Калорифер приточной вентиляции: виды, устройство и расчет мощности

Калорифер приточной вентиляции: виды, устройство и расчет мощности

Содержание

виды, устройство и расчет мощности

Калорифер, или канальный нагреватель — общее название трубных приборов, посредством которых осуществляется нагрев воздушных масс внутри помещения. В такой установке может циркулировать горячая вода, воздух или пар.

Что такое калорифер и для чего он нужен

Он представляет собой своеобразный теплообменник, в котором источником тепла являются воздушные потоки, соприкасающиеся с нагревательными элементами. Посредством прибора выполняется прогрев приточного воздуха в вентиляционных системах и сушильном оборудовании.

Схема демонстрирует место калорифера в канальной вентиляционной уставновке

Монтируемый прибор может быть представлен отдельным модулем или входить в состав моноблочной вентиляционной установки. Сфера применения представлена:

  • первоначальным нагревом воздуха в приточных системах вентиляции с подачей воздушного потока с улицы;
  • вторичным нагревом воздушных масс при рекуперации в системах приточно-вытяжного типа, регенерирующих тепло;
  • вторичным нагревом воздушных масс внутри отдельных помещений для обеспечения индивидуального температурного режима;
  • прогревом воздуха для его подачи в кондиционер зимой;
  • резервным или дополнительным отоплением.

Энергетическая эффективность канального воздухонагревателя любой конструкции определяется коэффициентом тепловой отдачи в условиях определённых энергетических затрат, поэтому при значительных показателях тепловой отдачи прибор принято считать высокоэффективным.

Обвязка в приточной вентиляционной системе регулирующего арматурного каркаса выполняется посредством двухходовых вентилей в городской сети, а также трёхходовыми вентилями при использовании котельной или бойлера. При помощи установленного обвязочного узла легко контролируется производительность используемого оборудования, и минимизируется риск промерзания зимой.

Виды

Отопительно-вентиляционная техника представлена преимущественно водяными и паровыми приборами.

Потоки воздуха проходят через несколько узлов системы

Предпочтение чаще всего отдаётся водяным воздухонагревателям, которые отличаются:

  • формой поверхности. Они могут быть гладкотрубными и ребристыми, пластинчатыми и спирально-навивными;
  • характером перемещения теплового носителя. Воздухонагреватели одноходового и многоходового типа.

В зависимости от размеров нагревательной поверхности, все приборы водяного и парового типа представлены четырьмя моделями: самые малые (СМ), малые (М), средние (С) и большие (Б).

Водяной

Калориферами водяного типа обеспечивается прогрев воздуха внутри вентиляционного канала до комфортных температурных показателей посредством энергии теплового носителя, постоянно циркулирующего в радиаторной части оборудования. Жидкостные теплоносители не уступают по своим основным характеристикам аналогам электрического типа, но отличаются повышенными показателями энергопотребления и некоторой сложностью монтажа, поэтому их установка должна осуществляться специалистами.

Принцип действия основан на наличии в конструкции звеньев пустого медного или на основе медных сплавов змеевика, расположенных в шахматном порядке. Также устройство обладает алюминиевыми пластинами, предназначенными для тепловой отдачи. Внутри медного змеевика перемещается нагретая жидкость, представленная водой или гликолевым раствором, в результате чего тепло передаётся воздушным потокам из приточной системы.

На схеме представлены узлы вентиляции с водяным фильтром

К основным преимуществам водяных нагревателей воздуха в системах вентилирования можно отнести высокую эффективность прогрева больших по площади помещений, что обусловлено его конструкционными особенностями.

Корпус и внутренние детали водяного калорифера

  1. боковая часть корпуса;
  2. верхняя и нижняя панели корпуса;
  3. вентиляционный патрубок на задней панели;
  4. теплообменник;
  5. решётка моторной опоры;
  6. лопатки ориентируемого типа;
  7. дополнительная ёмкость для конденсата;
  8. основная ёмкость для конденсата;
  9. верхняя часть корпуса теплообменника;
  10. воздуховод;
  11. фиксирующие прибор кронштейны;
  12. пластиковые угольники.

Основной минус заключается в высоком риске промерзания прибора в условиях резко отрицательных температур, что объясняется наличием в системе воды и требует обязательной защиты от обледенения.

Они представлены металлическими трубками с ребристой наружной частью, увеличивающей эффективность тепловой отдачи. Канальные нагреватели, по трубам которых передвигается нагретый тепловой носитель, а снаружи перемещаются и нагреваются воздушные массы, целесообразно монтировать в прямоугольных вентиляционных системах.

Паровой

Они востребованы промышленными предприятиями с избытком пара, который позволяет обеспечивать технологические потребности устройства. Тепловой носитель в таком приборе представлен паром, подаваемым сверху, а в процессе его прохождения сквозь рабочие элементы теплообменника образуется конденсат.

Тепловым носителем в этом типе калорифере является пар

Все выпускаемые в настоящее время паровые теплообменники в обязательном порядке проходят проверку герметичности посредством сухого воздуха, подаваемого с давлением в пределах 30 бар при погружении устройства в резервуар, наполненный тёплой водой.

К преимуществам приборов в системе кондиционирования и вентилирования относится быстрый прогрев помещения, что объясняется конструкцией такого устройства.

Схематическое изображение главных компонентов парового калорифера

  1. доска с трубами;
  2. боковая щитковая часть;
  3. нагревательный элемент;
  4. прокладка.

Ощутимым минусом парового канального нагревателя является обязательное наличие оборудования, которое непрерывно генерирует пар.

Электрический

Наименее мощные вентиляционные системы экономически целесообразно оснащать обычными электрическими калориферами. Принцип работы устройства основан на прохождении воздушных потоков, подающихся по приточной вентиляционной системе через нагревательные элементы, отдающие часть тепловой энергии. Нагретый воздух подаётся в помещение, а защита от любых перегревов реализуется биметаллическими термовыключателями.

Такие приборы совершенно не нуждаются в подводке слишком сложных или профессиональных коммуникационных систем, поэтому подключаются к уже имеющимся линиям электрического снабжения, что является несомненным плюсом.

Более мощные вентиляционные системы рекомендуется оснащать с электрокалориферами

Внутреннее устройство представлено электронагревателями трубного типа, что обеспечивает максимально эффективный тепловой обмен с окружающими воздушными потоками.

  • IV — вентиляционный элемент на вытяжной воздух;
  • PV — вентиляционный элемент на приточный воздух;
  • PR — теплообменник пластинчатого типа;
  • KE — электрический нагревательный элемент;
  • PF — фильтрующая система на свежий воздух;
  • IF — фильтрующая система на вытяжной воздух;
  • TJ — температурный датчик на приточный воздух;
  • TL — температурный датчик на свежий воздух;
  • TA — температурный датчик на вытяжной воздух;
  • M1 — мотор клапана воздухообводного типа;
  • M2 — клапан для свежих воздушных потоков;
  • M3 — клапан для вытяжных воздушных потоков;
  • PS1 — дифференциальное реле давления на приточные воздушные потоки;
  • PS2 — дифференциальное реле давления на воздушные потоки вытяжного типа.

Электрический калорифер включает в себя 14 элементов

Использование электрических приборов может быть оправданным только в вентилируемом помещении, площадь которого составляет менее 100–150 м2. В противном случае уровень расхода электрической энергии будет слишком высоким.

Качественная вентиляция в доме избавит от сырости и застоявшегося воздуха. В следующей статье вы узнаете более подробно о монтаже системы приточно-вытяжного типа: https://aqua-rmnt.com/ventilyaciya/pritochno-vyityazhnaya-ventilyatsiya-v-chastnom-dome.html.

Расчёт мощности

Получение воздуха с необходимыми температурными показателями предполагает проведение правильных расчётов и грамотного выбора устройства для вентиляции приточного типа. Даже несмотря на то, что особой популярностью пользуются современные водяные приборы с тепловым носителем в виде горячей воды, при выборе устройства любого типа изначально требуется определиться с его мощностью на основе исходных данных, представленных:

  • объёмом нагреваемых приточных воздушных масс в м³/ч или кг/ч;
  • температурными показателями исходных воздушных масс, равными расчётной температуре уличного воздуха в конкретном регионе;
  • предпочтительным температурным режимом воздушных потоков после нагрева;
  • температурным графиком теплового носителя, который используется для прогрева.

Упрощённое определение мощности канального нагревателя выполняется в соответствии с простой формулой:

Р = 0,34 × Q × Т

Q — производительность вентиляционной системы в м3/час;

Т — разница температурных показателей на вход и выход в вентиляционном канале.

Таблица: расчёт мощности для основных параметров вентиляционной системы

Производительность, м3Мощность нагревательного элемента, кВт
801,2
1602,4
2403,6
3304,8
5107,5
73010,8
102015,0
152022,5
203030,0

Например, объём воздуха в комнате площадью в 20 м2 при высоте потолка 300 см, равен 60 м3, поэтому однократный воздухообмен составляет 60 м2/час.

Таблица: показатели мощности электрического, парового и водяного канального нагревателя

Показателиt воздуха на входе оС
0-5-10-15-20-25-30-35-40-45
Мощность кВт0.060.080.090.110.130.140.160.180.190.21

Подаваемый в помещение с улицы приточный воздух требует обработки, чтобы получить нормативные параметры. Обрабатывать воздушные массы можно фильтрацией, нагревом, охлаждением и увлажнением. Прогрев приточных воздушных потоков осуществляется внутри специального теплообменного оборудования, представленного калориферами.

Жидкостные канальные воздухонагреватели являются сегодня самыми популярными, широко используемыми в большинстве вентиляционных систем. Теплоноситель жидкого типа постоянно перемещается в направлении, которое противоположно воздушным потокам, что обеспечивает эффективное и недорогое отопление, существенно экономящее энергоресурсы и поддерживающее оптимальные микроклиматические условия в помещениях любого типа.

Оцените статью:

Поделитесь с друзьями!

Калориферы для приточной вентиляции — основные виды, обзор и расчет.

Автор Евгений Апрелев На чтение 5 мин Просмотров 7.8к.
Обновлено

Обеспечить оптимальный доступ свежего и чистого воздуха в жилые помещения, особенно в теплое время довольно простое задание. Для этого лишь необходимо, чтобы приточная вентиляция была оснащена вентилятором с достаточной мощностью.

[contents]

Однако в зимний период следует радикальным образом изменить сложившееся понятие на обустройство всей вентиляционной системы. В данном случае особое внимание рекомендуют обращать на калориферы для приточной вентиляции, которые возьмут на себя полную заботу об установлении свободного доступа в жильё достаточного количества теплого воздуха и благоприятного микроклимата в комнатах.

Калорифер – это устройство (оборудование), предназначенное для осуществления теплообмена путем нагревания потока воздуха при помощи соприкосновения его с определенным количеством нагревающих элементов.

Устанавливается такой прибор в вентиляционных системах, как в виде отдельно стоящих модулей, так и в комплексе с моноблочными конструкциями.

Виды калориферов, используемых в вентиляционных системах приточного типа

Выбор подобных устройств для основывается, как правило, на нескольких основных факторах, в число которых входят производительность, общая площадь помещения, мощность оборудования, а также климатические особенности конкретной местности. С учетом всех перечисленных характеристик применяют следующие виды:

  • электрокалориферы для приточной вентиляции – применение данного вида нагревателей считается наиболее экономически оправданным, исходя из того, что электрокалорифер не требует выполнения подводки сложных коммуникаций (достаточно подключить устройство к электроснабжению) и оборудован специальными ТЭНами для максимально эффективного теплообмена, которые преобразовывают энергию электрического типа в тепловую.
  • водяные калориферы для приточной вентиляции – их основное назначение заключается в нагреве воздуха в вентиляционных системах с круглым и прямоугольным видом сечения, поэтому они успешно применяются для отопления коттеджей, магазинов, крупных комплексов, складов и помещений, в том числе животноводческих ферм.

Использование электрических калориферов эффективно при площади вентилируемого помещения в пределах 100-150м2. Главными достоинствами подобных калориферов является простота монтажных работ и их общедоступность, а недостатком – высокий уровень энергопотребления.

Водяные калориферы являются довольно практичными, выгодными и надежными устройствами для эффективного обогрева воздуха больших объемов (более 150 м2) и не нуждаются в постоянном или частом обслуживании. Качество их работы полностью зависит от наличия автоматического управления.

При установке в верхней точке с направлением вниз калорифер водяного типа способен быстро и легко выравнивать температуру воздушной массы помещения, благодаря оснащению данного вида теплообменников специальным термостатом. Для более качественного обогрева такие устройства могут объединяться в единую конструкцию.

Система вентиляции на основе водных калориферов функционирует по схеме: поступающий через воздухозаборные сетки внешний воздушный поток, пройдя сквозь жалюзийные решетки, попадает в участок фильтров, в которых проходит процедура непосредственной его очистки от пыли и всевозможных механических включений. После чего очищенный воздух поступает в калорифер для дальнейшего нагрева посредством тепла, отдаваемого магистральной водой.

Среди широкого ассортимента водяных нагревателей особую популярность получили калориферы с применением биметаллического и алюминиевого оребрения элементов.

Методы обвязки

Регулирующий арматурный каркас (обвязка калорифера приточной вентиляции) в зависимости от используемого источника поступления нагретой воды зачастую осуществляется двумя способами:

  • применение двухходовых вентилей – в случаях использования городской сети, в которой не фиксируется расход обратного количества воды, существует только необходимость поддержания постоянства температуры;
  • использование трехходовых вентилей – в случаях потребления с бойлера или котельной, где строго фиксируется расход обратного объема воды, а любые изменения влияют на нормальное функционирование всей системы. Также вам будет полезно прочитать как организовать вентиляцию в котельной загородного дома.

является очевидной необходимостью, поскольку позволяет контролировать производительностью оборудования и предохраняет его от излишнего промерзания в зимний период времени.

Определение необходимого значения мощности установки

При подборе нагревательного оборудования для обустройства приточной вентиляции нужно в обязательном порядке необходимых показателей:

  • производительности на основе наружного воздушного потока окружающей среды;
  • давления, которое создается работой вентиляторов;
  • общей мощности нагревательного прибора;
  • площади трубоотводов подачи воздуха;
  • допустимой нормы возникновения различного рода шумовых эффектов;
  • скорости проникновения воздушных потоков.

