины отводят и сокращают естественные потоки, ограничивая доступ животных и людей, которые зависят от рек. Небольшие гидроэлектростанции (установленная мощность менее 40 мегаватт), тщательно управляемые, не причиняют такой большой экологический ущерб, поскольку они отвлекают лишь часть потока.
Биомасса Энергия
Биомасса — это органический материал, который поступает из растений и животных и включает в себя сельскохозяйственные культуры, древесные отходы и деревья. Когда биомасса сжигается, химическая энергия выделяется в виде тепла и может генерировать электричество с помощью паровой турбины.
Биомассу часто ошибочно называют чистым возобновляемым топливом и более зеленой альтернативой углю и другим ископаемым видам топлива для производства электроэнергии. Однако недавняя наука показывает, что многие формы биомассы, особенно лесной, производят более высокие выбросы углерода, чем ископаемое топливо.Также существуют негативные последствия для биоразнообразия. Тем не менее, некоторые формы энергии биомассы могут служить вариантом с низким содержанием углерода при определенных обстоятельствах. Например, опилки и щепа с лесопильных заводов, которые в противном случае быстро разлагались бы и выделяли углерод, могут быть источником энергии с низким содержанием углерода.
Геотермальная энергия
Геотермальная электростанция Сварценги недалеко от Гриндавика, Исландия
Даниэль Снаер Рагнарссон / iStock
Если вы когда-нибудь отдыхали в горячем источнике, значит, вы использовали геотермальную энергию.Ядро Земли примерно такое же горячее, как поверхность Солнца, из-за медленного распада радиоактивных частиц в горных породах в центре планеты. Бурение глубоких скважин выводит на поверхность очень горячую подземную воду в качестве гидротермального ресурса, который затем прокачивается через турбину для выработки электроэнергии. Геотермальные установки обычно имеют низкие выбросы, если они закачивают пар и воду, которые они используют, обратно в резервуар. Есть способы создать геотермальные электростанции там, где нет подземных резервуаров, но есть опасения, что они могут увеличить риск землетрясения в районах, которые уже считаются геологическими горячими точками.
Океан
Энергия приливов и волн все еще находится в стадии развития, но океаном всегда будет управлять гравитация луны, что делает использование ее силы привлекательным вариантом. Некоторые подходы к приливной энергии могут нанести вред дикой природе, например, приливные заграждения, которые работают так же, как плотины и расположены в океанской бухте или лагуне. Как и приливная сила, сила волны зависит от плотинных структур или устройств, закрепленных на дне океана, на поверхности воды или чуть ниже нее.
Возобновляемые источники энергии в доме
Солнечная энергия
В меньшем масштабе мы можем использовать солнечные лучи для питания всего дома — будь то с помощью фотоэлементов или пассивной солнечной конструкции дома.Пассивные солнечные дома предназначены для того, чтобы встречать солнце через окна, выходящие на юг, а затем сохранять тепло через бетон, кирпич, плитку и другие материалы, которые сохраняют тепло.
Некоторые дома на солнечной энергии производят более чем достаточно электроэнергии, что позволяет домовладельцу продавать излишки электроэнергии обратно в сеть. Батареи также являются экономически привлекательным способом хранения избыточной солнечной энергии, чтобы ее можно было использовать в ночное время. Ученые усердно работают над новыми достижениями, сочетающими форму и функцию, такими как солнечные световые люки и кровельная черепица.
Геотермальные тепловые насосы
Геотермальная технология — это новый взгляд на узнаваемый процесс: змеевики в задней части холодильника представляют собой миниатюрный тепловой насос, отводящий тепло изнутри, чтобы продукты оставались свежими и прохладными. В доме геотермальные или геообменные насосы используют постоянную температуру земли (на несколько футов ниже поверхности) для охлаждения домов летом и обогрева домов зимой — и даже для нагрева воды.
Геотермальные системы могут быть изначально дорогими в установке, но обычно окупаются в течение 10 лет.Кроме того, они тише, требуют меньшего количества проблем с обслуживанием и служат дольше, чем традиционные кондиционеры.
Малые ветряные системы
Ветряная электростанция на заднем дворе? Лодки, владельцы ранчо и даже компании сотовой связи регулярно используют небольшие ветряные турбины. Дилеры теперь помогают размещать, устанавливать и обслуживать ветряные турбины и для домовладельцев, хотя некоторые энтузиасты DIY устанавливают турбины сами. В зависимости от ваших потребностей в электроэнергии, скорости ветра и правил зонирования в вашем районе ветряная турбина может снизить вашу зависимость от электрической сети.