Особое внимание уделяется определению уровня мощности калорифера.

Процесс установки калориферов применяется в приточных вентиляционных системах в целях нагрева внешнего воздуха преимущественно в холодное время. Показатель мощности возможно рассчитать на основе параметров производительности вентиляции, минимальной, а также заданной температуры воздушных потоков, как снаружи, так и на выходе. Для эффективной работы приточная система зачастую оснащается регулятором мощности, предназначенного для снижения в холодный период времени скорости вращения вентилятора.

, следует учитывать ряд существенных правил и ограничений:

  • возможность применения разного типа питания;
  • трехфазное подключение необходимо при использовании калорифера мощностью более 5кВт. В данном случае трехфазное питание является наиболее приемлемым вариантом, поскольку при этом ток будет гораздо ниже.

Максимально допустимое значение тока, потребляемого калориферным оборудованием, рассчитывается на основе довольно простой формулы:

I = P (мощность) /U (напряжение питания)

Для однофазного напряжения значение U приравнивают к 220В, при трехфазном питании – 660В.
Немаловажным параметром также является температура приточного воздушного потока при нагревании калорифера заданного параметра мощности, которая рассчитывается по формуле:

T =2.98 x P (мощность) / L (производительность вентиляционной системы)

Стандартные значения рассчитываемой мощности калориферной установки для квартир и домов может составлять 1-5кВт и 5-50кВт – на предприятиях или в офисе. В случаях невозможности применения электрического типа калориферного прибора с заданной мощностью, следует прибегнуть к установке водяного калорифера, который использует в виде основного тепла воду из различных систем отопления, в том числе автономное или центральное.

В целом, в небольших помещениях целесообразнее устанавливать калориферы для приточной вентиляции на электрической основе, так как они удобны в эксплуатации и не занимают много времени при установке. Для строений с большой площадью наилучшим вариантом станет монтаж водяных калориферов, благодаря которым значительно экономится электроэнергия и уменьшаются энергозатраты, необходимые для подогрева воды.

Калориферы для приточной вентиляции: водяные и электрические

На чтение 5 мин Просмотров 158 Опубликовано Обновлено

Обеспечить доступ свежего воздуха в жилье в наше время достаточно просто. Самый простой способом сделать это – установить проточную вентиляцию с установленным в ней вентилятором. В таком случае в жаркие летние дни в помещении всегда будет чистый прохладный воздух.

Но что же делать в зимнее время, когда подаваемый через вентиляцию воздух будет слишком холодным? Но и для этого случая есть решение – необходимо установить в вентиляционном канале калорифер, который обеспечит нагревание воздуха, что подается из улицы.

Калорифер – это устройство, которое нагревает воздух путем его соприкосновения с поверхностью нагревающих элементов, количество которых может быть разным.

Типы калориферов для вентиляции

Приточная вентиляция с калорифером

Калориферы, которые могут использоваться в системах вентиляции, отличаются между собой мощностью, производительностью, типом теплоносителя и некоторыми другими параметрами. Самое широкое распространение получили два основных типа:

  • электрические;
  • водяные.

Как понятно из названия, подобные обогревательные устройства отличаются между собой источником тепла для нагрева воздуха.

Электрические приборы

Электрические калориферы для приточной вентиляции являются очень эффективными, но достаточно затратными обогревательными приборами. Повышение температуры в вентиляционном канале осуществляется в результате контакта воздуха с раскаленными спиралями или пластинами, сделанными из тугоплавких типов металлов.

Повышение температуры нагревательных элементов при этом происходит за счет смены электрического сопротивления нагревателей. Для этого требуется достаточно много электрической энергии.

Степень нагрева спирали или пластины является прямо пропорциональным силе тока, который течет через элемент.  Увеличивая напряжение, можно уменьшить силу тока, не изменяя при этом электрическую мощность.

Несмотря на значительные энергозатраты, электрические нагревательные приборы отличаются компактными размерами и простотой в установке.

Преимущества и недостатки электрических калориферов

Среди основных преимуществ, которыми характеризуется электрический калорифер, стоит выделить следующие.

Простой процесс установки. Так, подвести к нагревателю кабель намного проще, чем обеспечивать циркуляцию внутри него воды или другого теплоносителя.

Можно не переживать об обеспечении теплоизоляции проводки. Потери питания в кабеле в результате электрического сопротивления намного ниже потерь тепла в любом трубопроводе с жидким теплоносителем.

Легкая регулировка подходящей температуры воздуха. Чтобы иметь возможность устанавливать температуру подаваемого в помещение воздуха на требуемом уровне, достаточно установить в цепь питания нагревательного прибора простой термодатчик. В случае же с водяным калорифером потребуется согласование мощности котла, температуры теплоносителя и воздуха.

Вместе с тем, электрический тип приборов имеет и свои недостатки. В первую очередь это стоимость прибора, которая является более высокой в сравнении с водяными аналогами. Так, в случае примерно одинакового уровня мощности цена электрического калорифера будет примерно в 2 раза выше устройства с жидким теплоносителем.

Достаточно высокие энергетические затраты. Так, для обеспечения нагрева воздуха в системе вентиляции даже небольшого помещения расходы на электричество будут значительными.

С учетом того, что в зимнее время калориферы работают практически без перерывов, существует высокая вероятность перегрева прибора. В случае с устройствами, которые работают от электрической энергии, это может привести к серьезным последствиям. Поэтому калориферы для вентиляции такого типа должны быть оснащены надежной системой защиты от перегрева.

Водяные устройства

Второй тип вентиляционных калориферов – водяные, обеспечивают повышение температуры воздуха, подаваемого в вентиляционный канал, за счет передачи тепловой энергии от теплоносителя, который циркулирует внутри радиатора прибора.

Жидкость как нагреватель воздуха практически ни в чем не уступает электрическим аналогам, но при этом не требует большого энергопотребления.

Но в отличие от прибора электрического типа, водяные являются достаточно сложными в установке, поэтому провести их монтаж самостоятельно довольно затруднительно.

Плюсы и минусы водяных нагревателей

Среди преимуществ, которые имеют водяные нагреватели воздуха в вентиляционных системах самым важным является высокая эффективность использования даже в помещениях большой площади.

Обеспечивается это особенностями конструкции прибора, поскольку нагрев воздуха в нем происходит в плоскости, перпендикулярной потоку воздуха.

Самым же важным недостатком водяного калорифера является высокая вероятность обмерзания устройства при сильных морозах, поскольку принцип его работы основан на перетоке воды внутри радиатора. Именно поэтому обогреватели такой разновидности должны иметь защиту от возможного обледенения.

Материалы исполнения устройств

В случае с электрокалориферами вариантов использования материалов есть немного. Чаще всего встречается стальное или алюминиевое оребрение ТЭНов. Иногда также используется система обогрева, основным элементом которой является открытая вольфрамовая нить.

В случае с водяными обогревательными приборами используются такие варианты исполнения:

  • стальная труба с оребрением из такого же материала. Подобная конструкция является самой дешевой;
  • стальные трубы и оребрение из алюминия. Такая конструкция гарантирует более высокую теплоотдачу благодаря прекрасной теплопроводности алюминия в сравнении со сталью;
  • биметаллические теплообменники с медной трубой и алюминиевым оребрением. Подобный вариант гарантирует самый высокий уровень теплоотдачи.

Особенности выбора электрических калориферов

В том случае, если в системе вентиляции будет использовать калорифер электрического типа, выбор устройства следует осуществлять по его температуре на выходе и входе, а также по уровню расхода воздуха.

Большинство производителей в документации к своей продукции указывают электрическую мощность и расход потребляемого воздуха. В таком случае выбор прибора не вызывает никаких вопросов. Но при этом также важно обеспечит поддержку минимально допустимого объема потока воздуха. В случае игнорирования подобного требования нагревательный элемент электрического калорифера может быстро выйти из строя.

Таким образом, калорифер в вентиляционной системе обеспечивает помещению приток свежего и, что самое главное, теплого воздуха. При этом нагревательные элементы бывают двух основных типов – водяные и электрические.

В случае помещения небольшой площади более целесообразно устанавливать прибор электрического типа, поскольку они отличаются простой установкой и компактными размерами. Если же помещение большое, оптимальным выбором будет монтаж водяного калорифера, который отличается низкими энергозатратами в сравнении с аналогичными приборами, работающими от электричества.

Электрические калориферы для вентиляции. Виды калориферов.

Для каждого объекта очень важно иметь качественную систему вентиляции. Без свежего воздуха невозможно вести активный образ жизни и нормально работать. Для организации эффективной циркуляции воздуха устанавливают приточно-вытяжные установки, но еще лучше, когда система вентиляции имеет возможность нагревать воздушные потоки. Таким образом, одна система обеспечивает полный контроль над климатом в помещении. Нагрев воздуха в системе вентиляции происходит за счет калориферов.

Калорифер – нагревательный элемент вентиляционной установки. Этот агрегат изготавливают по канальному типу круглой или прямоугольной формы. Он бывает двух видов нагрева – на водяной основе и на электрической. 

 
Конструкция вентиляционной системы с электрическим или водяным нагревателем

 

Как правильно подобрать калорифер к вентиляционной установке

Электрический калорифер для вентиляциисчитается наиболее эффективным и производит нагрев приточного воздуха с помощью ТЭНа. Он имеет вид специальных труб, по которым протекает энергия тепла для нагрева воздуха. В Украине ТЭН могут производить из нержавеющей стали, или из черной стали, так же оребренным и не оребренным. ТЭН из нержавеющей стали прослужит намного дольше, а вот черная сталь быстро поддается коррозии. 

Цена на электрический калорифер из черной стали меньше чем на калорифер из нержавеющей, однако перед подбором нужно учитывать срок эксплуатации материала, и в случае с ТЭНом из черной стали – то он прослужит меньше, и его придется заменять быстрее. Исходя из этого, можно сказать что экономнее обойдется установка калорифера с ТЭНом из нержавеющей стали, который довольно прочный и прослужит дольше.

Что касается оребрения на ТЭНе, это выглядит так – вокруг трубок ТЭНа обматывается проволока из черной стали или же меди. Производители скажут вам, что оребрение добавит производительность системе в два раза, а нагрев от этого станет мощнее. Но тут есть минусы – зимой оребрение вызывает понижение расхода воздуха, а значит, теплообменник не успевает разогреться до нужной температуры, иэффективность оребренногоТЭНа падает на два уровня ниже, чем выдает неоребренный ТЭН. Вывод – для лучшей работы системы и продолжительного срока службы, советуем купить электрический калорифер на основе ТЭНа из неоребренной нержавеющей стали.

Так же, выбирая электрический калорифер, обязательно посмотрите  технические характеристики агрегата. Основной показатель это скорость воздуха, который проходит через калорифер. Обычно, схема выглядит так: чем выше скорость воздуха – тем выше уровень теплообмена – соответственно, выше мощность агрегата и эффективность обогрева помещения. Оптимальная скорость воздуха для калорифера это 4 м/сек и выше. Если Вы все же решили купить калорифер с показателями скорости ниже, чем 4м/сек, учтите, что его работа может оказаться не такой эффективной, а процент вероятности то ТЭН сгорит — вырастает. 


Цены на калориферы для систем вентиляции в разделе Нагреватели>>


Из чего состоит электрический калорифер

Электрические калориферы изготавливаются в корпусе из оцинкованной нержавеющей стали, или же из пищевой, что встречается реже.

Лучшим вариантом считается калорифер с теплоизолированным корпусом – он продлит сроки службы всех элементов оборудования, и упростит вам монтаж, так как не нужно будет дополнительно обустраивать теплоизоляцию. Зачастую, такой корпус имеет панель, которую легко открыть, что упрощает обслуживание калорифера.

Что касается внутренних элементов, то основная и самая важная часть – это ТЭН (нагревательный элемент). Мы уже определились, что лучше выбирать электрические калориферы с ТЭНом из нержавеющей стали трубчатой формы без оребрения проволокой. Прямоугольные электрокалориферы, кстати, имеют только такие ТЭНы, чего не скажешь о разнообразии круглых моделей.

Так же, конструкция электрических калориферов подразумевает в себе клеммное, или  силовое отделение. Оно предназначено для содержания всех элементов подключения прибора к электропитанию, а так же для элементов автоматики. Что касается автоматики для системы вентиляции, то ее можно приобрести дополнительно по своему усмотрению. Для того чтобы обеспечить защиту нагревателя, в калориферы встроены два термостата. Они предотвращают перегрев ТЭНа и работают по принципу on/off. При перегреве,если температура достигает 60-90°С, срабатывает режим «Авария». Так же,необходима установка  щита управления КИПиА, который размыкает подачу питания ТЭНов калорифера.


Виды калориферов

Учитывая форму вашего воздуховода, вы можете приобрести калорифер для круглых каналов, или же калорифер для прямоугольных каналов.


Популярные модели калориферов круглой формы:

 

 

                                                                     

                          

Популярные модели прямоугольных калориферов:

 


Если Вы хотите купить или просто получить консультацию по подбору калорифера для системы вентиляции — наши специалисты всегда рады Вам в этом помочь по телефону (044) 50 000 53 или закажите Обратный звонок и  мы сами с Вами свяжемся.

 

Другие интересные предложения в статьях:

Отопление частного дома

Нагреватели для систем вентиляции

Вентиляционная установка ClimaRad – новые решения в области дизайна вентиляции

Зачем нужен водяной калорифер для приточной вентиляции?

Все мы любим, когда в помещении можно дышать свежим воздухом.  Знаем, что для этого следует ответственно подходить к выбору и установке качественной вентиляции. Именно благодаря рабочим вентиляционным системам зловоние уходит, а вместо него мы дышим чистым воздухом. К тому же летом такой тип вентиляции дает немного прохлады. Но что же делать зимой, когда из этой самой вентиляции будет веять морозным воздухом и это будет отнюдь не в радость обитателям данного помещения?