Продажа энергии, которую вы собираете
Дома, работающие на ветряной и солнечной энергии, могут быть автономными или подключаться к более крупной электросети, которую предоставляет их поставщик электроэнергии. Электроэнергетические компании в большинстве штатов позволяют домовладельцам оплачивать только разницу между потребляемой электроэнергией, поставляемой в сеть, и тем, что они произвели — процесс, называемый чистым счетчиком. Если вы производите больше электроэнергии, чем используете, ваш провайдер может заплатить вам розничную цену за эту мощность.
Возобновляемые источники энергии и вы
Пропаганда возобновляемых источников энергии или их использование в домашних условиях может ускорить переход к экологически чистой энергии будущего.Даже если вы еще не можете установить солнечные батареи, вы можете выбрать электричество из экологически чистых источников энергии. (Обратитесь в свою энергетическую компанию, чтобы узнать, предлагает ли она такой выбор.) Если возобновляемая энергия недоступна через ваше коммунальное предприятие, вы можете приобрести сертификаты возобновляемой энергии для компенсации вашего использования.
Годовые отчеты по энергетике
NRDC | NRDC
NRDC ежегодно анализирует самые свежие данные, чтобы представить общую картину энергетического сектора США, который претерпевает значительный сдвиг в сторону увеличения объемов возобновляемой энергии и экономичной энергоэффективности.Однако Америка по-прежнему должна делать больше для достижения своей доли в наших глобальных климатических целях.
2020:
Медленно и устойчиво не выиграют климатическую гонку
В 2019 году Америка добилась устойчивого прогресса в нескольких важнейших секторах чистой энергии. После резкого роста в 2018 году общее углеродное загрязнение в США снизилось на 3 процента в 2019 году, главным образом за счет сектора энергетики, который на 11 лет раньше выполнил цели по сокращению выбросов в соответствии с Планом чистой энергии эпохи Обамы. Энергия ветра и солнца процветает, и законы штатов, обязательства коммунальных предприятий и корпоративные цели в области экологически чистой энергии, поставленные в 2019 году, будут способствовать дальнейшему ускорению роста возобновляемых источников энергии по всей стране.С другой стороны, Соединенные Штаты продолжают добывать нефть и газ в огромных количествах; В 2019 году на потребление нефти и газа в США пришлось 80 процентов выбросов углерода, и мы экспортируем большие объемы этого ископаемого топлива за границу, что способствует глобальным выбросам. Такого медленного продвижения к экологически чистой энергии в будущем будет просто недостаточно, чтобы удержать глобальное потепление на уровне ниже 1,5 градусов по Цельсию и предотвратить наихудшие последствия климатического кризиса. Как мы отмечаем в нашем Годовом отчете по энергетике 8 th , есть хорошие новости в наших энергетических тенденциях на 2019 год, но мы должны сделать больше — гораздо больше — и у нас больше нет времени тратить зря.
ПРОСМОТРЕТЬ ОТЧЕТ
8-й Годовой отчет по энергетике: медленное и устойчивое не победит в климатической гонке
2019
Энергетический прогресс Америки: дуэль чистой и грязной инфраструктуры
Перед лицом враждебной администрации, которая остановила национальный импульс (и даже вызвало некоторый откат), отдельные штаты, города, коммунальные предприятия и предприятия берут на себя новаторские обязательства по решению проблемы климата. Солнечная и ветровая энергия процветают, а стоимость чистой энергии продолжает быстро падать.Ветровая и солнечная энергия уже вытесняют угольную энергию и, вероятно, окажут аналогичное экономическое давление на природный газ в течение следующих полутора десятилетий. Между тем, угольная генерация упала до минимума за четыре десятилетия. К сожалению, однако, инфраструктура природного газа и нефти расширяется, чему способствует приток дешевой нефти и газа, подвергнутых гидроразрыву. А после пяти лет снижения выбросов углекислого газа (CO2) в 2018 году выбросы в США выросли; во всем мире выбросы CO2 достигли рекордно высокого уровня. США должны подтвердить приверженность достижению наших климатических целей от штата к штату и от города к городу, добиваясь возвращения федеральной поддержки.
2018
Американский климатический перекресток: продвигая чистую энергию выше и быстрее
После еще одного года значительных достижений США в области чистой энергетики Межправительственная группа экспертов по изменению климата выпустила отрезвляющее предупреждение об опасных последствиях, если мы не будем действовать быстро, чтобы ограничить глобальное потепление. В этом отчете исследуются возникающие возможности и препятствия на пути к более безопасному климату в будущем. Популярность угля упала до исторического минимума в 2017 году, когда возобновляемые источники энергии и энергоэффективность были самыми чистыми и дешевыми U.С. источники энергии. В результате Америка почти достигла целей по сокращению выбросов в Плане чистой энергии на 13 лет раньше, чем предполагалось, несмотря на враждебную администрацию Трампа. Прогресс и инновации открыли доступ к более чистым и дешевым альтернативам, которые становятся основным ресурсом по всей стране. Даже с учетом этих положительных тенденций необходимо сделать гораздо больше для обеспечения продолжения перехода к чистой энергии.
2017
Революция чистой энергии в Америке
Согласно отчету NRDC за 2017 год, несмотря на новые политические препятствия, улучшение экономической ситуации способствует революции в чистой энергии, в которой нуждается Америка.Десятки рекордов чистой энергии были побиты в Соединенных Штатах. Солнечная энергия продемонстрировала беспрецедентный рост, и теперь у нас есть первая в США оффшорная ветряная электростанция. Более сильные инвестиции и стандарты в области энергоэффективности позволили сократить потери энергии и счета за коммунальные услуги. Тем временем сетевые операторы и коммунальные предприятия прилагают все усилия, чтобы интегрировать больше чистой энергии в нашу систему электроснабжения без ущерба для надежности. В целом Соединенные Штаты сокращают загрязнение, вызывающее изменение климата, даже несмотря на то, что национальные расходы на энергию достигают рекордно низкого уровня.
2016
Ускорение перехода к экологически чистой энергии будущего
Соединенные Штаты строят революцию в области экологически чистой энергии, которая, согласно отчету NRDC за 2016 год, приведет к значительному сокращению загрязнения. Выработка угля упала до исторического минимума, производя только одну треть нашей электроэнергии, в то время как производство возобновляемой энергии достигло рекордного уровня, при этом более одной восьмой электроэнергии Америки вырабатывается с помощью солнечных панелей, ветряных турбин и других возобновляемых ресурсов. В прошлом году в области энергетики был достигнут ряд побед для окружающей среды, о чем свидетельствует глобальное климатическое соглашение и план по сокращению выбросов углерода для Соединенных Штатов.
2015
Тектонический сдвиг в энергетическом ландшафте Америки
Соединенные Штаты возглавляют глобальный переход на чистую энергию, который достиг новых рубежей, с сокращением потребления угля и электроэнергии по всей стране, неизменным использованием нефти и резким ростом возобновляемых источников энергии, согласно NRDC за 2015 год. отчет. Устойчивый прогресс в области энергоэффективности, ветроэнергетики и солнечной генерации проложил путь к первым в Америке общенациональным ограничениям на выбросы углерода электростанциями и вселил надежду на значительный прогресс в глобальных переговорах по климату, запланированных на декабрь в Париже.
2014
Положительные тенденции в энергетике служат хорошим предзнаменованием для безопасности и экономики США
Соединенные Штаты сокращают нефтяную зависимость, замедляют рост потребностей в электроэнергии и делают энергетические услуги более доступными для всех американцев. Потребление нефти и энергии остается значительно ниже уровней десятилетней давности, возобновляемые источники энергии стремительно растут, а рост продаж электроэнергии в США продолжает снижаться. Обзор NRDC за 2014 год показывает, что общее состояние энергетической экономики США остается отличным.Самым важным фактором, способствующим этим положительным тенденциям, является энергоэффективность — самый крупный и недорогой ресурс в стране. Эффективность позволила Америке получать больше работы, используя меньше нефти, природного газа и электроэнергии, одновременно продвигая нашу экономику вперед. Есть все признаки того, что эти положительные энергетические тенденции будут продолжаться и ускоряться.
2013 г.
(на удивление) хорошие новости энергетики в Америке
На протяжении десятилетий, начиная с нефтяного кризиса 1970-х годов, энергетические новости Америки становились все хуже и хуже.Однако анализ NRDC за 2013 год обнаружил заметный поворот. Судя по ключевым показателям экономики, безопасности и окружающей среды, состояние энергетической экономики США никогда не было лучше. В значительной степени благодаря повышению энергоэффективности положительные энергетические тенденции экономят стране сотни миллиардов долларов ежегодно, помогая американским рабочим и компаниям конкурировать во всем мире, делая нашу страну более энергобезопасной и существенно сокращая национальный углеродный след. Однако эти тенденции должны продолжаться и ускоряться, чтобы компенсировать наиболее разрушительные последствия изменения климата.