Естественно его нужно каким-то образом прогревать. Сейчас это сделать не так уж и сложно, ведь есть различные устройства, работающие на электричестве. Но данный способ является весьма затратным. Но в этой статье будет идти речь о менее дорогом приспособлении для прогрева воздуха, о водяном калорифере для приточной вентиляции.

Водяной калорифер для вентиляции

Данное устройство прогревает воздушные массы посредством касания воздуха с поверхностью нагревающихся элементов устройства, а их количество может меняться в зависимости от характеристик прибора и вашего настроения.

На данный момент есть три основные группы калориферов, которые включают в себя различные модели  со своими личными характеристиками:

  • Электрические. Практичны, если их использовать в помещения не более 100—120 квадратных метров, иначе это будет не экономично. Установка осуществляется просто и быстро, ибо не требует сложных соединительных путей. Устройство попросту нужно подключить к электрической сети. Как и в других электрических устройствах, нагревательным элементом выступает ТЭН.
  • Паровые. Такой тип устройства чаще всего устанавливают на различных промышленных объектах, где находится нужное количество необходимых паропроводов для транспортировки пара. Обогрев здания осуществляется благодаря вентилированию и кондиционированию воздуха. И нагревательным элементом, как ни странно, служит пар.
  • Водяные. Наиболее встречаемая модель калорифера. Эффективность данной системы будет хороша только в случае, если обвязка выполнена по всем правилам. При ее установке нужно подвести только линию центрального водоснабжения, что не повлечет за собой трату большого количеств денег, чего нельзя сказать о паровых агрегатах.

Водяной калорифер сделан из труб, материалом которых является метал. Они покрыты серебренным напылением, что способствует увеличению производительности теплоотдачи.

Строение водного калорифера

Принцип работы приточной вентиляции с водяным калорифером заключается в циркуляции воздуха и его очищения в помещении, где установлено устройство. Но его особенностью является прогревание проходящего воздуха.

Обвязка калорифера: какая она?

Нет единственно верной схемы приточной вентиляции с водяным калорифером, ведь на то какую схему выбрать влияют такие факторы.

  1. величина свободного перепада давления;
  2. источник теплоснабжения и его возможности;
  3. установленное  оборудование.

Наиболее распространенными являются двухходовая и трехходовая.

Если  работа схемы основана на перепадах и подключена без промежуточных обменников, то следует делать монтаж двухходового линейного регулирующего клапана. Его основная функция заключается в ограничении потока воды посредством  калорифера. А вот схема с трехходовыми клапанами способна работать в разных режимах регулировки, это зависит от места, в котором находиться перемычка клапан. Их работа так же протекает в режиме деления потоков воды, либо они выступают в роли смесителей.

Схема узла обвязки калорифера с трехходовым клапаном

Теперь непосредственно к узлам обвязки. Узлы обвязки являются незаменимой и одной из самых важных компонентов калориферов. Их задача — обеспечить беспрерывное поддержание температуры, качественную работу теплообменника, а так же предупреждение замерзания частей устройства.

Основными компонентами являются:

  • датчики, манометры;
  • циркуляционный насос;
  • фильтр для очистки;
  • клапаны;
  • байпас.

Есть два вида обвязки. Стандартный с жесткой подводкой более распространен и в эксплуатации встречается чаще, к примеру, в водных системах, которые состоят из стальных труб. Вызвано это тем, что установка такого устройства достаточно проста, а так же менее затратная. При монтаже данного типа прибора необходимо понимать точное нахождение устройства и особенности его использования.

Когда применяют гибкие узлы, вместо труб из металла берут — гофрированные. Данный тип узла рассчитан на установку в системах сложного типа, когда существует нехватка площади, либо в ситуациях, когда есть осложнения с доступом к механизмам. Этот вид  функциональней, но немного дороже. К тому же для точного контроля к нему устанавливают дополнительные термоманометры.

Так же многие знают, что есть щит управления приточной вентиляцией с водяным калорифером, но мало кто понимает что это и зачем.

Щит управления приточной вентиляции

Так вот, щит управления либо же пульт управления — это прибор, с помощью которого мы можем держать под контролем и координировать все устройства, которые включены в вентиляционную систему.

Существует три основные задачи данного прибора:

  1. контроль состояния и производительность оборудования, которое включено в систему;
  2. обеспечение нужных режимов работы;
  3. оповещение, если произошел сбой или загрязнился воздухопровод.

Расчет калорифера

Расчет водяного калорифера приточной вентиляции можно делать как собственными силами, с помощью различных методик,  в которых нужно использовать множество формул и пояснений. Можно вызвать специалиста и не заморачиваться по поводу того каким образом он будет производить все подсчеты. Так же есть  вариант онлайн калькулятора.

Вот пару сайтов, где это можно сделать быстро и качественно: helpeng.ru  и ventilationpro.ru

Как же выбрать?

Наиболее правильным подходом в решении данной проблемы это обратиться к консультантам, ведь они на то и придуманы, чтобы помогать при выборе того или иного устройства. Их не стоит бояться, они не кусаются, а большинство очень даже приятные люди, которые с пониманием относятся к своей работе и к обязанностям.

Прошерстив различные форумы по этому вопросу мы смогли выделить два ключевых фактора:

  1. Возможность работы с той температурой воды, которая есть дома.
  2. Очень важно так же знать площадь помещения и среднюю температуру подаваемого потока воздуха.

Дополнительно о расчете в этом видео. 

Калорифер для приточной вентиляции: принцип работы и подключение

Для обеспечения оптимального притока воздуха с улицы в жилое помещение, используется приточная вентиляция. Когда на улице тепло, особых трудностей с этим не возникает, требуется лишь подобрать достаточно мощную вентиляцию, которую будет хватать для конкретного помещения. В холодное время года всё сложнее, так как приток холодного воздуха может существенно охладить помещение. Для этого используются калориферы, что устанавливаются на приточную вентиляцию. В этом случае будет полезно знать, что такое калорифер в вентиляции и что он даёт.

Калорифер для приточной вентиляции

Когда применяется калорифер для приточной вентиляции, то можно обеспечить приток свежего воздуха с улицы в помещение, который будет нагрет до комфортной температуры поддержания микроклимата. Калорифер предназначен для прогревания приходящего воздуха, посредством прохождения последнего через нагревающие элементы.

Особенности выбора калориферов и их классификация

Калорифер устанавливается в вентиляционных системах под видом отдельных элементов, или в комплексе с моноблочной конструкцией. На его выбор влияют такие факторы, как:

  • Размер помещения;
  • Мощность вентиляции;
  • Климатические условия.

Исходя из этих данных, уже можно подбирать калорифер вентиляционный под конкретные требования. Калориферы можно разделить на 2 типа:

Электрический калорифер для приточной вентиляции

Электрические калориферы – это наиболее простой вариант. Для него не требуется сложная подводка коммуникации, так как для работы требуется лишь источник питания. Для обеспечения более эффективного обмена тепла встроены ТЭНы, что способствуют преобразованию электроэнергии в тепло. Принцип работы таков, что поступающий с улицы воздух проходит через ТЭН, в котором нагревается и только после этого проходит в помещение. Вариант эффективен на площадях не более 150 м2, так как использование его на более больших пространствах нецелесообразно. Существенным недостатком выступает высокий расход электроэнергии;

Водяной калорифер для приточной вентиляции

Водяные калориферы – это практичный и надёжный вариант, который больше подходит для помещений свыше 150 м2. Они не требуют какого-либо обслуживания и считаются дешевыми в использовании. Их эффективность взаимосвязана с наличием автоматики в управлении. С их помощью можно легко выровнять температуру воздуха, так как они оснащены термостатом. Принцип работы основан на том, что воздух поступает через специальную воздухозаборную сетку и проходит на фильтры, где очищается от пыли и вредных веществ. Далее он проходит в калорифер, где нагревается от тепла, которое исходит от магистральной воды.

Подключение электрического калорифера

В электрических видах главным параметром выступает мощность в кВт, соответственно он требует к себе осторожности и соблюдения техники безопасности при его подключении. В данном варианте используется блок управления, который способен контролировать температуру в помещении. Когда температура внутри помещения оказывается ниже заданной, то калорифер автоматически включается. С помощью термореле можно удерживать заданную температуру и быть застрахованным от нагрева устройства свыше 140 градусов.

Схема работы заключается в том, что когда нажата кнопка «Пуск» запускается двигатель и вентиляция калорифера. На двигатель подключено тепловое реле на определённом токе. В случае проблем с вентиляцией срабатывает тепловое реле, после чего происходит размыкание цепи питания.

При включенном вентиляторе калорифера можно включить ТЭНы за счёт замыкания блокировочных контактов. Включение ТЭНов происходит кнопкой «Пуск». В это время происходит включение промежуточного пускателя, что активирует мощный пускатель, который включает посредством своих контактов ТЭНы. Для максимально быстрого нагрева все нагреватели включаются сразу же.

  • Для защиты от пожара в схему включены такие элементы, как:
  • Тепловое реле, что защищает двигатель при остановке;
  • Защита от включения без вентилятора;
  • Термореле, что предохраняет корпус калорифера от перегрева. Во время активации термореле вентилятор будет продолжать работу и охладит его.

Схема может быть дополнена индикатором включения пускателя и аварийным индикатором. Помимо этого целесообразна установка автоматического выключателя на цепь, которая питает ТЭНы, а также автомат мощнее на вход устройства. Не следует устанавливать автоматы на вентиляторы.

Для управления калорифером устанавливается шкаф управления, что должен быть расположен недалеко от калорифера. Чем меньше расстояние, тем можно использовать провод меньшего сечения.

Подключение водяного калорифера

Приток воздуха с использованием водяного калорифера может выполняться в двух исполнениях, правом и левом. Это зависит от того, где находится расположение смесительного узла и блока с автоматикой. Когда приточную установку рассматривают со стороны воздушного клапана, то:

  • Левое выполнение подразумевает то, что автоматический блок и смесительный узел располагаются с левой стороны;
  • Правое выполнение подразумевает то, что автоматический блок и смесительный узел располагаются с правой стороны.

В каждом из исполнений соединительные трубки располагаются на стороне забора воздуха, где произведена установка воздушного клапана. В зависимости от исполнения есть следующие особенности:

  • В правых выполнениях трубка для подачи располагается внизу, а трубка для «обратки» – вверху;
  • В левых выполнениях всё не так. Подача находится вверху, а отток – внизу.

Потому что в приточных установках с использованием водяных калориферов требуется наличие смесительного узла, последний должен содержать 2 или 3 ходовой вентиль. Выбирать вентиль нужно исходя из параметров теплоснабжающей системы. Для отдельных контуров автономных систем теплоснабжения, в качестве которых может выступать газовый котёл, нужно наличие трёхходового вентиля. Если приточная установка подключена к системе центрального теплоснабжения, тогда нужно наличие двухходового вентиля. Если подытожить, то выбор вентиля зависит от:

  • Типа системы;
  • Температуры подачи и «обратки» воды;
  • Перепада давления промеж труб подачи и «обратки», если система центральная;
  • Имеется ли наличие отдельного насоса на контуре притока вентиляции, если система автономная.

При монтаже схемы с водяным калорифером запрещается монтаж в той позиции, если труба ввода и вывода располагаются вертикально. Также монтаж не должен осуществляться в случае, если забор воздуха располагается вверху. Это связано с тем, что снег может попадать в приток установки и таять там, что грозит проникновением воды в автоматику. Чтобы работы регуляторов температуры была правильная, необходимо расположить температурный датчик изнутри выдува воздуховода, чтобы участок был ровным по длине не меньше 50 см от установки притока.

Также следует знать, что:

  • Запрещено осуществлять монтаж приточной установки 100 – 3500 м3/ч, если ось двигателя вертикальная;
  • Запрещается установка приточных установок там, где на них может попадать влага или химически активные вещества;
  • Запрещается использование приточной установки там, где есть прямое воздействие атмосферных осадков на установку;
  • Запрещается блокировать доступ для обслуживания установок;
  • Чтобы смонтировать приточную установку в отапливаемом помещении и избежать конденсата на подающем воздуховоде, требуется применять исключительно теплоизолированный воздуховод.

В установке калориферов нет ничего особо сложного, нужно лишь придерживаться правил и соблюдать технику безопасности. Иногда лучше доверить это дело профессионалам и быть уверенным в том, что все работы выполнены с учётом всех требований.

Навигация по записям

Калориферы для приточной вентиляции: какие бывают ?

Содержание:

  • Виды калориферов
  • Особенности устройства калориферов

Обеспечить доступ воздуха в жильё в тёплое время года довольно просто, если приточная вентиляция снабжена достаточной мощности вентилятором. Но зимой, когда на улице температура доходит до -20, необходимо радикально изменить взгляд на вентиляционную систему. Первым делом рекомендуется обратить внимание на калориферы для приточной вентиляции. Это устройство возьмёт на себя заботу об организации доступа тёплого воздуха в жильё.

Виды калориферов

Выбор данных устройств основывается на нескольких параметрах, в числе которых мощность, размеры помещения, производительность, климатические условия местности. Учитывая все характеристики, рекомендуется приобрести один из существующих видов:

  • электрические калориферы для приточной вентиляции;
  • водяные устройства.

Конструкция электрических приборов данного целевого назначения основана на преобразовании электрической энергии в тепловую. Это обеспечивается посредством нагрева проволочной спирали или металлической нити, в результате чего тепло передается проходящему через такую установку воздушному потоку. Достоинством подобных устройств является их доступность и простота монтажа. Однако явным недостатком можно назвать высокий уровень энергопотребления. Даже с учетом того, что по этой причине электрокалориферы для приточной вентиляции чаще всего используются в небольших помещениях, расход энергии будет ощутимым.

Из-за этой особенности рекомендуется такой нагреватель использовать в совокупности с рекуператором. Это на четверть позволит снизить расход электричества ввиду особенности конструкции такого оборудования. Рекуператор пропускает через себя два потока воздуха: приточный и вытяжной, при этом они не смешиваются, позволяя приточному воздуху оставаться чистым и свежим. Но ввиду особенного устройства между ними происходит теплообмен, что позволяет дополнительно прогревать приточный воздух без расхода электроэнергии.

Самостоятельная работа рекуператора малоэффективна в холодное время года. Однако когда одновременно используется такой агрегат и калорифер для вентиляции, то подобная система близка к максимально эффективной. Как правило, данный тип нагревателя предусматривает наличие в конструкции узла, обеспечивающего защиту от перегрева.

Учитывая, что калориферы в холодное время года нередко работают практически без остановки, риск чрезмерного нагрева очень велик. Поэтому при выборе типа устройства рекомендуется обращать внимание на наличие защитных функций.

Водяной калорифер для вентиляции с финансовой стороны является более приемлемым вариантом. К тому же его производительность достаточна и при использовании в крупных помещениях. Это обеспечивается особенностями конструкции, так как нагрев воздуха происходит в перпендикулярной приточному воздушному потоку плоскости. Такая схема работы нагревателя довольно эффективна. Но приточная вентиляция с водяным калорифером имеет и свои недостатки – при низких температурах есть риск обмерзания, так как работа устройства базируется на перетоке воды. Поэтому в подобных конструкциях предусмотрена система защиты от обледенения.

Особенности устройства калориферов

Учитывая тип сечения воздуховодов: круглое или квадратное, можно подобрать тип калорифера. Наилучшим вариантом является установка данного устройства перед вентилятором. Такая схема работы обеспечит максимальную эффективность: воздух, проходя через систему фильтрации, расположенную на входе, достигает калорифера, где, прогреваясь, потоком необходимой мощности вбрасывается в помещение.

Важность наличия калорифера оговаривается санитарными нормами для помещений, с учётом которых температура воздуха на входе вентиляционной системы не должна быть ниже 15 градусов. Поэтому рекомендуется организовать вентиляционную систему таким образом, чтобы одним из узлов в ней был нагреватель.

Выбор типа конструкции подразумевает расчёт калорифера вентиляции. Определение мощности данного устройства не требует сложных манипуляций и вычислений. Для этого необходимо располагать данными температуры воздуха на входе и выходе калорифера (учитывается значение воздуха на улице и на выходе вентиляционной системы). Если воздух снаружи помещения удерживается на минимальной отметке кратковременно, то можно пренебречь пиковым значением температуры, тогда мощность устройства можно брать в расчёт несколько меньшего значения.

Расчёт мощности калорифера вентиляции также подразумевает получение дополнительных данных по воздухообмену в помещении. Данный параметр определяет производительность вентиляционной системы и измеряется в м3/час. Эти два параметра умножаются на объёмную теплоёмкость воздуха, затем полученное значение делится на 1 000. После того, как была определена мощность калорифера, необходимо, чтобы данное значение соответствовало напряжению сети. Так, для корректной работы устройства мощностью 4 и выше кВт необходимо, чтобы подключение было трёхфазным, что подразумевает напряжение 380 В.

Из-за несоответствия данных параметров нагреватель очень быстро перестанет функционировать и вскоре понадобится ремонт калорифера вентиляции. Также одной в числе прочих неисправностей числится длительная работа устройства без регулярного технического обслуживания или же нарушение элементарных правил эксплуатации подобной техники. В любом случае поломка калорифера вовсе не означает, что вентиляционная система теперь никогда не будет полноценно функционировать. Существует немало сервисов, которые за короткое время починят неполадки любой сложности и характера. Разумеется, работу мастера придётся оплатить.

Самостоятельно устранять поломку не рекомендуется тем, кто не имеет узкоспециального образования, а также опыта работы с электрооборудованием. В противном случае можно ещё больше навредить и дополнительно к тому подвергнуть свою жизнь опасности. Приточные и возвратные вентиляционные отверстия

: определение, температура и фильтры!

За стенами вашего дома скрывается обширная сеть воздуховодов. Они подключаются практически к каждой комнате вашего дома и обеспечивают проход, по которому воздух может попадать в вашу систему отопления, вентиляции и кондиционирования воздуха и выходить из нее. В этой статье мы обсудим различия между приточными и обратными отверстиями и дадим советы по их обслуживанию.

В чем разница между приточным и возвратным отверстиями?

Если в вашем доме есть центральное отопление и охлаждение, вы заметите два типа вентиляционных отверстий на стенах.

  • Приточные отверстия : Это отверстия, через которые воздух поступает в каждую комнату. Кондиционированный воздух выходит из вашего кондиционера или печи, проходит через воздуховоды и выходит через приточные вентиляционные отверстия. Эти вентиляционные отверстия легко определить, поскольку они единственные, из которых вы можете почувствовать выход кондиционированного воздуха.
  • Возвратные отверстия : Что такое возвратное отверстие? Эти вентиляционные отверстия всасывают воздух из каждой комнаты и отправляют его обратно в систему кондиционирования или отопления.Обратные отверстия, как правило, больше, чем приточные, и вы не почувствуете выхода воздуха из них. Когда система HVAC доставляет воздух в комнату, она увеличивает давление воздуха в этой комнате. Существуют обратные вентиляционные отверстия для удаления лишнего воздуха.

Сколько мне нужно возвратных вентиляционных отверстий?

Дома, построенные до появления систем кондиционирования, часто имеют модернизированные системы HVAC. Самые ранние системы отопления, вентиляции и кондиционирования воздуха имели большой одиночный возвратный клапан, расположенный где-то посередине дома, но это не самая эффективная система.Вместо этого в каждой комнате должно быть по крайней мере одно обратное вентиляционное отверстие, в идеале — два или три.

Если в вашем доме есть только одно обратное отверстие, это не проблема — убедитесь, что двери в каждой комнате открыты, чтобы воздух мог циркулировать должным образом. Убедитесь, что мебель, драпировки, коврики и т. Д. Не блокируют обратные вентиляционные отверстия. Если вам когда-нибудь понадобится заменить части воздуховодов в вашем доме, это может быть хорошей возможностью установить несколько дополнительных обратных вентиляционных отверстий.

Какой должна быть разница температур между приточным и возвратным отверстиями?

Хотя идеальной температуры, на которую вы должны установить свою систему HVAC, не существует, существует идеальная разница температур между приточным и возвратным воздухом, которая должна составлять от 16 до 22 градусов по Фаренгейту.Эта разница температур составляет испаритель Delta T.

Когда разница температур находится в диапазоне от 16 до 22 градусов, это означает, что ваша система отопления или охлаждения работает нормально. Однако, если он находится за пределами этого диапазона, это означает, что в вашей системе есть несколько проблем.

В случае кондиционирования воздуха испаритель Delta T сообщит вам о производительности змеевика испарителя вашего кондиционера, который является компонентом, отвечающим за охлаждение теплого воздуха в вашем доме.Вот как вы определяете дельту Т для вашей системы.

  1. Получите датчик температуры : Это устройство обеспечит быстрое и точное измерение температуры окружающего воздуха.
  2. Запишите температуру обратного клапана : Возьмите датчик температуры и запишите температуру обратного клапана.
  3. Запишите температуру приточного вентиляционного отверстия : перейдите к трем приточным вентиляционным отверстиям и измерьте их температуру.
  4. Определите среднюю температуру приточных отверстий : сложите три зарегистрированные температуры вместе и разделите на три, чтобы получить среднюю температуру приточных отверстий.
  5. Определить Delta T : Чтобы вычислить Delta T, вычтите температуру возвратного воздуха из средней температуры приточных вентиляционных отверстий.

Если разность температур слишком высока

Если рассчитанная вами дельта Т не находится в диапазоне от 16 до 22 градусов, что-то в вашей системе переменного тока работает неправильно. Если ваша дельта Т выше 22 градусов, есть вероятность, что воздушный поток через вашу катушку слишком слаб, что может быть следствием:

  • Грязный воздушный фильтр или испаритель, который необходимо очистить
  • Воздуховод недостаточного размера
  • Вентилятор настроен на неправильную скорость

Чтобы исправить систему переменного тока с высоким значением Delta T, попробуйте одно из двух следующих решений .

  • Замените воздушный фильтр : Это часто может уменьшить разницу температур.
  • Нанять специалиста: Вы можете попросить профессионала увеличить скорость двигателя вентилятора, очистить змеевик и найти другие потенциальные проблемы с вашей системой.

Если разность температур слишком низкая

Если ваша дельта меньше 16 градусов по Фаренгейту, разница между вашей входящей и исходящей температурой недостаточно высока.Эта проблема может возникнуть по следующим причинам.

  • Недостаточный уровень хладагента
  • Негерметичные обратные клапаны
  • Негерметичные воздуховоды возвратного воздуха
  • Ослабление клапанов компрессора

Когда дело доходит до вышеуказанных проблем, лучше не пытаться устранить их самостоятельно. Вместо этого наймите специалиста, который проверит вашу систему на предмет утечки хладагента и осмотр ваших воздуховодов и клапанов.

Стоит ли вставлять фильтр в обратное отверстие?

Ваша система HVAC, как и любое другое оборудование, лучше всего работает, когда в ней нет пыли и другого мусора.Мусор может накапливаться внутри системы отопления, вентиляции и кондиционирования воздуха, например, в змеевиках испарителя вашего блока переменного тока.

Несмотря на то, что плановое техническое обслуживание является хорошей идеей, установка фильтра возвратной вентиляции может помочь предотвратить попадание мусора в ваши возвратные вентиляционные отверстия и обеспечить чистоту воздуха, поступающего в вашу систему отопления, вентиляции и кондиционирования воздуха.

Ваша система кондиционирования воздуха также оснащена фильтром, который очищает воздух перед тем, как он попадет в ваше оборудование. Таким образом, фильтр на вашем обратном воздуховоде служит больше как дополнительная мера предосторожности, которая помогает еще больше очистить воздух и продлить срок службы вашей системы отопления, вентиляции и кондиционирования воздуха.

Самые надежные специалисты по HVAC на юго-востоке Пенсильвании

Наша миссия Summers & Zim’s — обеспечить комфорт домовладельцев в Юго-Восточной Пенсильвании с помощью разнообразных услуг по водопроводу, отоплению и охлаждению, включая следующие.

Если вы являетесь жителем Честера или округа Ланкастер и нуждаетесь в каких-либо из вышеперечисленных услуг, не стесняйтесь обращаться к нам через нашу страницу контактов.

Температура приточного воздуха — обзор

Типичная система переменного расхода воздуха

Системы, представленные в предыдущих примерах, подают в помещение постоянный объем воздуха, при этом температура приточного воздуха иногда меняется для удовлетворения нагрузок по обогреву и охлаждению помещения.Системы с переменным расходом воздуха (VAV) делают наоборот. Они поддерживают почти постоянную температуру подачи, регулируя объем воздуха, подаваемого в зону.

Рисунок 9-5 показывает базовую систему VAV AHU, которая включает:

Рисунок 9-5. Типовые системы VAV AHU

Регулирование температуры приточного воздуха. Во время нормальной работы температура приточного воздуха должна поддерживаться на заданном уровне путем переключения клапана охлажденной воды, заслонок экономайзера и клапана горячей воды.Уставка температуры приточного воздуха должна быть сброшена в зависимости от температуры наружного воздуха следующим образом:

Температура наружного воздуха Температура приточного воздуха
65 ° F 55 ° F
55 ° F 60 ° F

Контроль статического давления. При подаче команды на включение вентилятора статическое давление в воздуховоде должно поддерживаться на заданном уровне путем регулирования входных направляющих лопаток с использованием логики PI.(В настоящее время преобразователи частоты заменяют впускные лопатки в большинстве случаев.) Впускные лопатки следует наклонять очень медленно, чтобы не создавать чрезмерной турбулентности или шума.

Устройство верхнего статического предела давления, PSHL, останавливает вентилятор, чтобы избежать повреждения воздуховодов из-за неисправной или закрытой заслонки после вентилятора. Иногда, если лопатки не закрываются при выключении, а вентилятор запускается при полной нагрузке, это может произойти преждевременно. Кроме того, при изменении соотношений давления в здании, возможно, придется отрегулировать эти заданные значения верхнего предела.

PSHL обычно сбрасывается вручную и может инициировать аварийный отчет. Позаботьтесь о том, чтобы установить его, промаркировать и тщательно пометить его местоположение, так как когда-нибудь его нужно будет найти для сброса.

Система на рис. 9-5 использует входные лопатки для регулирования статического давления, но концепция остается неизменной, независимо от того, какой тип устройства управления используется. Статическое давление в воздуховоде измеряется в главном приточном воздуховоде рядом с крайним концом системы VAV-боксов. Чем дальше в системе расположен датчик, тем ниже может быть уставка, что снижает энергию вентилятора.

Уставка статического давления обычно подтверждается специалистами по контролю и балансировке воздуха, когда все камеры VAV открыты в соответствии с их проектными максимальными расходами воздуха. Для систем с большим коэффициентом разнообразия (тех, для которых сумма расчетных воздушных потоков VAV-бокса значительно превышает расчетные воздушные потоки вентилятора) может потребоваться уменьшить или перекрыть воздушный поток в зоны, ближайшие к приточному вентилятору, до тех пор, пока сумма расчетных потоков воздуха не будет достигнута. фактический расход воздуха в зоне приблизительно соответствует расчетному расходу приточного воздуха вентилятора. Это обеспечит более реалистичное приближение реальных условий эксплуатации.

В некоторых системах VAV используется обратный вентилятор в дополнение к традиционному приточному вентилятору, чтобы создать избыточное давление в здании и справиться с большими перепадами давления в обратных каналах. Органы управления должны работать вместе в этих системах приточных / возвратных вентиляторов, чтобы поддерживать их независимые уставки давления и достигать целей повышения давления.

ПИ-регулирование (пропорциональное плюс интегральное) предназначено для регулирования статического давления. В системах, работающих в широком диапазоне расхода воздуха, пропорциональное усиление должно быть достаточно низким (диапазон дросселирования достаточно высоким), чтобы обеспечить стабильное управление.Это может привести к смещению (спаду), как описано в главе 1, при использовании только пропорциональных элементов управления. Добавление интегральной логики может устранить это смещение.

Экономайзер. Управление экономайзером должно быть отключено, когда температура наружного воздуха выше заданного значения термостата верхнего предела наружного воздуха (67 ° F с разницей в 3 ° F). Сигнал, подаваемый на заслонку наружного воздуха, должен быть больше сигнала от контроллера приточного воздуха и сигнала, соответствующего минимальному притоку наружного воздуха, необходимому для вентиляции (устанавливается и проверяется подрядчиком по балансировке и / или вводу в эксплуатацию на месте).

Контроллер последовательно модулирует регулирующий клапан охлаждения, заслонки экономайзера и регулирующий клапан нагрева, чтобы поддерживать температуру приточного воздуха на фиксированной уставке. Экономайзером можно управлять с помощью отдельного контроллера смешанного воздуха, но использование одного контроллера снижает первоначальные затраты и устраняет сложность, связанную с необходимостью координировать действия двух контроллеров, чтобы они не «боролись» друг с другом.

Последовательность компонентов достигается путем выбора последовательных диапазонов управления, схематически показанных на Рис. 9-6 .Функция экономайзера очень хороша для обеспечения экономии энергии при использовании наружных условий, которые полезны для удовлетворения потребностей в охлаждении и обогреве внутри здания. При выходном сигнале контроллера, соответствующем полному охлаждению, клапан охлажденной воды полностью открыт. Заслонка наружного воздуха экономайзера также может быть полностью открыта в зависимости от внешних условий. Система управления проверяет условия температуры и влажности наружного воздуха и использует соответствующее количество наружного воздуха для кондиционирования помещения.(На рисунке предполагается, что верхний предел экономайзера отключит экономайзер до того, как будет достигнута полная нагрузка: обычный случай.) По мере уменьшения нагрузки охлаждения или достижения заданного значения клапан охлажденной воды начинает работать. близко. Когда он полностью закрывается после того, как нагрузка падает или заданное значение полностью удовлетворяется, сигнал к заслонкам экономайзера последовательно падает, уменьшая подачу холодного наружного воздуха, и, следовательно, пространство (или температура приточного воздуха) становится удовлетворительным.По мере дальнейшего падения нагрузки наружный воздух уменьшается до минимума, после чего открывается клапан отопления.

Рисунок 9-6. Последовательность использования охлажденной воды, экономайзера и горячей воды

Как объяснено в главе 1, последовательность выходов требует как согласования диапазонов управления, так и координации нормального положения и действия управления. Обычно желательно, чтобы заслонка наружного воздуха была нормально закрытой. Таким образом, сигнал контроллера может быть связан с вентилятором, чтобы заслонка автоматически закрывалась при выключении вентилятора.Если наружная заслонка нормально закрыта, тогда контроллер должен работать напрямую, потому что при повышении температуры приточного воздуха выходной сигнал контроллера также должен возрасти, чтобы ввести больше наружного воздуха. Клапан охлажденной воды также должен быть нормально закрыт, потому что увеличение сигнала контроллера, которое соответствует увеличению потребности в охлаждении, должно вызывать открытие клапана. В этом случае кран горячей воды должен быть нормально открытым.

Для систем VAV, таких как эта, повторный нагрев приточного воздуха будет происходить в боксах VAV, когда зоны требуют тепла.Чтобы уменьшить эту неэффективность, уставку температуры приточного воздуха можно сбросить. Для управления сбросом использовались различные стратегии. Использование температуры наружного воздуха для сброса температуры приточного воздуха является одной из тех стратегий, которые используются в этом примере.

Это показано графически на Рис. 9-7 . При температуре наружного воздуха ниже 55 ° F температура подаваемого воздуха постоянна и составляет 60 ° F. При температуре выше 65 ° F заданное значение фиксируется на уровне 55 ° F. Между этими пределами температуры наружного воздуха уставка температуры приточного воздуха изменяется линейно от 55 ° F до 60 ° F.

Рисунок 9-7. Сброс графика

Сброс температуры наружного воздуха обычно является надежной стратегией, если внутренние зоны, которые могут все еще требовать охлаждения даже в холодную погоду, были разработаны для более высоких температур приточного воздуха, которые могут возникнуть из-за графика сброса ( в данном случае 60 ° F). Следует проявлять осторожность при выборе стратегии сброса, поскольку иногда этот процесс сброса может вызвать больше проблем, чем решить.

Оперативный персонал здания и проектировщик систем управления должны знать, что на относительную влажность влияют решения о температуре (Harriman et al 2001).Рассмотрим жаркий и влажный климат, где почти круглый год необходимо постоянное осушение; когда происходит сброс, в этих климатических условиях важно также посмотреть на нагрузку в здании, внутреннюю и внешнюю влажность, а также внутреннюю и внешнюю температуры, прежде чем произойдет сброс. Качество воздуха в помещении может быть снижено, если надлежащая температура и влажность в помещении не поддерживаются постоянно.

Приведенная выше спецификация и обсуждение написаны описательным языком.Многие организации сейчас используют простой язык — короткие простые предложения и маркированные элементы, как в следующем примере, измененном с CtrlSpecBuilder.com. Эта система похожа на систему с переменным объемом, описанную выше, с добавлением управления разгрузочным вентилятором путем увеличения давления по сравнению с внешним давлением, и она имеет больше аварийных сигналов, чем мы рассматривали ранее.

Переменный объем воздуха — AHU — Последовательность операций
Условия работы — По расписанию

Агрегат должен работать в соответствии с расписанием, регулируемым оператором.

Защита от замерзания

Устройство должно выключиться и сгенерировать аварийный сигнал при получении статуса freezestat. На панели оператора требуется ручной сброс.

Отключение при высоком статическом давлении

Устройство должно отключиться и генерировать аварийный сигнал при получении сигнала отключения при высоком статическом давлении. На панели оператора требуется ручной сброс.

Обнаружение дыма приточным воздухом

Устройство должно отключиться и сгенерировать сигнал тревоги при получении состояния детектора дыма приточного воздуха.

Приточный вентилятор

Приточный вентилятор должен работать каждый раз, когда блоку поступает команда на работу, если только он не отключен по мерам безопасности. Для предотвращения коротких циклов приточный вентилятор должен иметь определяемое пользователем минимальное время работы (1–10 мин).

Аварийные сигналы должны подаваться следующим образом:

Отказ приточного вентилятора: подана команда на включение, но состояние выключено.

Приточный вентилятор в руке: команда выключена, но состояние включено.

Контроль статического давления в воздуховоде

Контроллер должен измерять статическое давление в воздуховоде и регулировать скорость ЧРП приточного вентилятора для поддержания заданного значения статического давления в воздуховоде.Скорость не должна опускаться ниже 30% (регулируется).

Начальная уставка статического давления в воздуховоде должна составлять 1,5 дюйма по высоте 2 O (регулируется).

Должны быть предусмотрены следующие аварийные сигналы:

Высокое статическое давление подаваемого воздуха: если статическое давление подаваемого воздуха выше 2,0 дюймов H 2 O (регулируется).

Низкое статическое давление приточного воздуха: если статическое давление приточного воздуха меньше 1.0 дюймов H 2 O (регулируется).

Неисправность ЧРП приточного вентилятора.

Возвратный вентилятор

Возвратный вентилятор должен работать всякий раз, когда работает приточный вентилятор.

Аварийные сигналы должны подаваться следующим образом:

Отказ возвратного вентилятора: дан команда на включение, но состояние выключено.

Возврат вентилятора в руке: команда выключена, но состояние включено.

Неисправность ЧРП возвратного вентилятора.

Контроль статического давления в здании

Контроллер должен измерять статическое давление в здании и регулировать скорость ЧРП возвратного вентилятора для поддержания заданного значения статического давления в здании на 0,05 дюйма H 2 O (регулируется) выше внешнего давления. Скорость ЧРП обратного вентилятора не должна опускаться ниже 30% (регулируется).

Аварийные сигналы должны подаваться следующим образом:

Высокое статическое давление в здании: если статическое давление воздуха в здании равно 0.1 в H 2 O (в H 2 O — это дюймы водяного столба, точно так же, как «в водяном столбе», которое мы использовали ранее в тексте) (настраивается).

Низкое статическое давление в здании: если статическое давление воздуха в здании составляет -0,05 дюйма H 2 O (регулируется).

Уставка температуры приточного воздуха — оптимизированная

Начальная уставка температуры приточного воздуха должна быть 55 ° F (регулируемая), когда наружная температура выше 65 ° F.

По мере того, как наружная температура падает с 65 ° F до 55 ° F, уставка должна постепенно сбрасываться до 60 ° F (регулируется) и оставаться на уровне 60 ° F для температур ниже 55 ° F.

Клапан охлаждающего змеевика

Контроллер должен измерять температуру приточного воздуха и регулировать клапан охлаждающего змеевика для поддержания заданного значения охлаждения.

Охлаждение должно включаться всякий раз, когда:

Температура наружного воздуха выше 60 ° F (регулируется).

И экономайзер (если есть) отключен или полностью открыт.

И состояние приточного вентилятора включено.

И нагрев (если есть) не активен.

Клапан охлаждающего змеевика должен открываться на 50% (регулируется) всякий раз, когда включен морозильник.

Аварийные сигналы должны подаваться следующим образом:

Высокая температура приточного воздуха: если температура приточного воздуха выше 58 ° F (регулируется).

Клапан нагревательного змеевика

Контроллер должен измерять температуру приточного воздуха и регулировать клапан нагревательного змеевика для поддержания заданного значения нагрева.

Обогрев должен включаться всякий раз, когда:

Температура наружного воздуха ниже 65 ° F (регулируется).

И состояние приточного вентилятора включено.

И охлаждение неактивно.

Клапан нагревательного змеевика должен открываться каждый раз:

Температура приточного воздуха падает с 40 ° F до 35 ° F (регулируется).

ИЛИ включен морозильник.

Аварийные сигналы должны подаваться следующим образом:

Низкая температура приточного воздуха: если температура приточного воздуха ниже 50 ° F (регулируется).

Насос охлаждающего змеевика

Циркуляционный насос должен работать всякий раз, когда:

Клапан охлаждающего змеевика включен.

ИЛИ включен морозильник.

Аварийные сигналы должны подаваться следующим образом:

Отказ насоса охлаждающего змеевика: команда включена, но состояние выключено.

Ручной насос охлаждающего змеевика: команда выключена, но состояние включено.

Экономайзер

Контроллер должен измерять температуру смешанного воздуха и последовательно регулировать заслонки экономайзера, чтобы поддерживать заданное значение на 2 ° F (регулируемое) ниже заданного значения температуры приточного воздуха. Заслонки наружного воздуха должны сохранять минимальное регулируемое положение открывания на 20% (регулируемое), когда они заняты.

Экономайзер должен включаться всякий раз, когда:

Температура наружного воздуха ниже 65 ° F (регулируется).

И энтальпия наружного воздуха меньше 22 БТЕ / фунт (регулируемая)

И температура наружного воздуха ниже температуры возвратного воздуха.

И энтальпия наружного воздуха меньше энтальпии возвратного воздуха.

И состояние приточного вентилятора включено.

Экономайзер должен закрываться всякий раз, когда:

Температура смешанного воздуха падает с 40 ° F до 35 ° F (регулируется)

ИЛИ включается морозильная камера.

ИЛИ при потере состояния приточного вентилятора.

Заслонки наружного и вытяжного воздуха должны закрываться, а заслонка возвратного воздуха должна открываться, когда агрегат выключен.

Минимальная вентиляция наружным воздухом

В режиме занятости контроллер должен измерять поток наружного воздуха и регулировать заслонки наружного воздуха для поддержания надлежащей минимальной вентиляции наружным воздухом, игнорируя обычное управление заслонкой. При снижении потока наружного воздуха контроллер должен регулировать открытие заслонок наружного воздуха, чтобы поддерживать заданное значение потока наружного воздуха (регулируемое).

Управление увлажнителем

Контроллер должен измерять влажность возвратного воздуха и регулировать увлажнитель для поддержания заданного значения относительной влажности 40% (регулируется). Увлажнитель должен быть включен всякий раз, когда включен приточный вентилятор.

Увлажнитель должен выключаться каждый раз:

Влажность приточного воздуха поднимается выше 90%.

ИЛИ при потере состояния приточного вентилятора.

Должны быть предусмотрены следующие аварийные сигналы:

Высокая влажность приточного воздуха: если относительная влажность приточного воздуха выше 90% (регулируется).

Низкая влажность приточного воздуха: если относительная влажность приточного воздуха менее 40% (регулируется).

Монитор перепада давления на фильтре предварительной очистки

Контроллер должен контролировать перепад давления на фильтре предварительной очистки.

Аварийные сигналы должны подаваться следующим образом:

Требуется замена предварительного фильтра: перепад давления на предварительном фильтре превышает установленный пользователем предел (регулируется).

Монитор перепада давления на фильтре окончательной очистки

Контроллер должен контролировать перепад давления на фильтре окончательной очистки.

Аварийные сигналы должны предоставляться следующим образом:

Требуется окончательная замена фильтра: Конечный перепад давления на фильтре превышает определяемый пользователем предел (регулируемый).

Температура смешанного воздуха

Контроллер должен контролировать температуру смешанного воздуха и использовать ее по мере необходимости для управления экономайзером (если есть) или управления предварительным нагревом (если есть).

Аварийные сигналы должны предоставляться следующим образом:

Высокая температура смешанного воздуха: если температура смешанного воздуха превышает 90 ° F (регулируется).

Низкая температура смешанного воздуха: если температура смешанного воздуха ниже 45 ° F (регулируется).

Влажность возвратного воздуха

Контроллер должен контролировать влажность возвратного воздуха и использовать ее по мере необходимости для управления экономайзером (если имеется) или регулирования влажности (если есть).

Должны быть предусмотрены следующие аварийные сигналы:

Высокая влажность возвратного воздуха: Если влажность возвратного воздуха превышает 60% (регулируется).

Низкая влажность возвратного воздуха: если влажность возвратного воздуха меньше 30% (регулируется).

Температура возвратного воздуха

Контроллер должен контролировать температуру возвратного воздуха и использовать ее по мере необходимости для управления заданным значением или управления экономайзером (если имеется).

Аварийные сигналы должны подаваться следующим образом:

Высокая температура возвратного воздуха: если температура возвратного воздуха превышает 90 ° F (регулируется).

Низкая температура возвратного воздуха: если температура возвратного воздуха ниже 45 ° F (регулируется).

Температура приточного воздуха

Контроллер должен контролировать температуру приточного воздуха.

Аварийные сигналы должны подаваться следующим образом:

Высокая температура приточного воздуха: если температура приточного воздуха превышает 60 ° F (регулируется).

Низкая температура приточного воздуха: если температура приточного воздуха ниже 45 ° F (регулируется).

Особо следует отметить в этой спецификации простым языком использование логики И и ИЛИ, логической логики:

Экономайзер должен включаться всякий раз, когда:

Температура наружного воздуха ниже 65 ° F ( регулируемый).

И энтальпия наружного воздуха меньше 22 БТЕ / фунт (регулируемая)

И температура наружного воздуха ниже температуры возвратного воздуха.

И энтальпия наружного воздуха меньше энтальпии возвратного воздуха.

И состояние приточного вентилятора включено.

Экономайзер должен закрываться всякий раз, когда:

Температура смешанного воздуха падает с 40 ° F до 35 ° F (регулируется)

ИЛИ включается морозильная камера.

ИЛИ при потере состояния приточного вентилятора.

Этот стиль представления очень ясен и прост в использовании, особенно там, где делается много вариантов управления.

CtrlSpecBuilder.com — это веб-сайт, на котором представлены спецификации и чертежи общего оборудования без авторских прав, основанные на прямом цифровом управлении. Вы можете использовать его как основу для элементов управления DDC или не DDC. Давайте теперь вернемся к описательному стилю и перейдем от системы подачи VAV к коробке VAV. Рисунок 9-8 показывает последовательность управления для VAV-бокса с подробным обсуждением философии, лежащей в основе каждого элемента.

Рисунок 9-8. Схема управления блоком VAV

Блоки VAV.Комнатная температура должна регулироваться путем регулирования заслонки объема воздуха и клапана повторного нагрева или электрического нагревателя в последовательности, как показано на Рис. 9-8 . Объем должен контролироваться с помощью независимого от давления контроллера. Максимальный и минимальный объем охлаждения, а также минимум нагрева должны соответствовать указанным в графиках оборудования. Для блоков с электрическим обогревом следует позаботиться о том, чтобы установить герметичный выключатель (чтобы обогреватель не мог включиться без потока воздуха во избежание перегрева), а также тепловую защиту на электронагревателе, чтобы можно было избежать потенциальных условий возгорания.Питание для системы управления может быть подключено через трансформатор низкого напряжения, подключенный к электронагревателю, или, в случае нагрева горячей воды, питание будет подаваться извне. Эта последовательность относится к управлению, не зависящему от давления.

Ранние «зависящие от давления» системы VAV просто использовали заслонку, установленную в воздуховоде, которая напрямую контролировалась космическим термостатом. При повышении температуры в помещении открылась заслонка VAV. Когда температура в помещении падала, заслонка VAV закрывалась до тех пор, пока при нулевых нагрузках (когда термостат был удовлетворен) коробка VAV не закрывалась полностью с некоторой (а иногда и значительной) утечкой.Если требовался минимальный расход, заслонку можно было подключить так, чтобы она не закрывалась полностью до отключения.

Этот тип управления называется зависимым от давления, потому что количество воздуха, подаваемого в пространство, является функцией давления в системе подачи воздуха, а не только сигнала термостата. Изменение давления в системе может привести к изменению подачи воздуха в пространство и увеличению скорости, что может вызвать шум и переохлаждение или переохлаждение помещения до того, как термостат сможет это компенсировать.Это изменение давления приточного воздуха может быть вызвано открытием и закрытием VAV-боксов в системе, вызывая сильные колебания воздушного потока.

Это управление, зависящее от давления, используется редко, поскольку оно вызвало так много проблем в более крупных системах. В некоторых небольших системах, где шум, точность, эффективность вентиляции и комфорт не так важны, он все еще используется время от времени. Первые затраты обычно намного более экономичны, чем системы, не зависящие от давления.

Для решения этой проблемы были разработаны системы управления, не зависящие от давления.Эти элементы управления используют два каскадных контура управления, что означает, что контуры управления связаны друг с другом, и выход одного из них устанавливает заданное значение другого. Первый контур (космический термостат) регулирует температуру в помещении. Выходной сигнал этого контура подается на второй контроллер в качестве сигнала сброса, устанавливающего уставку воздушного потока, необходимую для охлаждения помещения. Диапазон уставки может быть ограничен как минимальной (охлаждение и тепло), так и максимальной скоростью воздушного потока. Второй контроллер регулирует заслонку VAV, чтобы поддерживать объем воздуха на этом заданном уровне.

Объем воздуха, умноженный на скорость его фиксированной площади воздуховода (CFM), измеряется с помощью датчика, усредняющего и усиливающего давление, который часто имеет довольно сложную конфигурацию (например, кольца или крестики), так что точные измерения скорости воздуха могут быть выполнены даже если конфигурации впускных каналов не идеальны и даже при низком расходе. (Для получения дополнительной информации по этому вопросу см. Справочники ASHRAE.) Его работа «не зависит» от изменения давления в приточном воздуховоде, хотя для нормальной работы по-прежнему требуется приемлемый диапазон статического давления в воздуховоде, обычно 1-2 дюйма водяного столба. давление в колонке.

Наличие максимального предела объема очень полезно во время балансировки системы. Блок VAV можно настроить на поддержание расчетной скорости потока воздуха в зону, в то время как балансир вручную регулирует объемные заслонки для достижения желаемого распределения воздуха между помещениями, обслуживаемыми зоной. Ограничитель максимальной громкости также полезен для предотвращения избыточной подачи, которая может быть шумной и нежелательной. Это может произойти во время работы рано утром, когда в помещении тепло и для охлаждения требуется больший, чем проектный, воздушный поток.

Возможность ограничения минимального объема важна для обеспечения достаточного воздушного потока для поддержания минимальной скорости вентиляции для приемлемого качества воздуха в помещении. Тепловые нагрузки в помещении (которые определяют количество воздуха, подаваемого VAV-боксом) не всегда соответствуют требованиям к вентиляции, которые зависят от количества людей и количества выбросов, загрязняющих окружающую среду от мебели и офисного оборудования.

Регулировка минимального объема может использоваться для обеспечения подачи достаточного количества приточного воздуха независимо от тепловой нагрузки; это также способствует и поддерживает надлежащую герметизацию здания до тех пор, пока операции вытяжки и вентиляции (и объемы) также согласованы с системой управления.Независимые от давления блоки управления предпочтительнее, чем зависящие от давления по многим причинам, в том числе минимальный и максимальный расход можно контролировать независимо от давления в воздуховоде, а скорость потока является функцией доступного давления в воздуховоде.

Контроль минимального объема также важен для блоков повторного нагрева (если они используются для обеспечения температуры или обогрева помещения), которые должны поддерживать минимальный поток и температуру для эффективного обогрева помещения. Ящики для повторного нагрева ведут себя как ящики только для охлаждения, когда в помещении тепло.Когда пространство охлаждается, объем воздуха уменьшается до минимума, и при поддержании минимального объема воздух повторно нагревается.

Функция подогревателя также используется для нагрева холодного воздуха, поступающего в комнату, когда комнатный термостат требует тепла. Объем не может быть слишком низким, иначе подаваемый воздух будет слишком теплым и плавучим и не будет хорошо смешиваться с воздухом в помещении, что приведет к дискомфорту и, возможно, к недостаточной вентиляции в рабочей зоне.

Помните, что приточный воздух от системы вентиляции VAV холодный, поэтому, прежде чем можно будет произвести какой-либо полезный обогрев, необходимо сначала нагреть воздух до температуры помещения для обеспечения обогрева.Некоторые контроллеры VAV-боксов имеют возможность управлять двумя минимальными уставками: одной во время операции охлаждения для поддержания минимальной скорости вентиляции и более высокой уставкой во время работы в режиме максимального нагрева.

Некоторые системы управления позволяют сбрасывать приточный воздух на основе возвратного воздуха из помещений, чтобы можно было экономить энергию в условиях промежуточной температуры и низкой влажности. Другие триггеры включают изменение температуры отопительной воды или температуры наружного воздуха. Некоторые регуляторы VAV имеют регулятор / датчик температуры нагнетаемого воздуха на выходе, что позволяет избежать недостаточного охлаждения и перегрева.Эти значения температуры нагнетания также могут использоваться для возврата в исходное состояние контроля температуры нагнетаемого воздуха в AHU и являются отличной информацией для устранения проблем, связанных с жалобами пассажиров на температуру.

Что такое принудительное воздушное отопление?

Система принудительного воздушного отопления втягивает воздух изнутри вашего дома, нагревает его, а затем отправляет обратно в ваш дом с помощью нагнетательного вентилятора через воздуховоды.

Плюсы и минусы принудительного воздушного отопления

Если вы спрашиваете, в чем преимущество принудительного воздушного отопления, вот некоторые из плюсов и минусов.

Плюсы

Использование системы принудительного воздушного отопления в вашем доме дает множество преимуществ.

Затраты энергии

Системы воздушного отопления энергоэффективны. В наиболее распространенных системах воздушного отопления используется природный газ, который дешевле в эксплуатации, чем электрические системы. Системы могут быть укомплектованы электропечью, газовой печью,
гидронный змеевик, или
тепловой носос. Единицы прошли долгий путь за последнее десятилетие, и сегодня
Системы воздушного отопления значительно более энергоэффективны, чем даже те, что были установлены всего несколько лет назад.

Время нагрева

Нагревание приточного воздуха и его возврат быстро обогреют ваш дом через воздуховоды. Он нагревается непосредственно от источника тепла, а затем распределяется. В других системах вам, возможно, придется подождать, пока вода нагреется или будет распределена из центральной системы. Комнаты могут стать теплее быстрее, поскольку воздух, выходящий из вентиляционного отверстия, нагнетается и будет циркулировать в комнате, а не излучать.

Простота установки

Если у вас есть воздуховоды для обогревателя или
кондиционер, установка проста.Можно использовать существующие воздуховоды.

Надежность

Электрические или тепловые насосы менее надежны, чем системы воздушного отопления. В воздуховоде меньше движущихся частей, которые могут выйти из строя. Компоненты просты. Такие детали, как вентиляторы, ремни или двигатели, легко заменить в случае возникновения проблемы.

Рентабельность

Принудительный воздушный обогрев экономичен. Поскольку установка проще, это обычно снижает цену. Другие системы, такие как лучистые обогреватели, более дороги.

Воздушный фильтр

Поступающий воздух проходит процесс фильтрации, который помогает улучшить качество воздуха в помещении.

Минусы

При рассмотрении решения о принудительном воздушном отоплении следует знать несколько дополнительных моментов.

Шум

Принудительный воздушный обогрев не бесшумный. В то время как недавние достижения сделали их тихими, чем когда-либо, вы собираетесь проталкивать воздух через воздуховоды, используя давление, и вы можете заметить это, когда устройство сработает.

Воздуховоды

Любая закрытая система отопления или охлаждения, в которой используются воздуховоды, может накапливать пыль или плесень. Когда нагнетаемый воздух обдувает пыль, она может разнести ее. Замена фильтров и регулярное техническое обслуживание могут уменьшить любые потенциальные проблемы.

Поскольку воздух проходит через воздуховоды, при его распределении возможны некоторые тепловые потери. Он ничем не отличается от любого другого типа канального обогревателя или кондиционера. Однако, если в воздуховодах есть утечка, вы можете потерять часть эффективности, присущую принудительным воздухонагревателям.

Центральный пульт

Температура воздуха контролируется термостатом, который регулирует температуру в вашем доме. Несмотря на то, что теплый воздух доставляется в каждую комнату, нагревание может происходить неравномерно из-за большого расстояния, которое должен пройти воздух, и некоторых потерь в воздуховодах, а также из-за расположения самих воздуховодов. Индивидуальные регуляторы температуры для каждой комнаты обычно не устанавливаются. Вы также можете столкнуться с более прохладными местами, особенно возле окон или наружных дверей, если они плохо изолированы.

Установка

Установка проста, если у вас уже есть воздуховоды и изоляция. Если у вас нет существующих воздуховодов, стоимость может быстро возрасти.

Альтернативой принудительному воздушному отоплению является использование обогревателей плинтуса. Их можно настроить для обогрева различных зон или даже отдельных комнат в вашем доме. Обычно их устанавливают под окнами, чтобы избежать попадания холодного воздуха. Электрические блоки обогревают отдельные комнаты. Это позволяет вам выбирать, какие комнаты нужно отапливать, и при желании не отапливать весь дом.

Конвекционные обогреватели для плинтусов втягивают прохладный воздух в ваш дом и вытесняют теплый воздух.
Гидравлические обогреватели плинтуса нагревают жидкость внутри устройства, которая затем нагревает воздух.

Обогревателям плинтуса потребуется больше времени, чтобы нагреться, и вы заметите, что он остается теплее рядом с обогревателем и тем холоднее, чем дальше вы находитесь.

Не уверен, что у вас газ или электричество? Ознакомьтесь с этим отличным руководством по
Отопление принудительное воздушное газовое или электрическое.

ЧТО ТАКОЕ ПРИНУДИТЕЛЬНЫЙ НАГРЕВ ВОЗДУХА?

Что такое принудительное воздушное отопление?
Если вы ищете новую систему отопления дома, скорее всего, вы слышали термин «принудительное воздушное отопление».«Принудительное воздушное отопление — это система отопления, в которой в качестве теплоносителя используется воздух. Для распределения воздуха в этих системах используются воздуховоды и вентиляционные отверстия. Система принудительной подачи воздуха может управляться одним термостатом и подает тепло во весь дом с помощью вентилятора, нагнетаемого воздухом через воздуховоды. Воздуховоды могут остаться незамеченными, поскольку они обычно скрыты в ползунках, на чердаках или в стенах. Как правило, объем воздуха в птичнике постоянно циркулирует по системе через возвратные воздуховоды.

Как работает система принудительного воздушного отопления?
В системах воздушного отопления с принудительной подачей тепла вырабатывается тепло за счет природного газа, пропана или электроэнергии.В газовой печи теплообменник нагревается за счет зажигания газа, и движущийся воздух поглощает тепло от теплообменника. В электрической печи движущийся воздух поглощает тепло от проводов с высоким сопротивлением. В обеих системах горячий воздух выталкивается в воздуховоды и циркулирует по дому с помощью вентилятора или воздуходувки.

Эксплуатация системы принудительного воздушного отопления
Один термостат используется для управления нагревательным элементом и включает или выключает его в соответствии с заданной температурой.После включения системы выделяется тепло, и вентилятор печи нагнетает воздух через теплообменник или нагревательные элементы. Затем горячий воздух распределяется по вашим воздуховодам и выходным регистрам. Регистры обычно регулируются, чтобы контролировать количество и направление воздушного потока по всему дому. Воспламенение газа или подача электричества к элементам прекращается при достижении желаемой заданной температуры.

Правильное обслуживание системы принудительного воздушного отопления
Для любой системы принудительного воздушного отопления одним из наиболее важных элементов технического обслуживания является воздушный фильтр.Если фильтр забит, вся система будет вынуждена работать больше и работать дольше, чтобы отводить тепло. Вам необходимо будет заменять или чистить фильтр ежемесячно в течение зимнего сезона и не реже одного раза в три месяца в остальное время года.

Каждая печь может нуждаться в периодической настройке профессионалом. Десятки задач требуют полной настройки, и технические специалисты Blue Ox Heating & Air следят за тем, чтобы ни один элемент не был снят. Вот лишь несколько:

Несколько пунктов настройки печи:

  • Проверить электродвигатель нагнетателя и балансировку крыльчатки нагнетателя.
  • Проверить разницу температур воздуха между возвратным и приточным воздухом.
  • Осмотрите теплообменник.
  • Провести анализ горения в печи.
  • Осмотрите двигатель индуктора.

Есть ли в вашем доме система принудительного воздушного отопления? Вы не думали об установке? Позвольте опытным специалистам Blue Ox Heating & Air помочь вам с любыми вопросами или проблемами, которые могут у вас возникнуть. Мы предлагаем услуги по установке и можем рассказать вам, что лучше всего подходит для вашего дома.

Мифы о воздушном потоке и энергосбережении разрушены (2020)

Многие домовладельцы считают, что закрытие вентиляционных отверстий экономит энергию и делает дом более комфортным. К сожалению, этот «совет» совсем не такой — закрытие вентиляционных отверстий не экономит энергию и на самом деле приносит больше вреда, чем пользы. Узнайте правду, скрывающуюся за распространенными мифами о вентиляционных отверстиях в вашем доме, от лучших подрядчиков Cincinnati HVAC.

Перенаправляет ли воздух через закрывающиеся вентиляционные отверстия?

Во всех комнатах вашего дома есть вентиляционные отверстия, которые позволяют кондиционированному воздуху из вашей системы отопления и системы кондиционирования воздуха попадать в пространство.Распространенное заблуждение, что закрытие вентиляционных отверстий в одной части дома перенаправляет воздушный поток в другие зоны. Например, закрытие вентиляционных отверстий в неиспользуемой части дома направляет больше горячего или холодного воздуха в используемые области.

Закрытые вентиляционные отверстия действительно перенаправляют воздух — только не туда, куда вы хотите. Когда регистры закрыты, воздух возвращается в воздуховоды дома, что увеличивает давление внутри. Это давление действует на воздуховоды, что приводит к утечкам в воздуховодах. Воздух, который вы хотели перенаправить, теряется из-за утечек в воздуховоде в некондиционные зоны.Закрытие приточных отверстий увеличивает давление воздуха внутри каналов, вытесняя еще больший объем нагретого воздуха через утечки в некондиционные зоны дома. Чтобы компенсировать потерю тепла, печь работает более длительными циклами, что увеличивает расходы на отопление.

Сохраняет ли закрывающиеся вентиляционные отверстия энергию?

Было сказано, что закрытие вентиляционных отверстий экономит энергию в доме, но это не так — закрытие вентиляционных отверстий может фактически увеличить потребление энергии и расходы. Системы HVAC предназначены для обогрева домов в зависимости от их размера, и ваше оборудование не знает, что у вас закрытые вентиляционные отверстия.Закрытие вентиляционных отверстий заставляет вашу систему отопления перегревать пространство, для которого она предназначена, что увеличивает потребление энергии.

Помогает ли вентиляция в неиспользуемых помещениях закрывать вентиляционные отверстия?

Жизненно важные компоненты печи требуют минимального объема возвратного воздуха для поддержания безопасной внутренней температуры. Закрытие приточных вентиляционных отверстий в комнатах снижает возвратный воздушный поток, что может привести к перегреву теплообменника — наиболее дорогостоящего компонента системы — и возникновению трещин. Неисправный теплообменник может даже представлять угрозу безопасности из-за проникновения окиси углерода (CO).В системах охлаждения закрытые вентиляционные отверстия приводят к замерзанию змеевиков, что приводит к повреждению компрессора системы. Как в отопительном, так и в кондиционирующем оборудовании закрытие вентиляционных отверстий вызывает повреждение компонентов системы, что увеличивает ваши расходы в виде ремонта системы и досрочной замены.

Помогают ли закрывающиеся вентиляционные отверстия в других частях дома?

Закрытие вентиляционных отверстий в одной части дома не способствует лучшему притоку воздуха в другие комнаты. Вместо этого кондиционированный воздух теряется из-за утечек в воздуховодах, а другие части вашего дома не получают дополнительного обогрева или охлаждения.Холодные комнаты в теплом доме действуют как радиатор. Это физический факт: тепло естественным образом отводится из теплых областей в более холодные. Сохранение одной или нескольких комнат без обогрева внутри дома, в остальном теплого, имеет тенденцию высасывать тепловую энергию из отапливаемых помещений в холодные комнаты через внутренние стены, которые не изолированы. Печь включается и выключается чаще, чтобы компенсировать потери тепла, что фактически увеличивает затраты на электроэнергию и снижает комфорт в помещении. То, что, по вашему мнению, помогает улучшить домашний комфорт, на самом деле его умаляет.

Должен ли я частично закрывать вентиляционные отверстия?

Хотя вы никогда не должны полностью закрывать вентиляционные отверстия, вы можете увеличить экономию энергии, частично закрыв одну или две розетки в вашем доме, которые находятся дальше всего от печи. Частично закрытые вентиляционные отверстия по-прежнему позволяют воздуху должным образом проходить через систему отопления, вентиляции и кондиционирования воздуха, что предотвращает перегрев и дополнительное давление в воздуховодах.

Должен ли я закрыть вентиляционные отверстия в подвале?

Если у вас есть розетки в готовом подвале, вам не стоит их закрывать. Ваша система отопления и охлаждения предназначена для удовлетворения потребностей в контроле климата в этом помещении — если вы закроете вентиляционные отверстия в этих областях, это будет иметь те же негативные последствия, что и закрытие вентиляционных отверстий в надземных частях дома.

Правильная экономия энергии — с Apollo Home

Для управления потоком воздуха и повышения энергоэффективности лучшим решением является планирование установки термостата Cincinnati WiFi и рассмотрение зонированной системы отопления и охлаждения. Центральные системы HVAC можно модернизировать с зонированием. Заслонки используются внутри воздуховодов для ограничения воздушного потока в определенных областях без отрицательного воздействия на оборудование HVAC. Еще один вариант — бесканальные системы, которые контролируют каждую зону дома независимо.Apollo Home помогает нашим клиентам сэкономить деньги на счетах за электроэнергию и создать более комфортную и энергоэффективную домашнюю среду с использованием соответствующего оборудования и настроек. Если вы хотите лучше контролировать отопление и охлаждение в своем доме, запишитесь на прием к нам сегодня.

Приточные вентиляционные отверстия против обратных вентиляционных отверстий

Если у вас есть центральная система кондиционирования воздуха, вы знаете, что через ваш дом проходит множество воздуховодов. Эти воздуховоды переносят воздух в вашу систему отопления и охлаждения и из нее. Для того, чтобы воздух попадал в воздуховоды и выходил из них, необходимо несколько вентиляционных отверстий.

Воздуховоды и вентиляционные отверстия являются частью системы отопления, вентиляции и кондиционирования (HVAC) здания. Существует два типа: приточных отверстий и обратных отверстий .

Если ваш кондиционер в помещении является сердцем системы, то приточные каналы — это артерии, а обратные каналы — это вены. Помните, что артерии несут кровь от сердца к телу, тогда как вены несут кровь от тела обратно к сердцу.

Приточные и возвратные вентиляционные отверстия

Принадлежности

Приточные отверстия подключены к приточным каналам, по которым кондиционированный воздух поступает в ваши внутренние помещения.

  • Обычно они меньше, чем возвратные вентиляционные отверстия.
  • У большинства вентиляционных отверстий есть жалюзи или планки (расположенные за решеткой), позволяющие направлять воздушный поток.

Вы можете определить вентиляционные отверстия в вашем доме, включив системный вентилятор и подержав перед вентиляционным отверстием лист бумаги или руку. Если выходит воздух, это приточное отверстие.

Возврат

Обратные вентиляционные отверстия подключены к вашим обратным каналам, которые вытягивают воздух из ваших внутренних помещений для подачи в вашу систему отопления и охлаждения.

  • Обычно они больше по размеру.
  • Возвратные вентиляционные отверстия не имеют жалюзи.

Обратные вентиляционные отверстия можно определить, включив системный вентилятор и подняв руку или лист бумаги вверх. Если бумага тянется к вентиляционному отверстию или вы чувствуете всасывающий эффект, это возвратное вентиляционное отверстие.

Никогда не закрывайте приточные или возвратные вентиляционные отверстия!

Когда ваша система отопления или охлаждения включена, она не просто нагнетает кондиционированный воздух — она ​​одновременно высасывает воздух.Если какие-либо из ваших отверстий для возврата или подачи заблокированы, весь баланс системы будет сброшен.

Хотя вы можете подумать, что вы экономите энергию, отключая кондиционирование воздуха в незанятых комнатах, вы можете увеличить давление воздуха в системе воздуховодов, что приведет к большим утечкам в воздуховодах. Закрытие или блокировка вентиляционных отверстий не уменьшит потребление энергии, поскольку система отопления, вентиляции и кондиционирования воздуха всегда работает с одинаковой скоростью.

Предполагается, что ваш обратный и приточный воздуховоды обеспечивают сбалансированную подачу воздуха. Другими словами, в вашу систему HVAC должно входить и выходить равное количество воздуха.Если есть разница в давлении, ожидайте проблем с комфортом и эффективностью. Плохая конструкция воздуховодов и затрудненный воздушный поток могут привести к аналогичным проблемам.

  • Обойдите свой дом и убедитесь, что никакие вентиляционные отверстия не закрыты и не заблокированы мебелью или другими предметами.
  • Улучшите движение воздуха, открывая двери в комнаты в доме.

Узнайте больше о том, почему не следует закрывать вентиляционные отверстия, и о других мифах и выдумках, касающихся систем отопления, вентиляции и кондиционирования воздуха.

Признаки несбалансированного воздуховода

Обратитесь к специалисту по HVAC, если вы заметили какие-либо из следующих симптомов несбалансированных воздуховодов:

  • Горячие и холодные точки или неравномерная температура
  • Непостоянный или несуществующий воздушный поток
  • На воздуховодах образуется конденсат
  • Вы заметили утечку воздуха из воздуховодов.

Очистка и / или герметизация воздуховодов может быть вашим ответом. Узнайте о нашей фирменной системе воздуховодов PureFlow ™.

Если у вас есть какие-либо вопросы о приточных или обратных каналах, не стесняйтесь спрашивать у чемпиона.

Service Champions известен надежным и своевременным обслуживанием систем отопления и кондиционирования воздуха в районах Ист-Бэй, Саут-Бэй и Сакраменто.

Если у вас есть центральная система кондиционирования воздуха, вы знаете, что через ваш дом проходит множество воздуховодов.Эти воздуховоды переносят воздух в вашу систему отопления и охлаждения и из нее. Для того, чтобы воздух попадал в воздуховоды и выходил из них, необходимо несколько вентиляционных отверстий.

Воздуховоды и вентиляционные отверстия являются частью системы отопления, вентиляции и кондиционирования (HVAC) здания. Существует два типа: приточных отверстий и обратных отверстий .

Если ваш кондиционер в помещении является сердцем системы, то приточные каналы — это артерии, а обратные каналы — это вены. Помните, что артерии несут кровь от сердца к телу, тогда как вены несут кровь от тела обратно к сердцу.

Приточные и возвратные вентиляционные отверстия

Принадлежности

Приточные отверстия подключены к приточным каналам, по которым кондиционированный воздух поступает в ваши внутренние помещения.

  • Обычно они меньше, чем возвратные вентиляционные отверстия.
  • У большинства вентиляционных отверстий есть жалюзи или планки (расположенные за решеткой), позволяющие направлять воздушный поток.

Вы можете определить вентиляционные отверстия в вашем доме, включив системный вентилятор и подержав перед вентиляционным отверстием лист бумаги или руку.Если выходит воздух, это приточное отверстие.

Возврат

Обратные вентиляционные отверстия подключены к вашим обратным каналам, которые вытягивают воздух из ваших внутренних помещений для подачи в вашу систему отопления и охлаждения.

  • Обычно они больше по размеру.
  • Возвратные вентиляционные отверстия не имеют жалюзи.

Обратные вентиляционные отверстия можно определить, включив системный вентилятор и подняв руку или лист бумаги вверх. Если бумага тянется к вентиляционному отверстию или вы чувствуете всасывающий эффект, это возвратное вентиляционное отверстие.

Никогда не закрывайте приточные или возвратные вентиляционные отверстия!

Когда ваша система отопления или охлаждения включена, она не просто нагнетает кондиционированный воздух — она ​​одновременно высасывает воздух. Если какие-либо из ваших отверстий для возврата или подачи заблокированы, весь баланс системы будет сброшен.

Хотя вы можете подумать, что вы экономите энергию, отключая кондиционирование воздуха в незанятых комнатах, вы можете увеличить давление воздуха в системе воздуховодов, что приведет к большим утечкам в воздуховодах. Закрытие или блокировка вентиляционных отверстий не уменьшит потребление энергии, поскольку система отопления, вентиляции и кондиционирования воздуха всегда работает с одинаковой скоростью.

Предполагается, что ваш обратный и приточный воздуховоды обеспечивают сбалансированную подачу воздуха. Другими словами, в вашу систему HVAC должно входить и выходить равное количество воздуха. Если есть разница в давлении, ожидайте проблем с комфортом и эффективностью. Плохая конструкция воздуховодов и затрудненный воздушный поток могут привести к аналогичным проблемам.

  • Обойдите свой дом и убедитесь, что никакие вентиляционные отверстия не закрыты и не заблокированы мебелью или другими предметами.
  • Улучшите движение воздуха, открывая двери в комнаты в доме.

Узнайте больше о том, почему не следует закрывать вентиляционные отверстия, и о других мифах и выдумках, касающихся систем отопления, вентиляции и кондиционирования воздуха.

Признаки несбалансированного воздуховода

Обратитесь к специалисту по HVAC, если вы заметили какие-либо из следующих симптомов несбалансированных воздуховодов:

  • Горячие и холодные точки или неравномерная температура
  • Непостоянный или несуществующий воздушный поток
  • На воздуховодах образуется конденсат
  • Вы заметили утечку воздуха из воздуховодов.

Очистка и / или герметизация воздуховодов может быть вашим ответом.Узнайте о нашей фирменной системе воздуховодов PureFlow ™.

Если у вас есть какие-либо вопросы о приточных или обратных каналах, не стесняйтесь спрашивать у чемпиона.

Service Champions известен надежным и своевременным обслуживанием систем отопления и кондиционирования воздуха в районах Ист-Бэй, Саут-Бэй и Сакраменто.

Воздухонагреватели

НЕТ SELECTEDABDABD-FDABD-RBABD-TABD-Z1ADAPTERAEAER EXHAUSTAER SUPPLYAFAAFDWAFJ-120AFJ-601AFJ-801AFL-501AFSAMDAMD-TDAMEREX KPAMEREX ЗОНА DEFENSEAMSANSUL PIRANHAANSUL Р-102ANSUL Р-102 OVERLAPPINGAPDAPHAPMASATEATIATIPATIRATRATSAUTO СКРУББЕР HOODAXAX РУФ MOUNTEDBACKSHELF HOODBCFBCSW-FRPBDBDFBIDWBRBSQBVEBVFCADCBFCFSDCOILSCONDENSATE HOODSCRDCSP-АСУП-BCUBECUBE-WALLCUECUE-WALLCURBSDC- 5DFDDFDAFDFDRDGDGXDS-3DS-6EACEACA-601EACA-601DEACCEADEAHECDECVEDDEDJEDKEES-401EHH-201EHH-401EHH-501EHH-501XEHH-601EHH-601DEHH-601DEEHH-601PDEHH-701EHMEHV-550EHV-550DEHV-901EHV-901DEMEMV-11ERCHERMERTERVERVeESESD-202ESD-403ESD-435ESD-435XESD-603ESD- 635ESD-635DESD-635DEESD-635HPESD-635PDESD-635XESIDESJ-155ESJ-202ESJ-401ESJ-602ESKESRMDESRMDFESSESUEVH-302EVH-302DEVH-501EVH-501DEVH-660DFADFAN МОНИТОРИНГ SYSTEMFBHFBVFDFDRFDSFGIFGRFIRE ГОТОВ RANGE HOODSFJCFJIFPBFSDFSDRFSJFSLGGBGCCGCEGCIGESIGESRGESSGFSDGJIGJXGMGPEGPEXGPFGPFHDGPFHLGPFPGPFRGPFVGPFVPGPFVRGPIGPIPGPIRGPRGPSGREASE TRAPPERGREASE TRAPPER ESPGRSIGRSRHADHBHBRHBSHB THBTRHCDHCDRHCDR-351HEAT И FUME HOODSHPAHPRHSDHSVHSVRHTDHTGHTGRHTODICICDICOIDHBIDHEIDHE-OIGXIPISBISLAND UTILITY DISTRIBUTION SYSTEMKFCCKFD-150KFD-350KSFBKSFDLBLBPLFCLSFMACMBDMBDRMELINK Intelli-HOOD SYSTEMMINICOREMINIVENTMS-1PMSACMSCFMSEMMSFMSSCMSTSMSXODFDOFDOFSDOPAPEVPIPE PORTALPLGPRADQEIQEIDQEID FJQEI-UPBLASTRADRBCERBCFRBCSRBDRBDRRBERBFRBSRBURBUMORCE3RCS3RDURE2RGURPBRRPBRFRPDRRPDRFRS2RSFRSFPRVRVESAFSBCESBCRSBCSSBESBSSCR3SDPE-DSDPHESESEBRSEDSEDFDSEFSDSEFSDRSEHSESSESMDSESMDRSEVCDSINGLE ОСТРОВ HOODSMDSMDRSP-ASP-ССЦН-BSP-LSP-VGSQ CENTRIFUGALSQ MIXED FLOWSSSSDFDSSDFDRSSFDSSFDRSSFSDSSFSDRSSNMSSSMDSSSMDRSSWDRSURE-AIRETAUBTAUB-CATAUDTBI-CATBI-FSTCBTCBRSTCBRUTDITEMPERATURE ИНТЕРЛОК CONTROLSTSFTSUUSF-100USF-300USF-500USGFVABVABSVADVADSVARI-GREENVCDVCDRVCDRMVCEVEKTOR-CDVEKTOR-CHVEKTOR-CSVEKTOR-ERSVEKTOR-HVEKTOR-HSVEKTOR-MDVEKTOR-MHVEKTOR-MSVFCVGVGDVRADVSUWALL ПОЛОГ HOODWALL УТИЛИТА РАСПРЕДЕЛЕНИЯ SYSTEMWB-10GWDWDRWIHWRH

НЕТ SELECTEDABDABD-FDABD-RBABD-TABD-Z1ADAPTERAEAER EXHAUSTAER SUPPLYAFAAFDWAFJ-120AFJ-601AFJ-801AFL-501AFSAMDAMD-TDAMEREX KPAMEREX ЗОНА DEFENSEAMSANSUL PIRANHAANSUL Р-102ANSUL Р-102 OVERLAPPINGAPDAPHAPMASATEATIATIPATIRATRATSAUTO СКРУББЕР HOODAXAX РУФ MOUNTEDBACKSHELF HOODBCFBCSW-FRPBDBDFBIDWBRBSQBVEBVFCADCBFCFSDCOILSCONDENSATE HOODSCRDCSP-АСУП-BCUBECUBE-WALLCUECUE-WALLCURBSDC- 5DFDDFDAFDFDRDGDGXDS-3DS-6EACEACA-601EACA-601DEACCEADEAHECDECVEDDEDJEDKEES-401EHH-201EHH-401EHH-501EHH-501XEHH-601EHH-601DEHH-601DEEHH-601PDEHH-701EHMEHV-550EHV-550DEHV-901EHV-901DEMEMV-11ERCHERMERTERVERVeESESD-202ESD-403ESD-435ESD-435XESD-603ESD- 635ESD-635DESD-635DEESD-635HPESD-635PDESD-635XESIDESJ-155ESJ-202ESJ-401ESJ-602ESKESRMDESRMDFESSESUEVH-302EVH-302DEVH-501EVH-501DEVH-660DFADFAN МОНИТОРИНГ SYSTEMFBHFBVFDFDRFDSFGIFGRFIRE ГОТОВ RANGE HOODSFJCFJIFPBFSDFSDRFSJFSLGGBGCCGCEGCIGESIGESRGESSGFSDGJIGJXGMGPEGPEXGPFGPFHDGPFHLGPFPGPFRGPFVGPFVPGPFVRGPIGPIPGPIRGPRGPSGREASE TRAPPERGREASE TRAPPER ESPGRSIGRSRHADHBHBRHBSHB THBTRHCDHCDRHCDR-351HEAT И FUME HOODSHPAHPRHSDHSVHSVRHTDHTGHTGRHTODICICDICOIDHBIDHEIDHE-OIGXIPISBISLAND UTILITY DISTRIBUTION SYSTEMKFCCKFD-150KFD-350KSFBKSFDLBLBPLFCLSFMACMBDMBDRMELINK Intelli-HOOD SYSTEMMINICOREMINIVENTMS-1PMSACMSCFMSEMMSFMSSCMSTSMSXODFDOFDOFSDOPAPEVPIPE PORTALPLGPRADQEIQEIDQEID FJQEI-UPBLASTRADRBCERBCFRBCSRBDRBDRRBERBFRBSRBURBUMORCE3RCS3RDURE2RGURPBRRPBRFRPDRRPDRFRS2RSFRSFPRVRVESAFSBCESBCRSBCSSBESBSSCR3SDPE-DSDPHESESEBRSEDSEDFDSEFSDSEFSDRSEHSESSESMDSESMDRSEVCDSINGLE ОСТРОВ HOODSMDSMDRSP-ASP-ССЦН-BSP-LSP-VGSQ CENTRIFUGALSQ MIXED FLOWSSSSDFDSSDFDRSSFDSSFDRSSFSDSSFSDRSSNMSSSMDSSSMDRSSWDRSURE-AIRETAUBTAUB-CATAUDTBI-CATBI-FSTCBTCBRSTCBRUTDITEMPERATURE ИНТЕРЛОК CONTROLSTSFTSUUSF-100USF-300USF-500USGFVABVABSVADVADSVARI-GREENVCDVCDRVCDRMVCEVEKTOR-CDVEKTOR-CHVEKTOR-CSVEKTOR-ERSVEKTOR-HVEKTOR-HSVEKTOR-MDVEKTOR-MHVEKTOR-MSVFCVGVGDVRADVSUWALL ПОЛОГ HOODWALL УТИЛИТА РАСПРЕДЕЛЕНИЯ SYSTEMWB-10GWDWDRWIHWRH

НЕТ SELECTEDABDABD-FDABD-RBABD-TABD-Z1ADAPTERAEAER EXHAUSTAER SUPPLYAFAAFDWAFJ-120AFJ-601AFJ-801AFL-501AFSAMDAMD-TDAMEREX KPAMEREX ЗОНА DEFENSEAMSANSUL PIRANHAANSUL Р-102ANSUL Р-102 OVERLAPPINGAPDAPHAPMASATEATIATIPATIRATRATSAUTO СКРУББЕР HOODAXAX РУФ MOUNTEDBACKSHELF HOODBCFBCSW-FRPBDBDFBIDWBRBSQBVEBVFCADCBFCFSDCOILSCONDENSATE HOODSCRDCSP-АСУП-BCUBECUBE-WALLCUECUE-WALLCURBSDC- 5DFDDFDAFDFDRDGDGXDS-3DS-6EACEACA-601EACA-601DEACCEADEAHECDECVEDDEDJEDKEES-401EHH-201EHH-401EHH-501EHH-501XEHH-601EHH-601DEHH-601DEEHH-601PDEHH-701EHMEHV-550EHV-550DEHV-901EHV-901DEMEMV-11ERCHERMERTERVERVeESESD-202ESD-403ESD-435ESD-435XESD-603ESD- 635ESD-635DESD-635DEESD-635HPESD-635PDESD-635XESIDESJ-155ESJ-202ESJ-401ESJ-602ESKESRMDESRMDFESSESUEVH-302EVH-302DEVH-501EVH-501DEVH-660DFADFAN МОНИТОРИНГ SYSTEMFBHFBVFDFDRFDSFGIFGRFIRE ГОТОВ RANGE HOODSFJCFJIFPBFSDFSDRFSJFSLGGBGCCGCEGCIGESIGESRGESSGFSDGJIGJXGMGPEGPEXGPFGPFHDGPFHLGPFPGPFRGPFVGPFVPGPFVRGPIGPIPGPIRGPRGPSGREASE TRAPPERGREASE TRAPPER ESPGRSIGRSRHADHBHBRHBSHB THBTRHCDHCDRHCDR-351HEAT И FUME HOODSHPAHPRHSDHSVHSVRHTDHTGHTGRHTODICICDICOIDHBIDHEIDHE-OIGXIPISBISLAND UTILITY DISTRIBUTION SYSTEMKFCCKFD-150KFD-350KSFBKSFDLBLBPLFCLSFMACMBDMBDRMELINK Intelli-HOOD SYSTEMMINICOREMINIVENTMS-1PMSACMSCFMSEMMSFMSSCMSTSMSXODFDOFDOFSDOPAPEVPIPE PORTALPLGPRADQEIQEIDQEID FJQEI-UPBLASTRADRBCERBCFRBCSRBDRBDRRBERBFRBSRBURBUMORCE3RCS3RDURE2RGURPBRRPBRFRPDRRPDRFRS2RSFRSFPRVRVESAFSBCESBCRSBCSSBESBSSCR3SDPE-DSDPHESESEBRSEDSEDFDSEFSDSEFSDRSEHSESSESMDSESMDRSEVCDSINGLE ОСТРОВ HOODSMDSMDRSP-ASP-ССЦН-BSP-LSP-VGSQ CENTRIFUGALSQ MIXED FLOWSSSSDFDSSDFDRSSFDSSFDRSSFSDSSFSDRSSNMSSSMDSSSMDRSSWDRSURE-AIRETAUBTAUB-CATAUDTBI-CATBI-FSTCBTCBRSTCBRUTDITEMPERATURE ИНТЕРЛОК CONTROLSTSFTSUUSF-100USF-300USF-500USGFVABVABSVADVADSVARI-GREENVCDVCDRVCDRMVCEVEKTOR-CDVEKTOR-CHVEKTOR-CSVEKTOR-ERSVEKTOR-HVEKTOR-HSVEKTOR-MDVEKTOR-MHVEKTOR-MSVFCVGVGDVRADVSUWALL ПОЛОГ HOODWALL УТИЛИТА РАСПРЕДЕЛЕНИЯ SYSTEMWB-10GWDWDRWIHWRH

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *