Нагреватель индукционный как сделать: Как собрать индукционный нагреватель своими руками

Нагреватель индукционный как сделать: Как собрать индукционный нагреватель своими руками

Содержание

Простой индукционный нагреватель своими руками

Приветствую, радиолюбители-самоделкины!

Сейчас на кухнях довольно часто можно встретить новый тип варочных плит — индукционные. В отличие от газовых и простых электрических, в них не нагревается конфорка, не горит с высокой температурой газ, ведь электрическая энергия в таких плитах поступает «напрямую» к разогреваемой посуде, не нагревая ненужные посторонние части плиты. Работает это следующим образом — специальный индуктор создаёт в толще металла посуды сильные вихревые токи, которые и разогревают металл. Помимо кухонных плит, такая технология используется в разных областях промышленности для нагрева и плавки металла. Возможно, на первый взгляд индукционный нагрев выглядит сложно и очень труднореализуемо в домашних условиях, но на самом деле, схема простого индукционного нагревателя не содержит дорогих либо редких деталей, собрать её под силу каждому радиолюбителю. Мощность такой схемы достаточна для того, чтобы раскалить до красна небольшие металлический предметы — лезвия канцелярского ножа, отвёртки, гвозди.

На самом деле, данная схема является довольно универсальной, на её основе также строят различные высоковольтные генераторы и прочие устройства, где требуется генерация высокочастотных импульсов. В интернете эту схему можно найти по названию «ZVS-драйвер». Рассмотрим более подробно все элементы схемы, определим возможные замены и отметим некоторые нюансы. Напряжение питания на схеме указано 12 В — это минимальное напряжение, которым можно питать данную схему. Максимальная граница напряжения питания зависит от мощности выбранных транзисторов и может составлять 50В. Чем больше напряжение питания, тем, соответственно, больше будет мощность индукционного нагревателя, тем быстрее он будет разогревать металл. Данная схема, особенно при разогреве массивных предметов, потребляет большой ток (до 10А), поэтому важно обеспечить её питание от источника соответствующей мощности. Неплохо для этого подойдут, например, блок питания компьютера или ноутбука, имеющие на выходе напряжения 12 и 19Вт соответственно.

Резисторы номиналами 220 Ом должны быть рассчитаны на мощность как минимум в 1 ватт, иначе возможен их чрезмерный нагрев. После этих резисторов на схеме можно увидеть стабилитроны, имеющими маркировку на схеме «15 v». Здесь можно применить любые стабилитроны на напряжение стабилизации в пределах от 12 до 15В, они нужны для того, чтобы на затворы полевых транзисторов не попало высокое напряжение (более 20В на затворе будет смертельным для полевого транзистора). Также на схеме можно увидеть диоды VD3 и VD4, подключенные к затворам транзисторов — в качестве них можно применить практически любые быстродействующие (обозначаются как ultra fast) диоды, например, UV4007, HER102, FR103. Особое внимание стоит уделить выбору транзисторов для данной схемы. На малой мощности с низким напряжением питания будут без проблем работать практически любые полевые транзисторы из ряда IRFZ44, IRF3205, 50N06 и им подобные по характеристикам. Но при использовании индукционного нагревателя при напряжении питания выше 12В рекомендуется поставить более мощные транзисторы, например IRFP250, IRFP260 либо им аналогичные. Ключевыми параметрами для транзисторов здесь будут максимальное напряжения сток-исток и максимальный ток. На схеме присутствуют дроссели L1 и L3, подключенные одним концом к плюсу питания. Можно найти готовые дроссели, рассчитанные на большой ток (как минимум 2-3А, но чем больше, тем лучше), имеющие индуктивность в диапазоне 47-200 мкГн, так и намотать дроссели самому. Для этого нужно взять кольцо из порошкового железа (оно имеет жёлтый цвет), и намотать на нём примерно 30-40 витков толстого медного провода. Найти кольца жёлтого цвета можно в компьютерных блоках питания, кроме них чуть хуже, но также подойдут обычные ферритовые кольца.

Колебательный контур C1 L2, пожалуй, самая важная часть схемы — именно эти элементы задают частоту колебания схемы. Катушка L2 — непосредственно сам индуктор, катушка большого размера из толстого медного провода, внутрь которой помещается нагреваемый предмет. Её диаметр может составлять от 1 до 5 см, в зависимости от размеров предмета, который нужно будет разогревать. Следует также учитывать, что чем больше будет размер катушки относительно размера нагреваемого объекта — тем менее эффективной будет работа данной схемы. В идеальном случае объект должен помещаться в катушку, не оставляя больших зазоров по краям, до витков. Для намотки можно использовать как изолированный медный провод, так и медные трубки либо шины. Количество витков может варьироваться в пределах от 6 до 12. Чем больше будет напряжение питания, тем большее количество витков следует выбирать.

Через конденсатор С1 в данной схеме будут протекать довольно значительные токи, а потому необходимо использовать неполярные плёночные конденсаторы и низким внутренним сопротивлением (ESR). Ёмкость С1 может варьироваться в пределах 0,68 — 1 мкФ, её можно будет подбирать для достижения наилучшей эффективности работы схемы, оценивая скорость нагрева. Для того, чтобы снизить внутреннее сопротивление С1, можно включить параллельно несколько конденсаторов — это наиболее предпочтительный вариант. Например, 6-10 конденсаторов по 0,1 мкФ каждый дадут как раз нужную ёмкость, а внутреннее сопротивление такой батареи конденсаторов будет значительно меньше, чем у одного конденсатора.

Ниже представлены осциллограммы в разных частях схемы.
На затворе транзистора:

Сток-исток транзистора:

На самой катушке индуктора:

Можно увидеть, что амплитура на катушке индуктора составляет около 70 вольт, и это при том, что напряжение питания схемы составляет всего 11В.

Преимуществом данной схемы является её простота — для сборки даже не обязательно изготавливать печатную плату. Смонтировать все элементы можно прямо на выводах индуктора, если он выполнен из жёсткого провода, то и конструкция будет обладать нужной жёсткостью и надёжностью. Батарея конденсаторов припаивается прямо на толстые выводы.

Ещё одним преимуществом данной схемы является её большой КПД — практически вся мощность, потребляемая от источника, уходит в нагрев объекта, а потому транзисторы нагреваются лишь слегка и не требуют массивных радиаторов. Тестовый запуск схемы можно проводить и вовсе без радиаторов, но для долговременной работы они обязательны. Также следует заметить, что ток потребления в этой схеме большой лишь во время нагрева — когда внутрь катушки-индуктора помещён металлический объект. На холостом же ходе схема потребляет небольшой ток, максимум несколько сотен миллиампер. Ниже представлено несколько фотографий раскалённого лезвия ножа, нагретого таким индукционным нагревателем. Удачной сборки!

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Индукционный нагреватель своими руками – схема, устройство, видео

Идея нагревать металл вихревыми токами Фуко, возбуждаемыми электромагнитным полем катушки, отнюдь не нова. Она давно и успешно эксплуатируется в промышленных плавильных печах, кузнечных мастерских, бытовых нагревательных приборах – плитах и электрокотлах. Последние довольно дороги, так что домашние умельцы не оставляют попыток сделать индукционный нагреватель воды своими руками. Наша задача – рассмотреть работоспособные варианты самодельных устройств и разобраться, можно ли применять их для отопления дома.

О принципе индуктивного нагрева

Для начала разъясним, как функционируют электрические индукционные нагреватели. Переменный ток, проходя по виткам катушки, образует вокруг нее электромагнитное поле. Если поместить внутрь обмотки сердечник из магнитящегося металла, то он станет нагреваться вихревыми токами, возникающими под воздействием поля. Вот и весь принцип.

Важное условие. Чтобы металлический сердечник нагревался, катушка должна питаться переменным током, меняющим знак и вектор поля с высокой частотой. При подаче на обмотку постоянного тока вы получите обыкновенный электромагнит.

Сам нагревательный элемент носит название индуктора и является главной частью установки. В отопительных котлах он представляет собой стальную трубу с протекающим внутри теплоносителем, а в кухонных плитах – плоскую катушку, максимально приближенную к варочной панели, как изображено далее на фото.

Катушка-индуктор нагревает железную трубу, которая передает тепло протекающей воде

Вторая часть индукционного нагревателя — схема, повышающая частоту тока. Дело в том, что напряжение с промышленной частотой 50 Гц малопригодно для работы подобных устройств. Если присоединить индуктор к сети напрямую, то он начнет сильно гудеть и слабо прогревать сердечник, причем вместе с обмотками. Чтобы эффективно преобразовывать электричество в теплоту и полностью передавать ее металлу, частоту нужно повысить минимум до 10 кГц, чем и занимается электросхема.

В чем заключаются реальные преимущества индукционных котлов перед ТЭНовыми и электродными:

  1. Деталь, нагревающая воду, — это простой кусок трубы, не участвующий в электрохимических процессах (как в электродных теплогенераторах). Поэтому срок службы индуктора ограничивается только работоспособностью катушки и может достигать 10—20 лет.
  2. По той же причине элемент одинаково хорошо «дружит» со всеми видами теплоносителей – водой, антифризом и даже машинным маслом, разницы нет.
  3. Внутренности индуктора не покрываются накипью в процессе эксплуатации.

Здесь сердечником служит посуда из магнитного металла

Примечание. С индукционными котлами связано множество мифов. Например, продавцы утверждают, что они экономичнее других электрических обогревателей на 10—20%, хотя в действительности КПД всех электрокотлов равен 98%. Список преимуществ ограничивается тремя вышеперечисленными пунктами, остальное – реклама.

Варианты самодельных устройств

На просторах интернета размещено достаточное количество разнообразных конструкций, создаваемых для различных целей. Взять индукционный малогабаритный нагреватель, сделанный из компьютерного блока питания 250—500 Вт. Модель, показанная на фото, пригодится мастеру в гараже или автосервисе для плавки стержней из алюминия, меди и латуни.

Но для отопления помещений конструкция не подойдет по причине малой мощности. В интернете есть два реальных варианта, чьи испытания и работа засняты на видео:

  • водонагреватель из полипропиленовой трубы с питанием от сварочного инвертора либо индукционной кухонной панели;
  • стальной котел с нагревом от той же варочной панели.

Справка. Существуют и другие, полностью самодельные конструкции, где преобразователи частоты умельцы собирают с нуля. Но для этого нужны знания и навыки в области радиотехники, поэтому рассматривать их мы не будем, а просто приведем пример такой схемы.

Теперь давайте подробнее разберем, как делаются индукционные нагреватели своими руками, а главное, — как они потом функционируют.

Изготавливаем нагревательный элемент из трубы

Если вы плотно занимались поиском информации по данной теме, то наверняка столкнулись с этой конструкцией, поскольку мастер выложил ее сборку на популярном видеоресурсе YouTube. После чего многие сайты разместили текстовые версии изготовления этого индуктора в виде пошаговых инструкций. Вкратце нагреватель делается так:

  1. Внутрь трубы из полипропилена диаметром 40 мм и длиной 50 см наталкиваются металлические ершики для мытья посуды (можно рубленую проволоку — катанку). Они должны притягиваться магнитом.
  2. К трубе припаиваются отводы с резьбами для подключения к отопительной сети.
  3. Снаружи вдоль корпуса приклеиваются 4—5 стержней из текстолита. На них наматывается провод сечением 1.7—2 мм² со стеклоизоляцией, применяющийся в сварочных трансформаторах.
  4. Варочная панель разбирается и «родной» индуктор плоской формы демонтируется. Вместо него подключается самодельный нагреватель из трубы.

Важный нюанс. Длину и сечение провода для намотки катушки следует определять по штатному индуктору печки, чтобы она соответствовала мощности полевых транзисторов в электросхеме. Если взять больше провода, то упадет мощность нагрева, меньше – перегреются и выйдут из строя транзисторы. Как это выглядит визуально, смотрите на видео:

Как нетрудно догадаться, роль нагревательного элемента здесь играют металлические ершики, находящиеся в переменном магнитном поле катушки. Если запустить варочную панель на максимум, одновременно пропуская через импровизированный котел проточную воду, то ее удастся нагреть на 15—20 °С, что и показали испытания агрегата.

Поскольку мощность большинства индукционных плит лежит в пределах 2—2.5 кВт, то с помощью теплогенератора можно обогреть помещения общей площадью не более 25 м². Есть способ увеличить нагрев, подключив индуктор к сварочному аппарату, но здесь есть свои сложности:

  1. Инвертор выдает постоянный ток, а нужен переменный. Для подсоединения индукционного нагревателя аппарат придется разобрать и найти на схеме точки, где напряжение еще не выпрямлено.
  2. Нужно взять провод большего сечения и подобрать число витков путем расчета. Как вариант, медную проволоку Ø1.5 мм в эмалевой изоляции.
  3. Понадобится организовать охлаждение элемента.

Проверку работоспособности индуктивного водонагревателя автор демонстрирует в своем видео, представленном ниже. Испытания показали, что агрегат требует доработки, но конечный результат, к сожалению, неизвестен. Похоже, что умелец оставил проект незавершенным.

Как собрать индукционный котел

В этом случае дешевую китайскую плиту разбирать не нужно. Суть в том, чтобы сварить по ее размерам котловой бак, руководствуясь пошаговой инструкцией:

  1. Возьмите стальную профильную трубу 20 х 40 мм с толщиной стенки 2 мм и нарежьте из нее заготовок по ширине панели.
  2. Сварите трубки между собой по длине, стыкуя меньшими сторонами.
  3. Сверху и снизу к торцам герметично приварите железные крышки. Сделайте в них отверстия и поставьте патрубки с резьбами.
  4. К одной из сторон прикрепите сваркой 2 уголка, чтобы они образовали полку для индукционной печки.
  5. Покрасьте агрегат термостойкой эмалью из баллончика. Подробнее процесс сборки показан в видеоролике.

Окончательная сборка и запуск заключается в монтаже котла на стену и его врезке в систему отопления. Варочная панель вставляется в гнездо из уголков на задней стенке бака и подключается к электросети. Остается заполнить систему теплоносителем, стравить воздух и включить нагрев индуктора.

Здесь вас подстерегает та же проблема, что встречалась с предыдущей моделью. Несомненно, индукционный нагрев будет работать, но его мощности 2.5 кВт хватит для обогрева парочки небольших комнат при морозе на улице. Осенью и весной, когда температура не опустилась ниже нуля, самодельный котел сможет отопить площадь 35—40 м². Как его правильно подключить к системе, смотрите в очередном видеосюжете:

Выводы и рекомендации

Мы намеренно представили варианты индукционных водонагревателей несложной конструкции, чтобы каждый желающий мог сделать подобный агрегат своими силами. Но остался вопрос, нужно ли заниматься этим делом и тратить собственное время. На этот счет есть ряд объективных соображений:

  1. Пользователи, не разбирающиеся в электрике и радиотехнике, вряд ли смогут добиться увеличения мощности нагрева свыше 2.5 кВт. Для этого придется собрать схему преобразователя частоты.
  2. КПД индуктора ничуть не выше, чем у других электрических котлов. Но собрать нагреватель с ТЭНами гораздо проще.
  3. Если у вас не завалялась дома индукционная панель, то потребуется ее купить примерно за 80 у. е. Столько стоят дешевые китайские изделия в интернет-магазинах. За те же деньги продаются готовые электродные котлы мощностью до 10 кВт.
  4. Электроплиты оснащаются автоматикой безопасности, отключающих бытовой прибор спустя 1 или 2 часа работы. Это доставляет неудобство при эксплуатации.
  5. Если в силу разных причин теплоноситель вытечет из самодельного теплогенератора, то нагрев не прекратится. Это чревато пожаром.

Конечно, вы можете обойтись без дорогих покупок, досконально разобраться в конструкции и смастерить индукционный нагреватель с нуля. Но выполнить все бесплатно не получится, ведь потребуется приобрести комплектующие для схемы. Заметьте, что бонусы от подобного отопительного агрегата невелики, так что всерьез браться за его изготовление с целью обогрева частного дома нецелесообразно.

ПРОСТОЙ ИНДУКЦИОННЫЙ НАГРЕВАТЕЛЬ

Приветствую пользователей сайта Радиосхемы. Недавно у меня появилась идея сделать индукционный нагреватель. На просторах интернета были найдены несколько схем для построения устройства. Из них выбрал самую, на мой взгляд, простую по сборке и настройке, и главное — реально рабочую.

Схема устройства

Список деталей

1. Полевой транзистор IRFZ44V 2 шт.
2. Диоды ультра быстрые UF4007 или UF4001 2 шт. 
3. Резистор на 470 Ом на 1 или 0.5 Вт 2 шт.
4. Конденсаторы плёночные 
   1) 1 мкФ на 250в 3 шт.
   2) 220 нФ на 250в 4 штуки.
   3) 470 нФ на 250в 
   4) 330 нФ на 250в
5. Провод медный диаметром 1.2 мм.
6. Провод медный диаметром 2 мм.
7. Кольца от дросселей компьютерном блоке питания 2 шт.

Сборка устройства

Задающая часть нагревателя выполнена на полевых транзисторах IRFZ44V. Распиновка транзистора IRFZ44V.

Транзисторы нужно поставить на большой радиатор. Если устанавливать транзисторы на один радиатор то транзисторы нужно установить на резиновые прокладки и пластмассовые шайбочки чтобы не было замыкания между транзисторов.

Дросселя намотаны на кольцах от компьютерных БП. Сделанные из порошкового  железа. Проводом 1,2 мм 7-15 витков.

Батарея конденсаторов должна быть на 4. 7 мкФ. Желательно использовать не один конденсатор, а несколько конденсаторов. Конденсаторы должны быть подключены параллельно.

Катушка нагревателя сделана на проводе диаметром 2 мм 7-8 витков.

После сборки устройство работает сразу. Питается устройство от аккумулятора 12 вольт 7.2 А/ч. Напряжение питания устройства 4.8-28 вольт. При продолжительной работе перегреваются: батарея конденсаторов, полевые транзисторы и дросселя. Потребление тока при холостом ходу 6-8 Ампер.

При внесении в контур металлического предмета потребление тока сразу увеличивается до 10-12 А.

Фото готового устройства смотрите далее.

Видео работы индукционного нагревателя

Далее можно оформить прибор в подходящий красивый корпус и использовать для различных опытов. С мощностью и размером катушки лучше поэкспериментировать, чтоб достичь наилучшего эффекта.  Автор статьи 4ei3

   Форум

   Форум по обсуждению материала ПРОСТОЙ ИНДУКЦИОННЫЙ НАГРЕВАТЕЛЬ

Индукционный нагреватель металла на 12 киловатт – схема инвертора и компоненты

Сейчас мы узнаем как сделать своими руками индукционный нагреватель, который можно использовать для разных проектов или просто для удовольствия. Вы сможете мгновенно плавить сталь, алюминий или медь. Вы можете использовать её для пайки, плавления и ковки металлов. Вы можете использовать самодельный индуктивный нагреватель и для литья.

Мое учебное пособие охватывает теорию, компоненты и сборку некоторых из важнейших компонентов.

Инструкция большая, в ней мы рассмотрим основные шаги, дающие вам представление о том, что входит в такой проект, и о том, как его спроектировать, чтобы ничего не взорвалось.

Для печи я собрал очень точный недорогой криогенный цифровой термометр. Кстати, в тестах с жидким азотом он неплохо себя показал против брендовых термометров.

Шаг 1: Компоненты

Основные компоненты высокочастотного индукционного нагревателя для нагрева металла электричеством — инвертор, драйвер, соединительный трансформатор и колебательный контур RLC. Вы увидите схему чуть позже. Начнем с инвертора. Это — электрическое устройство, которое изменяет постоянный ток на переменный. Для мощного модуля он должен работать стабильно. Сверху находится защита, которая используется, чтобы защитить привод логического элемента МОП-транзистора от любого случайного перепада напряжения. Случайные перепады вызывают шум, который приводит к переключению на высокие частоты. Это приводит к перегреву и отказу МОП-транзистора.

Линии с большой силой тока находятся внизу печатной платы. Много слоев меди используются, чтобы позволить им пропускать более 50А тока. Нам не нужен перегрев. Также обратите внимание на большие алюминиевые радиаторы с водяным охлаждением с обеих сторон. Это необходимо, чтобы рассеивать тепло, вырабатываемое МОП-транзисторами.

Изначально я использовал вентиляторы, но чтобы справиться с этой мощностью, я установил небольшие водяные насосы, благодаря которым вода циркулирует через алюминиевые теплоотводы. Пока вода чистая, трубки не проводят ток. У меня также установлены тонкие слюдяные пластины под МОП-транзисторами, чтобы гарантировать отсутствие проводимости через стоки.

Шаг 2: Схема инвертора

Это схема для инвертора. Схема на самом деле не такая сложная. Инвертированный и неинвертированный драйвер повышает или понижает напряжение 15В, чтобы настроить переменный сигнал в трансформаторе (GDT). Этот трансформатор изолирует чипы от мосфетов. Диод на выходе мосфета действует для ограничения пиков, а резистор минимизирует колебания.

Конденсатор C1 поглощает любые проявления постоянного тока. В идеале, вам нужны самые быстрые перепады напряжения на цепи, так как они уменьшают нагрев. Резистор замедляет их, что кажется нелогичным. Однако если сигнал не угасает, вы получаете перегрузки и колебания, которые разрушают мосфеты. Больше информации можно получить из схемы демпфера.

Диоды D3 и D4 помогают защитить МОП-транзисторы от обратных токов. C1 и C2 обеспечивают незамкнутые линии для проходящего тока во время переключения. T2 — это трансформатор тока, благодаря которому драйвер, о котором мы поговорим далее, получает обратный сигнал от тока на выходе.

Шаг 3: Драйвер

Эта схема действительно большая. Вообще, вы можете прочитать про простой маломощный инвертор. Если вам нужна большая мощность, вам нужен соответствующий драйвер. Этот драйвер будет останавливаться на резонансной частоте самостоятельно. После того, как ваш металл расплавится, он останется заблокированным на правильной частоте без необходимости какой-либо регулировки.

Если вы когда-либо строили простой индукционный нагреватель с чипом PLL, вы, вероятно, помните процесс настройки частоты, чтобы металл нагревался. Вы наблюдали за движением волны на осциллографе и корректировали частоту синхронизации, чтобы поддерживать эту идеальную точку. Больше не придется этого делать.

В этой схеме используется микропроцессор Arduino для отслеживания разности фаз между напряжением инвертора и емкостью конденсатора. Используя эту фазу, он вычисляет правильную частоту с использованием алгоритма «C».

Я проведу вас по цепи:

Сигнал емкости конденсатора находится слева от LM6172. Это высокоскоростной инвертор, который преобразует сигнал в красивую, чистую квадратную волну. Затем этот сигнал изолируется с помощью оптического изолятора FOD3180. Эти изоляторы являются ключевыми!

Далее сигнал поступает в PLL через вход PCAin. Он сравнивается с сигналом на PCBin, который управляет инвертором через VCOout. Ардуино тщательно контролирует тактовую частоту PLL, используя 1024-битный импульсно-модулированный сигнал. Двухступенчатый RC-фильтр преобразует сигнал PWM в простое аналоговое напряжение, которое входит в VCOin.

Как Ардуино знает, что делать? Магия? Догадки? Нет. Он получает информацию о разности фаз PCA и PCB от PC1out. R10 и R11 ограничивают напряжение в пределах 5 напряжений для Ардуино, а двухступенчатый RC-фильтр очищает сигнал от любого шума. Нам нужны сильные и чистые сигналы, потому что мы не хотим платить больше денег за дорогие мосфеты после того, как они взорвутся от шумных входов.

Шаг 4: Передохнём

Это был большой массив информации. Вы можете спросить себя, нужна ли вам такая причудливая схема? Зависит от вас. Если вы хотите автонастройку, тогда ответ будет «да». Если вы хотите настраивать частоту вручную, тогда ответ будет отрицательным. Вы можете создать очень простой драйвер всего лишь с таймером NE555 и использовать осциллограф. Можно немного усовершенствовать его, добавив PLL (петля фаза-ноль)

Тем не менее, давайте продолжим.

Шаг 5: LC-контур

К этой части есть несколько подходов. Если вам нужен мощный нагреватель, вам понадобится конденсаторный массив для управления током и напряжением.

Во-первых, вам нужно определить, какую рабочую частоту вы будете использовать. Более высокие частоты имеют больший скин-эффект (меньшее проникновение) и хороши для небольших объектов. Более низкие частоты лучше для больших объектов и имеют большее проникновение. Более высокие частоты имеют большие потери при переключении, но через бак пройдет меньше тока. Я выбрал частоту около 70 кГц и дошел до 66 кГц.

Мой конденсаторный массив имеет ёмкость 4,4 мкФ и может выдерживать более 300А. Моя катушка около 1мкГн. Также я использую импульсные пленочные конденсаторы. Они представляют собой осевой провод из самовосстанавливающегося металлизированного полипропилена и имеют высокое напряжение, высокий ток и высокую частоту (0.22 мкФ, 3000В). Номер модели 224PPA302KS.

Я использовал две медные шины, в которых просверлил соответствующие отверстия с каждой стороны. Паяльником я припаял конденсаторы к этим отверстиям. Затем я прикрепил медные трубки с каждой стороны для водного охлаждения.

Не берите дешевые конденсаторы. Они будут ломаться, и вы заплатите больше денег, чем если бы вы сразу купили хорошие.

Шаг 6: Сборка трансформатора

Если вы внимательно читали статью, вы зададите вопрос: а как управлять LC-контуром? Я уже рассказывал об инверторе и контуре, не упоминая, как они связаны.

Соединение осуществляется через соединительный трансформатор. Мой от Magnetics, Inc. Номер детали — ZP48613TC. Adams Magnetics также является хорошим выбором при выборе ферритовых тороидов.

Тот, что слева, имеет провод 2мм. Это хорошо, если ваш входной ток ниже 20А. Провод перегреется и сгорит, если ток больше. Для высокой мощности вам нужно купить или сделать литцендрат. Я сделал сам, сплетя 64 нити из проволоки 0.5мм. Такой провод без проблем может выдержать ток 50А.

Инвертор, который я показал вам ранее, принимает высоковольтный постоянный ток и изменяет его на переменные высокие или низкие значения. Эта переменная квадратная волна проходит черезч соединительный трансформатор через переключатели мосфета и конденсаторы связи постоянного тока на инверторе.

Медная трубка из емкостного конденсатора проходит через нее, что делает ее одновитковой вторичной обмоткой трансформатора. Это, в свою очередь, позволяет сбрасываемому напряжению проходить через конденсатор емкости и рабочую катушку (контур LC).

Шаг 7: Делаем рабочую катушку

Один из вопросов, который мне часто задавали: «Как ты делаешь такую изогнутую катушку?» Ответ — песок. Песок будет препятствовать разрушению трубки во время процесса изгиба.

Возьмите медную трубку от холодильника 9мм и заполните ее чистым песком. Перед тем, как сделать это, закройте один конец какой-нибудь лентой, а также закройте другой после заполнения песком. Вкопайте трубу соответствующего диаметра в землю. Отмерьте длину трубки для вашей катушки и начните медленно наматывать её на трубу. Как только вы сделаете один виток, остальные будет сделать несложно. Продолжайте наматывать трубку, пока не получите количество желаемых витков (обычно 4-6). Второй конец нужно выровнять с первым. Это упростит подключение к конденсатору.

Теперь снимите колпачки и возьмите воздушный компрессор, чтобы выдуть песок. Желательно делать это на улице.

Обратите внимание, что медная трубка также служит для водного охлаждения. Эта вода циркулирует через емкостный конденсатор и через рабочую катушку. Рабочая катушка генерирует много тепла от тока. Даже если вы используете керамическую изоляцию внутри катушки (чтобы удерживать тепло), вы по-прежнему будете иметь чрезвычайно высокие температуры в рабочем пространстве, нагревающие катушку. Я начну работу с большим ведром ледяной воды и через некоторое время она станет горячей. Советую заготовить очень много льда.

Шаг 8: Обзор проекта

Выше представлен обзор проекта на 3 кВт. Он имеет простой PLL-драйвер, инвертор, соединительный трансформатор и бак.

Видео демонстрирует 12кВт индукционный горн в работе. Основное различие заключается в том, что он имеет управляемый микропроцессором драйвер, более крупные МОП-транзисторы и теплоотводы. Блок 3кВт работает от 120В переменного тока; блок 12 кВт использует 240В.

Вихревой индукционный нагреватель своими руками: делаем самодельный агрегат

Электрические нагревательные приборы исключительно удобны в эксплуатации. Они гораздо безопаснее, чем любое газовое оборудование, не производят копоти и сажи, в отличие от агрегатов, работающих на жидком или твердом топливе, наконец, для них не нужно заготавливать дрова и т. п. Главный недостаток электрических нагревателей — высокая стоимость электроэнергии. В поисках экономии некоторые умельцы решили изготовить индукционный нагреватель своими руками. Они получили отличное оборудование, для работы которого требуется гораздо меньше расходов.

Принцип работы индукционного нагрева

В работе индукционного нагревателя используется энергия электромагнитного поля, которую нагреваемый объект поглощает и преобразует в тепловую. Для генерирования магнитного поля используется индуктор, т. е. многовитковая цилиндрическая катушка. Проходя через этот индуктор, переменный электрический ток создает вокруг катушки переменное магнитное поле.

Самодельный инверторный нагреватель позволяет производить нагрев быстро и до очень высоких температур. С помощью таких устройств можно не только нагревать воду, но даже плавить различные металлы

Если внутрь индуктора или близ него разместить нагреваемый объект, его будет пронизывать поток вектора магнитной индукции, который постоянно меняется во времени. При этом возникает электрическое поле, линии которого располагаются перпендикулярно направлению магнитного потока и движутся по замкнутому кругу. Благодаря этим вихревым потокам электрическая энергия трансформируется в тепловую и объект нагревается.

Таким образом, электрическая энергия индуктора передается объекту без использования контактов, как это происходит в печах сопротивления. В результате тепловая энергия расходуется более эффективно, а скорость нагрева заметно повышается. Широко применяется этот принцип в области обработки металла: его плавки, ковки, пайки наплавки и т. п. С не меньшим успехом вихревой индукционный нагреватель можно использовать для подогрева воды.

Индукционный генератор тепла в системе отопления

Чтобы организовать отопление частного дома с помощью индукционного нагревателя, проще всего использовать трансформатор, который состоит из первичной и вторичной короткозамкнутой обмотки. Вихревые токи в таком устройстве возникают во внутренней составляющей и направляют образовавшееся электромагнитное поле на вторичный контур, который одновременно выполняет роль корпуса и нагревательного элемента для теплоносителя.

Обратите внимание, что в качестве теплоносителя при индукционном нагреве может выступать не только вода, но также антифриз, масло и любые другие токопроводящие среды. При этом степень очистки теплоносителя большого значения не имеет.

Инверторный нагреватель имеет компактные размеры, работает бесшумно и может быть установлен практически в любом подходящем месте, соответствующем требованиям техники безопасности

Индукционный отопительный котел оснащают двумя патрубками. Нижний патрубок, по которому будет поступать холодный теплоноситель, необходимо устанавливать на вводном участке магистрали, а вверху устанавливают патрубок, передающий горячий теплоноситель к подающему участку трубопровода. Когда теплоноситель, находящийся в котле, нагревается, возникает гидростатический напор, и теплоноситель поступает в отопительную сеть.

В работе индукционного нагревателя есть ряд преимуществ, о которых следует упомянуть:

  • теплоноситель в системе постоянно циркулирует, что предотвращает вероятность ее перегрева;
  • индукционная система вибрирует, в результате накипь и другие осадки не откладываются на стенках оборудования;
  • отсутствие традиционных нагревательных элементов позволяет эксплуатировать котел с высокой интенсивностью, не опасаясь частых поломок;
  • отсутствие разъемных соединений исключает протечки;
  • работа индукционного котла не сопровождается шумом, поэтому его можно установить практически в любом подходящем помещении;
  • при индукционном нагреве не выделяются какие-либо опасные продукты разложения топлива.

Безопасность, бесшумная работа, возможность использовать подходящий теплоноситель и долговечность оборудования привлекли немало домовладельцев. Некоторые из них задумываются о возможности изготовить самодельный индукционный нагреватель.

Как сделать индукционный нагреватель самому?

Самостоятельное изготовление такого нагревателя — не слишком сложная задача, с которой может справиться даже начинающий мастер. Для начала следует запастись:

  • куском пластиковой трубы с толстыми стенками, которая станет корпусом нагревателя;
  • стальной проволокой диаметром не более 7 мм;
  • переходниками для присоединения корпуса нагревателя к отопительной системе дома;
  • металлической сеткой, которая будет удерживать внутри корпуса кусочки стальной проволоки;
  • медной проволокой для создания индукционной катушки;
  • высокочастотным инвертором.

Для начала следует подготовить стальную проволоку. Для этого ее просто нарезают кусочками примерно 5 см длиной. Дно отрезка пластиковой трубы закрывают металлической сеткой, внутрь засыпают кусочки проволоки, сверху корпус также закрывают металлической сеткой. Корпус должен быть заполнен кусочками проволоки полностью. При этом приемлемой может быть проволока не только из «нержавейки», но также из других металлов.

Затем следует изготовить индукционную катушку. В качестве основы используется подготовленный пластиковый корпус, на который аккуратно наматывают 90 витков медной проволоки.

После того, как катушка готова, корпус с помощью переходников присоединяют к отопительной системе дома. После этого катушку подключают к сети через высокочастотный инвертор. Считается вполне целесообразным сделать индукционный нагреватель из сварочного инвертора, поскольку это самый простой и бюджетный вариант.

Чаще всего при изготовлении самодельных вихревых индукционных нагревателей используют недорогие модели сварочных инверторов, поскольку они удобны и полностью соответствуют требованиям

Необходимо отметить, что не стоит испытывать устройство, если в него не подается теплоноситель, иначе пластиковый корпус может очень быстро расплавиться.

Интересный вариант индукционного нагревателя, сделанного из варочной панели, представлен в видеоматериале:

Несколько полезных советов по безопасности

Чтобы повысить безопасность конструкции, советуется выполнить изоляцию открытых участков медной катушки.

Индукционный нагреватель рекомендован только для закрытых систем отопления, в которых осуществляется принудительная циркуляция теплоносителя с помощью насоса.

Следует размещать систему индукционного нагрева на расстоянии не менее 30 см от стен и мебели и не менее 80 см — от потолка или пола.

Чтобы сделать работу устройства более безопасной, рекомендуется оснастить его манометром, а также системой автоматического управления и приспособлениями для отвода попавшего в систему воздуха.

Оцените статью:

Поделитесь с друзьями!

устройство и принцип работы, схема изготовления своими руками

Индукционный нагреватель можно устанавливать в квартире, для этого не нужно никаких согласований и связанных с ними расходов и хлопот. Достаточно желания хозяина. Проект подключения требуется только теоретически. Это и стало одной из причин популярности индукционных нагревателей, даже несмотря на приличную стоимость электроэнергии.

Индукционный способ нагрева

Индукционный нагрев — это нагрев переменным электромагнитным полем проводника, помещенного в это поле. В проводнике возникают вихревые токи (токи Фуко), которые и нагревают его. По сути дела — это трансформатор, первичная обмотка — это катушка, называемая индуктором, а вторичная обмотка — это вкладка или короткозамкнутая обмотка. Тепло не подводится к вкладке, а генерируется в ней самой блуждающими токами. Все, окружающее ее, остается холодным, что является определенным преимуществом устройств такого рода.

Тепло во вкладке распределяется неравномерно, а только в поверхностных ее слоях и далее по объему распространяется за счет теплопроводности материала вкладки. Причем с повышением частоты переменного магнитного поля глубина проникновения уменьшается, а интенсивность увеличивается.

Для работы индуктора с частотой большей, чем в сети (50Гц), применяются транзисторные или тиристорные преобразователи частоты. Тиристорные преобразователи позволяют получать частоты до 8 КГц, транзисторные — до 25КГц. Схемы их подключения можно найти легко.

Планируя установку систем отопления в собственном доме или на даче, кроме прочих вариантов на жидком или твердом топливе, необходимо рассмотреть вариант с применением индукционного нагрева котла. С таким отоплением экономить на электроэнергии не удастся, но отсутствуют опасные для здоровья вещества.

Принцип работы индуктора

Основное назначение индуктора — выработка тепловой энергии за счет электрической без использования теплоэлектронагревателей принципиально другим способом.

Типовой индуктор состоит из следующих основных деталей и устройств:

  • генератор переменного тока — устройство для изменения сетевой частоты в более высокую, которая транслируется на катушку;
  • индуктор — катушка, в которой индуцируется переменное магнитное поле;
  • нагревательный элемент — металлический предмет, в котором под воздействием электромагнитного поля возникают вихревые токи, которые и нагревают проводник.

Устройство нагревательного прибора

Основные элементы индукционного нагревателя для отопительной системы.

  1. Стальная проволока диаметром 5-7 мм.
  2. Труба из пластика с толстой стенкой. Внутренний диаметр не менее 50 мм и длина подбирается по месту установки.
  3. Медная эмалированная проволока для катушки. Размеры подбираются в зависимости от мощности устройства.
  4. Сетка из нержавеющей стали.
  5. Сварочный инвертор.

Порядок изготовления индукционного котла

Вариант первый

Стальную проволоку порубить на отрезки длиной не более 50 мм. Рубленой проволокой заполнить пластиковую трубу. Торцы заглушить проволочной сеткой для предотвращения высыпания проволоки.

На концах трубы установить переходники от пластиковой трубы к размеру трубы в месте подключения нагревателя.

Медным эмалированным проводом намотать обмотку на корпусе нагревателя (пластиковой трубе). Для этого понадобится порядка 17 метров провода: количество витков — 90, наружный диаметр трубы порядка 60 мм: 3,14 х 60 х90 = 17 (метров). Длину уточните дополнительно, когда будет точно известен наружный диаметр трубы.

Пластиковую трубку, а теперь уже индукционный котел, врезать в трубопровод в вертикальном положении.

При проверке работоспособности индукционного нагревателя убедитесь, что в котле присутствует теплоноситель. В противном случае корпус (пластиковая труба) расплавится очень быстро.

Подключить котел к инвертору, необходимо заполнить систему теплоносителем и можно включать.

Вариант второй

Конструкция индукционного нагревателя из сварочного инвертора по этому варианту более сложна, требует определенных навыков и умений работать своими руками, однако, она более эффективна. Принцип тот же — индукционный нагрев теплоносителя.

Для начала нужно изготовить сам индукционный нагреватель — котел. Для этого понадобятся две трубки разного диаметра, которые вставляются одна в другую с зазором между ними порядка 20 мм. Длина трубок от 150 до 500 мм, в зависимости от предполагаемой мощности индукционного нагревателя. Нужно вырезать два кольца соответственно зазору между трубками и приварить их герметично по торцам. Получилась емкость тороидальной формы.

Остается вварить в наружную стенку входную (нижнюю) трубку по касательной к корпусу и верхнюю (выходную) трубку параллельно входной на противоположной стороне тороида. Размер трубок — по размеру труб отопительной системы. Расположение входного и выходного патрубков по касательной, обеспечит циркуляцию теплоносителя по всему объему котла без образования застойных зон.

Второй шаг — создание обмотки. Эмалированный медный провод нужно наматывать вертикально, пропуская его внутрь и поднимая наверх по внешнему контуру корпуса. И так 30-40 витков, образуя тороидальную катушку. В таком варианте нагреваться будет одновременно вся поверхность котла, таким образом, значительно повышая его производительность и эффективность.

Изготовить наружный корпус обогревателя из непроводящих материалов, использовав, например, пластиковую трубу большого диаметра или банальное пластиковое ведро, если будет достаточно его высоты. Диаметр наружного корпуса должен обеспечивать выход патрубков котла сбоку. Обеспечить соблюдение правил электробезопасности по всей схеме подключения.

Корпус котла отделить от наружного корпуса теплоизолятором, можно использовать как сыпучий термоизоляционный материал (керамзит), так и плиточный (изовер, минплита и тому подобное). Этим предотвращаются потери тепла в атмосферу от конвекции.

Остается заполнить систему своим теплоносителем и подсоединить индукционный нагреватель из сварочного инвертора.

Такой котел совершенно не требует вмешательства и может работать 25 и более лет без ремонта, поскольку в конструкции отсутствуют движущиеся детали, а в схеме подключения предусмотрено использование автоматического управления.

Вариант третий

Это, наоборот, самый простой вариант обогрева жилища, выполняемый своими руками. На вертикальной части трубы системы отопления нужно выбрать прямой участок длиной не менее метра и очистить его от краски наждачной шкуркой. Затем этот участок трубы изолировать 2-3 слоями электротехнической ткани или плотной стеклоткани. После этого эмалированным медным проводом намотать индукционную катушку. Тщательно изолировать всю схему подключения.

Остается только подключить сварочный инвертор и наслаждаться теплом в своем жилище.

Обратите внимание на несколько моментов.

  1. Нежелательно устанавливать такой обогреватель в жилых комнатах, где чаще всего находятся люди. Дело в том, что электромагнитное поле распространяется не только внутри катушки, но и в окружающем пространстве. Чтобы убедиться в этом, достаточно воспользоваться обыкновенным магнитом. Нужно взять его в руку и подойти к катушке (котлу). Магнит начнет ощутимо вибрировать и тем сильнее, чем ближе катушка. Поэтому лучше использовать котел в нежилой части дома или квартиры.
  2. Устанавливая катушку на трубе, убедитесь, что на этом участке системы отопления теплоноситель естественным образом течет вверх, чтобы не создавать противотока, иначе система вообще не будет работать.

Можно предложить много вариантов применения индукционного нагрева в жилище. Например, в системе горячего водоснабжения можно вообще отказаться от подачи горячей воды, подогревая ее на выходах из каждого крана. Однако, это тема для отдельного рассмотрения.

Несколько слов о безопасности при использовании индукционных нагревателей со сварочным инвертором:

  • для обеспечения электробезопасности необходимо тщательно изолировать токопроводящие элементы конструкций по всей схеме подключения;
  • индукционный нагреватель рекомендуется только для закрытых систем отопления, в которых циркуляция обеспечивается водяным насосом;
  • рекомендуется размещать индукционную систему на расстоянии не менее 30 см от стен и мебели и в 80 сантиметрах от пола или потолка;
  • чтобы обезопасить работу системы нужно оснастить систему манометром, аварийным клапаном и устройством автоматического регулирования.
  • установить устройство для стравливания воздуха из системы отопления во избежание образования воздушных пробок.

КПД индукционных котлов и нагревателей близка к 100%, при этом нужно учитывать, что потери электроэнергии в сварочных инверторах и проводке, так или иначе, возвращаются к потребителю в виде тепла.

Прежде чем приступать к изготовлению индукционной системы, посмотрите технические данные промышленных образцов. Это поможет определиться с исходными данными самодельной системы.

Желаем успехов в творчестве и труде на самого себя!

Оцените статью: Поделитесь с друзьями!

Как сделать простейший индукционный вихревой нагреватель своими руками — устройство и схема

Индукционный нагреватель, или индуктор, — прибор, который создает электромагнитное поле, нагревающее проводник, помещенный в это поле. Говоря простыми словами, это катушка, обрамленная медной проволокой. В основном индукторы используют с целью вырабатывания тепловой энергии за счет электрической без использования теплоэлектронагревателей.

Содержание материала

Принцип работы

Переменный ток проходит по обмотке катушки, образуя вокруг не магнитное поле. При введении в центр, внутрь витков, металлического предмета изменяется сила магнитного поля. Из-за этого и нагревается сам предмет, именуемый сердечником. Для того чтобы металл нагревался, катушка обязательно должна питаться переменным током большой частоты, иначе можно получить обычный электромагнит.

Существует два вида индукционных нагревателей:

  • индукторы, при изготовлении которых пользуются различными электронными деталями;
  • вихревой (ВИН) индуктор, им пользуются для обогрева дома, нагрева воды.

ВИН чаще всего встречается в повседневной жизни, так как его достаточно просто изготовить самостоятельно без особых затрат. Он работает на основе передачи энергии, преобразуемой в тепло, от магнитного поля к объекту, например, воде.

Как сделать в домашних условиях

Схема устройства довольно проста, так что самому можно без проблем сделать индукционный нагреватель.

Индуктор можно выполнить на любой базе, но нельзя забывать о теплоизоляции, без которой коэффициент полезного действия систем довольно сильно упадет.

Также нужно серьезно подойти к изготовлению самого важного элемента – катушки. Медную проволоку лучше наматывать очень аккуратно.

С использованием трансформатора

Базовым элементом данной схемы будет сам трансформатор, на котором уже содержатся первичная и вторичная обмотки. Электромагнитное индукционное поле, сформированное в первичной обмотке, начнет влиять на вторичную обмотку. Так, вторичная обмотка передаст энергию в виде тепла тому объекту, который требуется нагреть.

Инструкция выполнения:

  1. две трубки, отличающиеся размерами, соединить друг с другом с помощью сварки;
  2. на внешнюю трубку наложить 90-100 витков с одинаковым расстоянием между ними.

С инвертором

Основной составной частью этой системы станет высокочастотный сварочный инвертор, где уже есть индуктор, нагревательный элемент и генератор переменного тока.

Устройство генерирует высокочастотный ток, который передается на катушку. Она, в свою очередь, и создает магнитное поле, изменяющееся со временем. Его вихревой ток нагревает металлическую часть, которая и передает энергию нужному объекту.

Инструкция создания:

  1. в полимерную трубу поместить металл;
  2. на трубку наносятся сто витков проволоки из меди таким образом, чтобы не осталось большое пространство.

Таким образом, дома можно изготовить индукционный нагреватель без особых затрат и глубоких знаний физики. Главное, не забывать о безопасности.

Поделитесь материалом с друзьями в социальных сетях

Индукционный нагреватель DIY: 10 шагов (с изображениями)

Многие из вас, читающие это, могут спросить: «Что такое драйвер ZVS»? Что ж, это чрезвычайно эффективная схема генератора, способная создавать чрезвычайно мощное электромагнитное поле, которое нагревает металл. Это руководство показывает вам, как делать это основа индукционного нагревателя.

Чтобы понять, как работает этот блок питания, я объясню его различные разделы. Первая секция — это блок питания на 24 вольта.Блок питания должен выдавать 24 вольта при токе 10 ампер. В качестве источника питания я буду использовать две герметичные свинцово-кислотные батареи, соединенные последовательно. Затем питание подается на плату драйвера ZVS. Генератор ZVS проталкивает и пропускает ток через катушку вокруг нагреваемого объекта. Это постоянное изменение направления тока создает флуктуирующее магнитное поле. Это вызывает множество небольших вихревых токов в металле (см. Диаграмму выше). Все эти токи относительно велики, и из-за низкого сопротивления целевого металла выделяется тепло.2 * Р.

Теперь очень важен тип металла нагреваемого объекта. Черные металлы обладают более высокой магнитной проницаемостью, поэтому они могут использовать больше энергии магнитного поля. Это позволяет нагревать их быстрее, чем другие материалы. Металлы, такие как алюминий, имеют более низкую магнитную проницаемость, поэтому им требуется больше времени для нагрева. Вещи с высоким сопротивлением и низкой магнитной проницаемостью, такие как человеческий палец, вообще не будут нагреваться индукционным нагревателем.Также очень важна стойкость материала. Если у вас есть более высокое сопротивление в целевом металле, то будет течь меньше тока, поэтому мощность, преобразованная в тепло, станет экспоненциально меньше. Если у вас металл с меньшим сопротивлением, то ток будет выше, но потери мощности будут ниже из-за закона Ома. Это немного сложно, но из-за взаимосвязи между сопротивлением и выходной мощностью максимальная выходная мощность достигается, когда сопротивление объекта приближается к 0.

Генератор ZVS — самая сложная часть этой схемы, поэтому я собираюсь объяснить, как он работает. Прежде всего, когда ток включен, он проходит через 2 индуктивных дросселя с каждой стороны катушки. Дроссель предназначен для того, чтобы цепь не потребляла слишком много силы тока при запуске. Ток также течет через два резистора 470 Ом на затворы двух МОП-транзисторов. Теперь, поскольку ни один компонент не идеален, первым будет включаться один Mosfet. Когда это происходит, он забирает весь ток затвора от другого МОП-транзистора.Он также потянет сток того Mosfet, который находится на земле. Это не только позволит току течь через катушку к земле, но также позволит току течь через один из быстрых диодов, формирующих другой затвор другого МОП-транзистора, блокируя его. Поскольку параллельно катушке установлен конденсатор, он создает резонансный контур резервуара, который начинает колебаться. Из-за этого резонансного действия сток другого МОП-транзистора будет колебаться взад и вперед по своему напряжению, в конечном итоге достигая 0 вольт. Как только это напряжение будет достигнуто, заряд затвора от включенного МОП-транзистора разрядится через быстрый диод в сток противоположного МОП-транзистора, эффективно отключив его.Когда этот Mosfet выключен, у другого Mosfet есть возможность включиться. После этого цикл повторяется тысячи раз в секунду. Резистор 10 кОм предназначен для истощения любого избыточного заряда затвора на МОП-транзисторе, потому что он похож на конденсатор, а стабилитрон предназначен для поддержания на затворах МОП-транзисторов напряжения 12 В или ниже, чтобы они не взрывались. Этот высокочастотный генератор большой мощности позволяет нагревать металлические предметы.

Пришло время построить эту штуку!

Индукционный нагреватель

Индукционный нагреватель — интересное устройство, позволяющее быстро нагревать металлический предмет.Имея достаточную мощность, можно даже расплавить металл. Индукционный нагреватель работает без ископаемого топлива и может отжигать и нагревать предметы различной формы. Я решил сделать индукционный нагреватель, способный плавить сталь и алюминий, поэтому я собрал устройство, которое выдает около 3 киловатт! Затем я построил блок мощностью 10 кВт, который мог самостоятельно фиксировать резонансную частоту. Оба агрегата были способны левитировать металлы. В этом руководстве много страниц, заполненных практической и теоретической информацией, которая поможет вам в моих усилиях.Просто продолжайте нажимать «Далее», и в конце концов вы попадете на схемы. У меня их несколько для инверторов меньшего и большего размера.

*****

Я собрал несколько плейлистов на Youtube, в которых объясняются более тонкие детали создания надежного индукционного нагревателя. На моем канале есть видеоролики, показывающие, как это работает, и видеоролики, объясняющие, как проектировать и делать различные части. Мой хороший плейлист —-> здесь, но на YouTube-канале Imsmoother есть еще больше видео.

*****

В первой части этого руководства я расскажу о моей разработке инвертора на 3 кВт. Моей первоначальной целью было быстрое нагревание металлов. Моей следующей целью было левитировать металлы. Мне это удалось, но я понял, что не могу левитировать из твердой меди и стали. Их плотность была слишком велика для магнитного поля. Это была моя конечная цель: левитировать и удерживать расплавленную медь и сталь. В конце этого урока я перейду к разработке блока мощностью 10 кВт, который реализовал эту цель.Я также остановлюсь на проблемах, которые пришлось преодолеть, чтобы этого добиться.

Начнем.

Мой индукционный нагреватель — инвертор. Инвертор использует источник постоянного тока и преобразует его в переменный ток. Электропитание переменного тока приводит в действие трансформатор, который соединен с последовательным баком LC. Частота инвертора устанавливается равной резонансной частоте резервуара, что позволяет генерировать очень высокие токи внутри катушки резервуара. Катушка соединена с заготовкой и создает вихревые токи.2. Заготовка похожа на однооборотную катушку; рабочая катушка имеет несколько витков. Таким образом, у нас есть понижающий трансформатор, поэтому в заготовке генерируются еще более высокие токи.

Я хотел бы поблагодарить Джона Дирмонда, Тима Уильямса, Ричи Бернетта и других участников форума 4hv за неоценимую помощь за то, что они помогли мне разобраться в этой теме. А теперь, прежде чем мы поговорим подробнее, давайте посмотрим на несколько изображений того, на что он способен:

Позже дам ссылку на видео, где он работает.Вот инвертор:

Теперь я перейду к каждой части. Затем я дам схемы, расскажу о том, как вы можете построить это устройство.

Самодельный индукционный нагреватель Схема DIY

Схема индукционного нагревателя

Как работают эти индукционные нагреватели? Мы рассмотрим схему и шаг за шагом объясним, как создается колебательный сигнал, как индуцируется ток и как нагревается металл. Наконец, мы используем эту схему и устанавливаем самодельную версию и смотрим, работает ли она на нагрев некоторых металлов.Так что посмотрим …

ЧАСТЬ 1 — Коммерческий модуль

Во-первых, чтобы узнать и сопоставить сигналы, я купил один из этих коммерческих модулей индукционного нагревателя. Он рекламируется как 1000 Вт mdoule. Мы видим огромные конденсаторы, несколько катушек и еще несколько компонентов, а на выходе — огромную катушку из толстой медной проволоки. Эта выходная катушка создаст мощное колеблющееся магнитное поле, которое будет нагревать металлы, и мы увидим, как это сделать.Я делаю еще одну катушку из медного провода и помещаю ее рядом с катушкой индукционного нагревателя, и, как вы можете видеть на осциллографе, у нас есть колебательный сигнал около 100 МГц.

Чтобы понять, как этот модуль нагревает металлы, нам нужно понять 3 вещи. Во-первых, как магнитные поля могут индуцировать токи внутри металлов и обратный процесс, как токопроводящие провода будут создавать магнитные поля. Затем нам нужно увидеть, как резонанс этих катушек и конденсаторов будет создавать высокочастотные сигналы и, наконец, как ток будет нагревать металлы.Как вы можете видеть ниже, после включения модуля эти высокочастотные и мощные колебания нагревают металл до ярко-красного цвета всего за несколько секунд.

ЧАСТЬ 2 — Закон Фарадея

Закон индукции Фарадея — это основной закон электромагнетизма, предсказывающий, как магнитное поле будет взаимодействовать с электрической цепью, создавая явление электродвижущей силы, называемое электромагнитной индукцией. Это основной принцип работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.Таким образом, движущийся магнит будет создавать изменения магнитного потока внутри катушки, и тем самым мы можем индуцировать ток внутри катушки. Но что еще могло образовывать магнитные поля?

Что ж, еще один компонент, помимо amgnet, который также создает магнитные поля, — это катушка. Да, катушка может производить обратный процесс индукции тока. Если мы подаем ток через катушку, будет создано магнитное поле, поэтому нам не нужны магниты. Катушка могла создавать магнитное поле и наводить ток во второй катушке, как трансформаторы.Итак, теперь мы знаем, как индуцировать ток, и этот ток будет нагревать наш металл. Ниже вы можете увидеть, как я передаю сигнал от одной катушки к другой.

ЧАСТЬ 3 — Частота резонанса

В этом примере мы будем использовать параллельно катушку и конденсатор. Это называется резервуаром LC, и если мы ударим по нему электроникой, он будет резонировать на своей резонансной частоте. Итак, если я приложу небольшой импульс напряжения, и они отключат соединение, это создаст быстро колеблющийся сигнал.Я подключаю конденсатор и катушку параллельно и очень быстро прикасаюсь к одному кабелю с напряжением 12 В к этому резервуару LC. Посмотрите ниже, что происходит. После прикосновения к резервуару LC я получаю на осциллографе первый осциллирующий сигнал, который медленно затухает. Итак, теперь мы получаем наши высокочастотные и мощные колебания, которые позже индуцируют ток внутри металла. Но наша схема работает немного иначе. Для этого давайте взглянем на схему базового и простого модуля индукционного нагревателя.

ЧАСТЬ 4 — Схема

В этом примере мы будем использовать параллельно катушку и конденсатор.Это называется резервуаром LC, и если мы ударим по нему электроникой, он будет резонировать на своей резонансной частоте. Итак, если я приложу небольшой импульс напряжения, и они отключат соединение, это создаст быстро колеблющийся сигнал. Я подключаю конденсатор и катушку параллельно и очень быстро прикасаюсь к одному кабелю с напряжением 12 В к этому резервуару LC. Посмотрите ниже, что происходит. После прикосновения к резервуару LC я получаю на осциллографе первый осциллирующий сигнал, который медленно затухает. Итак, теперь мы получаем наши высокочастотные и мощные колебания, которые позже индуцируют ток внутри металла.Но наша схема работает немного иначе. Для этого давайте взглянем на схему базового и простого модуля индукционного нагревателя.

Итак, как вы можете видеть на схеме выше, у нас на выходе 3 катушки. Пока не обращайте внимания на катушку L3, потому что это будет выходная катушка, которая будет создавать магнитное поле. У нас есть 2 катушки, L1 и L2, и один конденсатор, C1. У нас будет резонанс, как и раньше, но на этот раз он будет другим и никогда не прекратится. Как вы можете видеть, у нас также есть два диода, D1 и D2, которые подключены к затвору двух транзисторов, T1 и T2.Когда сигнал сначала колеблется на C1, на одной стороне C1 будет положительное напряжение, а на другой стороне C1 — отрицательное напряжение. Таким образом, один диод будет пропускать ток, а другой — нет. Таким образом, один транзистор будет включен, а другой выключен. Но буквально через мгновение из-за этого процесса полярность на C1 изменится, и это активирует второй транзистор и выключит другой. И этот процесс будет повторяться снова и снова, и это изменит поток тока внутри катушки L3, потому что, как вы можете видеть, один enf этой катушки подключен к 15 В, а другой конец будет подключен к отрицательному или положительному, и тем самым будет создаваться колебательный ток.Это создаст колеблющееся магнитное поле.

Помогите мне, поделившись этим постом

2 Простые схемы индукционного нагревателя — плиты-плиты

В этом посте мы узнаем о двух простых в сборке схемах индукционного нагревателя, которые работают с принципами высокочастотной магнитной индукции для генерирования значительного количества тепла на небольшом заданном радиусе.

Обсуждаемые схемы индукционной плиты действительно просты и используют всего несколько активных и пассивных обычных компонентов для требуемых действий.


Обновление: Вы также можете узнать, как разработать свою собственную варочную панель индукционного нагревателя:
Проектирование цепи индукционного нагревателя — Учебное пособие


Принцип работы индукционного нагревателя

Индукционный нагреватель — это устройство, которое использует высокочастотное магнитное поле для нагрева железного груза или любого ферромагнитного металла посредством вихревого тока.

Во время этого процесса электроны внутри железа не могут двигаться со скоростью, равной частоте, и это приводит к возникновению в металле обратного тока, называемого вихревым током.Это развитие сильного вихревого тока в конечном итоге приводит к нагреванию утюга.

Вырабатываемое тепло пропорционально току 2 x сопротивлению металла. Поскольку предполагается, что загружаемый металл состоит из железа, мы рассматриваем сопротивление R для металлического железа.

Тепло = I 2 x R (Железо)

Удельное сопротивление железа составляет: 97 нОм · м

Вышеупомянутое тепло также прямо пропорционально наведенной частоте, поэтому обычные трансформаторы с штамповкой из железа не используются в В приложениях с высокочастотным переключением вместо сердечников используются ферритовые материалы.

Однако здесь вышеупомянутый недостаток используется для получения тепла от высокочастотной магнитной индукции.

Обращаясь к предлагаемым ниже схемам индукционного нагревателя, мы находим концепцию, использующую ZVS или технологию переключения нулевого напряжения для требуемого запуска полевых МОП-транзисторов.

Технология обеспечивает минимальный нагрев устройств, что делает работу очень эффективной и действенной.

Кроме того, цепь, являющаяся саморезонансной по своей природе, автоматически настраивается на резонансную частоту присоединенной катушки и конденсатора, вполне идентичных цепи с резервуаром.

Использование генератора Ройера

В схеме в основном используется генератор Ройера, который отличается простотой и саморезонансным принципом работы.

Функционирование схемы можно понять по следующим пунктам:

  1. При включении питания положительный ток начинает течь от двух половин рабочей катушки к стокам МОП-транзисторов.
  2. В то же время напряжение питания также достигает ворот МОП-транзисторов, включая их.
  3. Однако из-за того, что никакие два МОП-транзистора или какие-либо электронные устройства не могут иметь точно одинаковые характеристики проводимости, оба МОП-транзистора не включаются вместе, скорее, один из них включается первым.
  4. Давайте представим, что T1 включается первым. Когда это происходит, из-за сильного тока, протекающего через T1, его напряжение стока имеет тенденцию падать до нуля, что, в свою очередь, высасывает напряжение затвора другого МОП-транзистора T2 через присоединенный диод Шоттки.
  5. Здесь может показаться, что T1 может продолжать вести себя и уничтожать себя.
  6. Однако именно в этот момент включается контур резервуара L1C1, который играет решающую роль. Внезапное проведение T1 вызывает скачок и коллапс синусоидального импульса на стоке T2. Когда синусоидальный импульс схлопывается, он снижает напряжение затвора T1 и отключает его. Это приводит к повышению напряжения на стоке T1, что позволяет восстановить напряжение затвора для T2. Теперь настала очередь Т2 проводить, Т2 теперь проводит, вызывая повторение, аналогичное тому, которое имело место для Т1.
  7. Этот цикл теперь продолжается быстро, заставляя контур колебаться на резонансной частоте контура резервуара LC. Резонанс автоматически настраивается на оптимальную точку в зависимости от того, насколько хорошо совпадают значения LC.

Однако основным недостатком конструкции является то, что в ней используется центральная катушка с ответвлениями в качестве трансформатора, что немного усложняет реализацию обмотки. Однако центральный отвод обеспечивает эффективный двухтактный эффект через катушку всего через пару активных устройств, таких как МОП-транзисторы.

Как видно, через затвор / исток каждого МОП-транзистора подключены диоды с быстрым восстановлением или высокоскоростным переключением.

Эти диоды выполняют важную функцию разряда емкости затвора соответствующих МОП-транзисторов во время их непроводящих состояний, тем самым делая операцию переключения быстрой и быстрой.

Как работает ZVS

Как мы обсуждали ранее, эта схема индукционного нагревателя работает по технологии ZVS.

ZVS означает переключение при нулевом напряжении, то есть МОП-транзисторы в цепи включаются, когда на их стоках присутствует минимальная или величина тока, или нулевой ток, мы уже узнали это из объяснения выше.

Это на самом деле помогает МОП-транзисторам безопасно включаться, и, таким образом, эта функция становится очень полезной для устройств.

Эту функцию можно сравнить с проводимостью при переходе через нуль для симисторов в цепях переменного тока.

Из-за этого свойства МОП-транзисторы в таких саморезонансных цепях ZVS требуют гораздо меньших радиаторов и могут работать даже с массивными нагрузками до 1 кВА.

Поскольку частота контура является резонансной по своей природе, она напрямую зависит от индуктивности рабочей катушки L1 и конденсатора C1.

Частота может быть рассчитана по следующей формуле:

f = 1 / (2π * √ [ L * C] )

Где f — частота, вычисленная в Hertz
L — индуктивность основной нагревательной катушки L1, представленная в Henries
, а C — емкость конденсатора C1 в фарадах

МОП-транзисторы

Вы можете использовать IRF540 в качестве МОП-транзисторов, которые рассчитаны на хорошие 110 В, 33 ампера.Для них можно использовать радиаторы, хотя выделяемое тепло не вызывает беспокойства, но все же лучше укрепить их на теплопоглощающих металлах. Однако можно использовать любые другие N-канальные полевые МОП-транзисторы с соответствующим номиналом, для этого нет никаких особых ограничений.

Индуктор или катушки индуктивности, связанные с катушкой главного нагревателя (рабочей катушкой), представляют собой своего рода дроссель, который помогает исключить любое возможное попадание высокочастотной составляющей в источник питания, а также ограничивает ток до безопасных пределов.

Значение этого индуктора должно быть намного выше по сравнению с рабочей катушкой. Обычно для этой цели вполне достаточно 2 мГн. Однако он должен быть построен с использованием проводов большого сечения, чтобы обеспечить безопасное прохождение через него большого диапазона тока.

Контур резервуара

C1 и L1 составляют здесь контур резервуара для предполагаемой фиксации высокой резонансной частоты. Опять же, они тоже должны быть рассчитаны на то, чтобы выдерживать высокие значения тока и тепла.

Здесь мы видим использование металлизированных полипропиленовых конденсаторов 330 нФ / 400 В.

1) Мощный индукционный нагреватель с использованием концепции драйвера Mazzilli

Первая конструкция, описанная ниже, представляет собой высокоэффективную индукционную концепцию ZVS, основанную на популярной теории драйверов Мазилли.

Он использует одну рабочую катушку и две катушки ограничителя тока. Такая конфигурация исключает необходимость центрального отвода от основной рабочей катушки, что делает систему чрезвычайно эффективной и обеспечивает быстрый нагрев нагрузки огромных размеров. Нагревательный змеевик нагревает нагрузку посредством двухтактного механизма полного моста.

Модуль фактически доступен в Интернете и может быть легко куплен по очень разумной цене.

Принципиальная схема этой конструкции представлена ​​ниже:

Исходную схему можно увидеть на следующем изображении:

Принцип работы — та же технология ZVS с использованием двух полевых МОП-транзисторов высокой мощности. Вход питания может иметь диапазон от 5 В до 12 В и ток от 5 до 20 ампер в зависимости от используемой нагрузки.

Выходная мощность

Выходная мощность вышеуказанной конструкции может достигать 1200 Вт при повышении входного напряжения до 48 В и тока до 25 ампер.

На этом уровне тепло, выделяемое рабочим змеевиком, может быть достаточно высоким, чтобы за минуту расплавить болт толщиной 1 см.

Размеры рабочей катушки

Видео-демонстрация

2) Индукционный нагреватель с использованием рабочей катушки с центральным отводом

Эта вторая концепция также является индукционным нагревателем ZVS, но использует центральную бифуркацию для рабочей катушки, который может быть немного менее эффективным по сравнению с предыдущей конструкцией. L1, который является наиболее важным элементом всей схемы.Он должен быть построен с использованием очень толстых медных проводов, чтобы выдерживать высокие температуры во время индукционных операций.

Конденсатор, как описано выше, в идеале должен быть подключен как можно ближе к клеммам L1. Это важно для поддержания резонансной частоты на указанной частоте 200 кГц.

Технические характеристики первичной рабочей катушки

Для катушки индукционного нагревателя L1 многие медные провода диаметром 1 мм могут быть намотаны параллельно или бифилярно, чтобы более эффективно рассеивать ток, вызывая меньшее тепловыделение в катушке.

Даже после этого катушка может подвергаться сильному нагреву и может деформироваться из-за этого, поэтому можно попробовать альтернативный метод намотки.

В этом методе мы наматываем его в виде двух отдельных катушек, соединенных в центре для получения требуемого центрального отвода.

В этом методе можно попробовать использовать меньшие витки для уменьшения импеданса катушки и, в свою очередь, увеличения ее способности выдерживать ток.

Емкость для этой схемы, напротив, может быть увеличена, чтобы пропорционально понизить резонансную частоту.

Конденсаторы резервуара:

Всего 330 нФ x 6 можно использовать для получения чистой емкости приблизительно 2 мкФ.

Как прикрепить конденсатор к индукционной катушке

На следующем изображении показан точный метод подключения конденсаторов параллельно концевым выводам медной катушки, предпочтительно через печатную плату хорошего размера.

Список деталей для указанной выше цепи индукционного нагревателя или индукционной нагревательной плиты

  • R1, R2 = 330 Ом 1/2 Вт
  • D1, D2 = FR107 или BA159
  • T1, T2 = IRF540
  • C1 = 10,000 мкФ / 25 В
  • C2 = 2 мкФ / 400 В, получено путем параллельного подсоединения показанных ниже конденсаторов 6nos 330 нФ / 400 В
  • D3 —- D6 = 25-амперные диоды
  • IC1 = 7812
  • L1 = латунная трубка 2 мм намотанный, как показано на следующих рисунках, диаметр может быть где-то около 30 мм (внутренний диаметр катушек)
  • L2 = 2 мГн дроссель, полученный путем наматывания магнитного провода 2 мм на любой подходящий ферритовый стержень
  • TR1 = 0-15 В / 20 ампер
  • ИСТОЧНИК ПИТАНИЯ: Используйте стабилизированный источник питания постоянного тока 15 В, 20 А.
Использование транзисторов BC547 вместо быстродействующих диодов

На приведенной выше схеме индукционного нагревателя мы видим затворы полевых МОП-транзисторов, состоящих из диодов с быстрым восстановлением, которые может быть трудно получить в некоторых частях страны.

Простая альтернатива этому может заключаться в транзисторах BC547, подключенных вместо диодов, как показано на следующей диаграмме.

Транзисторы будут выполнять ту же функцию, что и диоды, поскольку BC547 может хорошо работать на частотах около 1 МГц.

Еще одна простая конструкция «сделай сам»

На следующей схеме показана еще одна простая конструкция, аналогичная приведенной выше, которую можно быстро сконструировать дома для реализации индивидуальной системы индукционного нагрева.

Список деталей

  • R1, R4 = 1K 1/4 Вт MFR 1%
  • R2, R3 = 10K 1/4 Вт MFR 1%
  • D1, D2 = BA159 или FR107
  • Z1, Z2 = 12 В, Стабилитрон 1/2 Вт
  • Q1, Q2 = МОП-транзистор IRFZ44n на радиаторе
  • C1 = 0,33 мкФ / 400 В или 3 н.у.1 мкФ / 400 В параллельно
  • L1, L2, как показано на следующих изображениях:
  • L2 восстановлен от любого старого блока питания компьютера ATX.

Как устроен L2

Преобразование в горячую плиту Кухонная посуда

Вышеупомянутые разделы помогли нам изучить простую схему индукционного нагревателя с использованием пружинной катушки, однако эту катушку нельзя использовать для приготовления пищи, и она требует некоторых серьезные модификации.

В следующем разделе статьи объясняется, как изложенную выше идею можно изменить и использовать в качестве простой небольшой индукционной цепи нагревателя посуды или индукционной цепи кадай.

Дизайн низкотехнологичный, маломощный и может отличаться от обычных устройств. Схема была запрошена г-ном Дипешом Гуптой

Технические характеристики

Сэр,

Я прочитал вашу статью Простая схема индукционного нагревателя — Схема горячей плиты и был очень рад обнаружить, что есть люди, готовые помочь таким молодым людям, как мы, в сделай что-нибудь ….

Сэр, я пытаюсь понять принцип работы и пытаюсь разработать для себя индукционный кадай… Сэр, пожалуйста, помогите мне разобраться в дизайне, так как я так хорош в электронике

Я хочу разработать индукцию для нагрева кадай диаметром 20 дюймов с частотой 10 кГц по очень низкой цене !!!

Я видел ваши схемы и статью, но немного запутался насчет

  • 1. Используемый трансформатор
  • 2. Как сделать L2
  • 3. И любые другие изменения в схеме для частоты 10-20 кГц при токе 25А

Пожалуйста, помогите мне, сэр, как можно скорее..Это будет полезно, если вы можете предоставить точную информацию о необходимых компонентах. PlzzИ, наконец, вы упомянули об использовании ИСТОЧНИКА ПИТАНИЯ: Используйте регулируемый источник питания постоянного тока 15 В, 20 А. Где это используется ….

Спасибо

Dipesh gupta

The Design

Предлагаемая конструкция индукционной кадайной цепи, представленная здесь, предназначена только для экспериментальных целей и может не служить как обычные устройства. Его можно использовать для быстрого приготовления чашки чая или омлета, и ничего большего ожидать не стоит.

Указанная схема изначально была разработана для нагрева таких предметов, как железный стержень, например, головки болта. отвертка металлическая и т. д., однако с некоторыми изменениями эта же схема может быть применена для нагрева металлических кастрюль или сосудов с выпуклым дном типа «кадай».

Для реализации вышеизложенного исходная схема не нуждалась бы в каких-либо изменениях, за исключением основной рабочей катушки, которую нужно будет немного подправить, чтобы сформировать плоскую спираль вместо пружинной конструкции.

В качестве примера, чтобы преобразовать конструкцию в индукционную посуду, чтобы она поддерживала сосуды с выпуклым дном, такие как кадай, змеевик должен иметь сферически-спиральную форму, как показано на рисунке ниже: Схема будет такой же, как объяснено в моем предыдущем разделе, который в основном представляет собой конструкцию на основе Ройера, как показано здесь:

Проектирование спиральной рабочей катушки

L1 изготавливается путем использования 5-6 витков 8-миллиметровой медной трубки в сферическую форму. -спиральная форма, как показано выше, для размещения небольшой стальной чаши посередине.

Катушка может быть также плоско сжата в спиральную форму, если небольшая стальная кастрюля предназначена для использования в качестве посуды, как показано ниже:

Конструирование ограничителя тока Катушка

L2 может быть изготовлена ​​путем наматывания суперэмалированной пленки толщиной 3 мм. медный провод над толстым ферритовым стержнем, количество витков необходимо экспериментировать, пока на его выводах не будет достигнуто значение 2 мГн.

TR1 может быть трансформатором 20 В 30 ампер или источником питания SMPS.

Фактическая схема индукционного нагревателя довольно проста по своей конструкции и не требует особых объяснений, необходимо позаботиться о следующих вещах:

Резонансный конденсатор должен располагаться относительно ближе к основной рабочей катушке. L1 и должен быть получен путем подключения примерно 10 ноль 0.22 мкФ / 400 В параллельно. Конденсаторы должны быть строго неполярного и металлизированного полиэфирного типа.

Хотя конструкция может показаться довольно простой, нахождение центрального отвода внутри спирально намотанной конструкции может вызвать некоторую головную боль, потому что спиральная катушка будет иметь несимметричную компоновку, что затруднит определение точного центрального отвода для схемы.

Это можно сделать методом проб и ошибок или с помощью LC-метра.

Неправильно расположенный центральный ответвитель может заставить схему работать ненормально или производить неравномерный нагрев МОП-транзисторов, или вся схема может просто не колебаться в худшей ситуации.

Ссылка: Википедия

Как построить индукционный нагреватель и как он работает?

Как построить индукционный нагреватель и как он работает?

#DIY

Индукционный нагрев — это процесс нагрева с помощью электропроводящего объекта. Объект обычно металлический и использует вихревые токи для производства тепла. Процесс работает по принципу электромагнитной индукции. Этот процесс нагрева является точным,
Быстрым, эффективным и бесконтактным методом.

Система индукционного нагрева включает в себя индукционный источник питания и преобразует
в переменный ток. Ток подается на рабочую головку и катушку,
Он генерирует в ней электромагнитное поле.
Компонент расположен в катушке индукционного нагревателя, а поле
индуцирует ток на заготовке, превращающийся в тепловыделение.

Как сделать индукционный нагреватель?

Посмотрите видео ниже

В индукционном нагревателе используется система индукционного нагрева для нагрева в различных целях.Эти нагреватели применяются в промышленности, в металлургических цехах,
Индукционных варочных панелях и чаще всего для кипячения воды. Процедура изготовления индукционного нагревателя проста и эффективна.

Работает по принципу высокочастотной магнитной индукции. Схема очень проста и использует только общие компоненты. Индукционная катушка металлическая и обычно используется медь. Он потребляет ток 5А и нагревает кончик отвертки всего за 30 секунд.

Схема состоит из встроенных транзисторов для индукции тока в катушке.Схема управления индукционного нагревателя использует переключение нулевого напряжения на
Активируйте транзисторы и обеспечивает эффективный поток энергии. Ток протекает в катушке и производит вихревые токи. Благодаря вихревым токам вокруг заготовки индуцируется магнитное поле. Магнитное поле наводит ток на компонент, превращающийся в тепловыделение.

Как работает катушка в индукционном нагревателе?

С помощью поля переменного тока
Энергия проходит через рабочую катушку индукционного нагревателя на рабочем месте.
Ток, проходящий через катушку индукционного нагревателя.
Создает магнитное поле и наводит вихревые токи на заготовке. Это генерирование вихревых токов на компоненте нагревает его до необходимой температуры.

Легко сделать индукционный нагреватель

Дополнительная принципиальная схема

DIY Индукционный нагреватель мощностью 5 кВт | HomeBrewTalk.com

2 года назад я построил систему индукционного нагрева мощностью 5 кВт для Thing1 (ссылка в моей подписке). С тех пор я приготовил на нем дюжину безотказных партий.

Я считаю, что индукционный нагрев идеален для пивоварения. Он быстро нагревается. Нагревается мягко, не пригорает сусло или затор. Нет проникновения в чайник, который он нагревает. Тихо. Не выделяет дымовых газов. У вас никогда не заканчивается топливо. Недорого в эксплуатации. Чистить очень легко.

Прямой нагрев заторного чана с помощью индукции намного проще и эффективнее, чем нагрев с помощью RIMS или HERMS. И есть небольшая вероятность ожога, в отличие от обычного электрического нагревательного элемента, такого как Grainfather или пропанового тепла.

После приготовления 12 порций дно моего чайника выглядит как новое, и для очистки никогда не требовалось ничего, кроме тряпки. Все мое пиво получилось превосходным.

Несколько человек просили инструкций по сборке обогревателя. Я воздержался, потому что беспокоился о безопасности, сложности, надежности и т. Д. После 2 лет использования я чувствую себя комфортно, рассказывая о том, что я сделал.

ВНИМАНИЕ: этот проект связан с электричеством высокого напряжения. Вы несете ответственность за свою безопасность.НЕ ПРОДОЛЖАЙТЕ ДАННЫЙ ПРОЕКТ, ЕСЛИ ВЫ НЕ УВАЖАЕТЕСЬ БЕЗОПАСНО РАБОТАТЬ С ВЫСОКОВОЛЬТНЫМ ЭЛЕКТРИЧЕСКИМ ТОКОМ. Не воспринимайте все, что я сделал, как Евангелие. Мои идеи и реализация могут иметь недостатки, которых я не обнаружил. ДЕЙСТВУЙТЕ НА СВОЙ СОБСТВЕННЫЙ РИСК. Я НЕ НЕСУ НИКАКОЙ ОТВЕТСТВЕННОСТИ ЗА ВСЕ, ЧТО ВЫ ДЕЛАЕТЕ. Если у вас нет навыков и знаний, чтобы самостоятельно построить эту систему, вы обязаны найти КТО-ТО ЕЩЕ, чтобы помочь вам.

ВНИМАНИЕ! Я не собираюсь подробно объяснять все детали об индукционном нагреве или о том, как построить индукционный нагреватель мощностью 5 кВт.Я предоставлю общие детали, а теорию и реализацию оставлю на усмотрение разработчика (-ов). На HomebrewTalk.com много умных людей. В совокупности я уверен, что вы, ребята, сможете это понять.

ПРЕДУПРЕЖДЕНИЕ: Всегда используйте это устройство от источника питания GFCI. Даже при тестировании и сборке. БЕЗ ИСКЛЮЧЕНИЙ !

Эта система индукционного нагрева немного привередлива / технически сложна. Но как только вы это обдумаете, все станет ясно. Это может показаться устрашающим, но на самом деле это довольно просто, если обратить внимание на детали.По сути, весь проект заключается в установке платы индукционного драйвера и намотке для нее катушки.

Есть 2 основных компонента для создания индукционного нагревателя мощностью 5 кВт — драйвер индукционной катушки и сама катушка.

Driver Board

Это драйвер индукционной катушки, который я использовал.

Покупки с умом, жизнь лучше! Aliexpress

www.aliexpress.com

Предупреждение: есть еще одна плата драйвера индукционного нагревателя с меньшим теплоотводом, которая, как заявлено, выдает 5 кВт, но на самом деле выдает 3.5кВт.

Плата с драйверами, которую я использовал, доступна на нескольких веб-сайтах. На некоторых из этих веб-сайтов могут быть лучшие цены или варианты доставки.

ПРИМЕЧАНИЕ: существует ряд коммерчески доступных модулей индукционных драйверов с выходной мощностью выше и ниже 5 кВт. Принципы, содержащиеся в этой сборке, должны быть применимы к большинству других индукционных систем. Это второй индукционный нагреватель, который я построил. Первый выход 3кВт.

Этот приводной блок был разработан для нагрева плавильной камеры машины для экструзии пластмасс.При этом, если вы понимаете принципы индукционного нагрева, применение платы драйвера не имеет значения. Вы можете использовать одну и ту же плату драйвера для самых разных нагревательных приложений.

У меня есть контактный адрес электронной почты специалиста по продажам и технической поддержке этой платы драйверов. Послепродажная поддержка ужасна. Не ждите послепродажной поддержки. Устройство не поставляется с какой-либо документацией.

Вот характеристики устройства: (скопировано с сайта)

================================== ============================

5.Электромагнитный нагреватель 0 кВт ручной

Во-первых, основные технические параметры нагревателя 5,0 кВт:

1: Размер: 219 * 160 * 160 (длина * ширина * высота)

2: Рабочее напряжение: 220 В

3: Мощность (регулируется ): 3500 Вт-5000 Вт

4: Индуктивность нагрузки: 65 ± 5 мкГн

5: Эффективность преобразования> 90%

6: Рабочая частота: 20-25 кГц

7: Рабочая температура: от -10 градусов до +50 градусов

8: Рабочий режим: непрерывный нагрев

9: Защита от волн — + 1500 В

10: Защита от помех: 4000 В

11: Расстояние установки индукционной катушки до нагревательного элемента составляет 17 мм (толщина эпоксидной плиты добавляется после прессования изоляционной ваты)

12: Несколько комплектов катушек намотаны вокруг одного и того же нагревательного элемента, а расстояние между катушками превышает 2 см.

13: Ток 19-21A, 8-10 квадратных линий, около 9-11 метров, изоляционная вата 15-20 мм, индуктивность — только один параметр, (ток отлажен)

Необходимо использовать зажим. введите амперметр для измерения входного тока и того, достигает ли он номинального входного тока. Если это невозможно, отрегулируйте его против часовой стрелки с помощью потенциометра. Обратите внимание, что если текущее отображаемое значение становится меньше, его нельзя изменить. Возможно, индуктивность слишком велика. Следовательно, необходимо уменьшить индуктивность.(Индуктивность уменьшается, то есть количество витков катушки уменьшается, входящий ток большой, а количество витков катушки увеличивается.)

Во-вторых, инструкции по подключению

1. Три индикатора световыми индикаторами являются «Power Light», «Work Light» и «Fault Light». «Индикатор питания» и «рабочий свет» горят во время нормальной работы. Индикатор неисправности не горит. Индикатор неисправности мигает, когда в цепи возникает неисправность.

2. Источник питания 220 В подключается к столбцу «подключено к 220 В переменного тока», и к нему можно получить доступ без какой-либо пожарной линии.

3. Катушка подсоединяется к двум клеммам на концах электромагнитной катушки, и винты должны быть затянуты.

4. Плата настроена на заводе для подачи питания и может работать. В это время есть линия короткого замыкания (черная) в гнезде «переключателя управления» для короткого замыкания гнезда. Вы также можете аккуратно удалить провод короткого замыкания (черный) на розетке «переключателя управления» вручную, вставить один конец двухжильного кабеля в разъем «переключателя управления» и подключить два других штекера к термостату.К испытательной машине можно подключить два нормально разомкнутых контакта.

1. Провод мягкого переключателя, кабель питания и провод электромагнитной катушки нельзя соединять друг с другом или иметь какое-либо соединение с внешним корпусом.

2. Не подвергайте воздействию электричества и не лейте воду в воду после включения.

3, примечание: радиатор, вентилятор заземлять нельзя!

================================================ ================

Несколько замечаний по поводу платы драйвера:

1) Мой блок не тушит и не потребляет 5кВт.Я не совсем уверен, почему, но я подозреваю, что горшок, который я использую (Bayou Classic 1044), лишь незначительно подходит для этого приложения, то есть дно слишком тонкое, чтобы обладать достаточным магнитным сопротивлением, чтобы позволить устройству выдавать полную мощность. Моя кастрюля также находится дальше от индукционной катушки (3/8 дюйма), чем оптимально. Было бы лучше, если бы она была ближе.

Моя установка потребляет от 16 до 18 ампер при 240 В переменного тока, в зависимости от того, насколько теплое сусло. Я подозреваю, что это обеспечил бы полную мощность (20A) на лучшем потенциометре. FWIW, коэффициент мощности на моем устройстве близок к единице.

Я не настраивал потенциометр на своем устройстве. Инструкции были улучшены с тех пор, как я купил свою доску! Если дно кастрюли является достаточно магнитным (т.е. достаточно толстым), не должно быть причин, по которым драйвер не подает мощность.

Несмотря на то, что мощность немного меньше 5 кВт, я очень, очень доволен этой системой отопления.

2) На моей плате «переключатель управления» работает ненадежно. Предположительно существует 2 способа управления выходом драйвера — 1) путем включения и выключения подачи питания на него и 2) путем подключения или отключения двух контактов «управления переключателем» при включении питания платы драйвера.

Мне не удалось заставить метод № 2 работать надежно. Я пробовал использовать ручной переключатель между контактами, реле, SCR и т. Д. Он включает и выключает плату пару раз, а затем плата остается выключенной и не включается. Таким образом, я управляю своей платой, оставляя перемычку на порту «переключателя управления» и включая и выключая подачу питания.

Я подозреваю, что у метода «управления переключением» есть максимальное время выключения, прежде чем он больше не включится, но я предполагаю и не получил никакой официальной документации, подтверждающей это.

Обратите внимание, что существует задержка в несколько секунд между включением подачи питания на устройство и подачей питания на катушку.

3) Радиатор на этой плате драйвера электрически ГОРЯЧИМ во время работы. Он заряжается до высокого постоянного напряжения. Он должен быть электрически изолирован от всех других напряжений, включая землю.

Мой радиатор открыт под Thing1. Thing1 защищен 20A GFCI, который срабатывает при любом контакте с радиатором. Вы можете полностью закрыть радиатор или, по крайней мере, поставить вокруг него клетку.Я случайно прикоснулся к радиатору, и мой GFCI сразу отключается. Возникающий в результате удар ощущается как прикосновение к влажной 9-вольтовой батарее. ВАШ ПРОБЕГ МОЖЕТ РАЗЛИЧАТЬСЯ. ПРОЙТИ СОГЛАСНО.

Я не думаю, что вентилятор радиатора когда-либо включался на моей плате.

Моя плата не поставлялась с вентилятором для охлаждения самой печатной платы. Если вы посмотрите на мою реализацию, вы заметите несколько маленьких вентиляторов с одной стороны. Эти вентиляторы предназначены для втягивания воздуха через полость между печатной платой и катушкой.Во время работы змеевик будет выделять тепло.

4) Моя плата драйвера не излучает значительных электромагнитных помех (EMI), когда полностью заключена в Thing1. Я могу слушать AM-радио во время работы с Thing1. Я не могу этого сделать с большинством беговых дорожек.

Катушка

Плата индукционного драйвера предназначена для управления катушкой, намотанной вокруг круглой стальной камеры на машине для литья пластмасс под давлением.

Существует ряд готовых индукционных катушек с предварительно намотанной поверхностью, которые можно приобрести у различных продавцов.Тем не менее, я не нашел ни одного, подходящего для моих пивоваренных нужд по следующим причинам:

1) Неподходящая индуктивность
2) Неподходящий размер (диаметр)
3) Неподходящая мощность

Из-за этого мне пришлось намотать собственную катушку .

Выбранный индукционный драйвер требует катушки 65 +/- 5 мкГн с определенной площадью поперечного сечения, чтобы выдерживать резонансные токи, генерируемые при возбуждении платы. Площадь поперечного сечения не указана в спецификациях на веб-сайте, но указана в другом месте.Мне нужно найти эту спецификацию.

Индукционная катушка также должна состоять из множества отдельных небольших изолированных проводов, намотанных в один провод. Это сделано для того, чтобы в самой катушке не возникали вихревые токи.

Небольшие изолированные проводники обычно представляют собой эмалированные магнитные провода. У меня катушка намотана от 17? Магнитный провод диаметром 20 мм. Меньший калибр означает меньший нагрев катушки вихревыми токами. Чем больше проводников (больше площадь проводников), тем меньше резистивный нагрев в катушке.Если вы используете слишком большие проводники или недостаточно проводов, нагревательная спираль сильно нагреется. Изменить: мне нужно проверить свои записи о количестве проводников.

Настроенный резонансный контур на этой плате драйвера, по-видимому, имеет высокую добротность и, следовательно, будет управлять нагрузкой только с узким диапазоном индуктивности, то есть 65 +/- 5 мкГн.

Индуктивность нагрузки включает не только саму катушку, но и взаимную индуктивность, возникающую, когда горшок находится на вершине катушки.

Чтобы определить длину (количество витков) катушки, вы должны сделать длину проводника катушки, а затем обернуть ее и измерить общую индуктивность нагрузки, поместив катушку на дно чайника, как он будет в окончательной заявке. Не наматывайте саму катушку так, чтобы она имела индуктивность 65 +/- 5 мкГн, потому что индуктивность нагрузки выйдет за пределы допустимого диапазона, когда на нее будет помещен горшок.

Не забудьте поместить катушку на дно чайника при измерении индуктивности!

Чтобы определить индуктивность катушки и нагрузки, я купил цифровой измеритель индуктивности Victor 6243.

XI’AN BEICHENG ELECTRONICS CO., LTD.

www.victor-multimeter.com

Вы, вероятно, можете использовать любой измеритель индуктивности, но я выбрал 6243, потому что выяснил, что это прибор, который производитель платы драйвера использовал для измерения своих катушек. 6243 измеряет индуктивность на частоте 200 Гц. Хотя это намного ниже, чем 20-25 кГц, которые используются на плате, похоже, для этого приложения он работает нормально.

Обратите внимание, что индуктивность может несколько изменяться в зависимости от частоты, поэтому катушка может правильно измерять на частоте 200 Гц, но отключаться на частоте 20 кГц.Однако у меня не было этой проблемы. Индуктивность нагрузки (катушка плюс чайник) составляет 65 мкГн, и плата, похоже, не имеет проблем с ее управлением.

Сначала я намотал около 48 футов катушки. В конце концов, я считаю, что моя катушка была длиной около 32 футов. Я думаю, что моя катушка сама по себе имеет индуктивность около 55 мкГн. Я думаю, что мой горшок добавляет к магнитной цепи около 10 мкГн взаимной индуктивности.

Вот калькулятор индуктивности плоской катушки:

www.tesla-institute.com

Думаю, этот калькулятор по приблизительной оценке индуктивности катушки.

Подсказка: провод катушки почти не имеет индуктивности, если проводить его по прямой линии. Таким образом, вы можете немного намотать, затем натянуть провод катушки и измерить индуктивность, чтобы увидеть, где вы находитесь. Затем добавьте или удалите провод из катушки и т. Д., Пока не получите нужную индуктивность.

Моя катушка мощностью 5 кВт имеет диаметр 12 дюймов. Это распределит тепло по широкой поверхности дна кастрюли.Большинство промышленных индукционных горелок имеют гораздо меньший диаметр катушки. Это концентрирует тепло на меньшей площади кастрюли и может вызвать коробление.

Кастрюля Bayou Classic 1044, которую я использую, вмещает 11 галлонов и имеет диаметр чуть более 13 дюймов.

Плата индукционного драйвера является самозащитой. Он определяет индукцию нагрузки при каждом включении. Если индуктивность нагрузки неправильная, загорится желтый светодиод, и на катушку не будет подаваться питание.

Индукционная катушка должна быть электрически и, возможно, термически изолирована от варочного котла.Теоретически эмалевое покрытие на магнитном проводе изолирует катушку, но вы никогда не захотите полагаться на это, поскольку это покрытие хрупкое по сравнению с обычной изоляцией проводов. Со временем, трением и нагреванием, он может испортиться, и поэтому индукционная катушка должна быть электрически изолирована.

Я установил свою катушку на нижнюю часть куска фанеры для наружного применения толщиной 3/8 дюйма. Вы также можете использовать стекло. Я попытался использовать пластик для разделочной доски, и он не выдержал высокой температуры кастрюли, веса горшок и тепло змеевика.

Я изолировал свою катушку от фанеры куском тефлонового противня. Не уверен, что это было необходимо, но я все равно это сделал.

Моя катушка крепится к нижней стороне фанеры с помощью куска диэлектрической плиты из стекловолокна. Этот материал обычно используется в шкафах высокого напряжения, трансформаторах и двигателях. Он прочный, не проводящий электричество и хорошо выдерживает тепло. Другие материалы могут работать, я их не тестировал.

Проводники катушки необходимо удерживать прочно, иначе они будут вибрировать друг относительно друга и задевать изоляцию, вызывая короткое замыкание между проводниками.Несколько коротких замыканий — это нормально, но многие — нет.

Вы должны вырезать вентиляционные отверстия во всем, что вы используете, чтобы удерживать змеевик на месте.

Выводы от платы драйвера к катушке должны быть как можно короче. И они должны быть изолированы, чтобы они не закорачивались относительно рамы, корпуса или самой платы драйвера.

Вблизи платы драйвера или нагревательной катушки не должно быть ферромагнитных материалов, иначе они будут нагреваться! Корпус индукционной платы на Thing1 выполнен из алюминия.Подставка из нержавеющей стали. Крепеж — нержавеющая сталь. Вы заметите, что все крепления на плате драйвера выполнены из латуни.

Индукционный нагреватель | Майлз Дай

Осень 2018

Фон

Индукционный нагрев — это явление, при котором вихревые токи, образующиеся в электропроводящем материале в соответствии с Законом индукции Фарадея, нагревают объект.Чтобы воспользоваться этим эффектом, индукционный нагреватель пропускает переменный ток через электромагнит, чтобы создать быстро меняющееся магнитное поле. Это вызывает ток в заготовке, температура которого повышается из-за резистивного и, возможно, гистерезисного нагрева.

Индукционный нагрев особенно интересен, поскольку он не требует контакта нагревательного элемента с объектом и не требует внешнего нагревательного элемента, который необходимо довести до желаемой температуры.Вместо этого само устройство, например плита, может оставаться близкой к температуре окружающей среды, при этом значительно повышается только температура целевого материала.

Физика

Суть успешного индукционного нагревателя — создание переменного магнитного поля. Это поле создается в так называемой рабочей катушке — катушке с проволокой, окружающей нагреваемый объект. Затем поток от этого поля (\ (\ Phi_B \)) передается в целевой объект для генерации напряжения (\ (v \)) в соответствии с законом Фарадея.$$ v = — \ frac {d \ Phi_b} {dt} $$

Генерируемое напряжение вызывает ток в объекте, который выделяет тепло. Этот эффект нагрева вызван омическими потерями (джоулевым нагревом), а также потерями на гистерезис, если объект является ферромагнитным.

Другим важным фактором при проектировании системы является скин-эффект, при котором переменные токи имеют тенденцию концентрироваться около поверхности проводника при увеличении их частоты.В результате эффективное сопротивление детали увеличивается с частотой.

Схемотехника

Базовая схема индукционного нагрева будет использовать тотемный столб в качестве инвертора для преобразования источника постоянного тока 12 В в напряжение переменного тока. Это приведет в движение бак LC аналогично цепи балласта лампы. Однако теперь нагрузка будет представлять собой катушку, которая действует как первичная обмотка трансформатора, а нагреваемый объект представляет собой закороченный одиночный виток, который действует как вторичная обмотка трансформатора.В этом случае за нагрев отвечает небольшое сопротивление в объекте. Индуктор в резервуаре LC — это просто магнитная индуктивность первичной катушки (т. Е. Рабочей катушки).

Разработка схемы началась с выбора частоты. При проектировании индукционного нагревателя возникает значительный компромисс по частоте. Более высокие частоты обеспечивают лучшую передачу энергии к изделию, но также вызывают более тонкий слой тока из-за скин-эффекта.Таким образом, при более эффективном нагреве нагрев будет происходить в основном на поверхности. Это говорит о том, что более высокая частота (около 100-200 кГц) подходит для небольших объектов, поскольку теплопроводность позволяет объекту нагреваться относительно равномерно.

Рисунок 1: Схема полного индукционного нагревателя.

Генерация переменного тока из источника постоянного тока осуществлялась с помощью инвертора.В инверторе используется полумост, построенный из тотемного столба MOSFET, как показано на рисунке 1.

Генератор прямоугольных волн

Индуктивность рабочей катушки (и, следовательно, резонансная частота) контура сильно зависит от геометрии рабочей катушки. Следовательно, генератор прямоугольных сигналов должен быть достаточно гибким в диапазоне частот, который он может генерировать. Я выбрал частоты в диапазоне от 50 до 150 кГц.Этот широкий диапазон был выбран для того, чтобы можно было легко отключать несколько катушек без замены электроники.

Генератор треугольных волн использовал генератор 74HC14 с потенциометром 10k для регулировки частоты. Треугольная волна была преобразована в прямоугольную волну путем пропускания ее через компаратор LM311 для получения прямоугольной волны с коэффициентом заполнения 50%. Для этого проекта не требовалось изменять рабочий цикл, поскольку целью было создание синусоидальной волны переменного тока для управления контуром резервуара.

Модель

Индукционный нагреватель

Полезно рассмотреть идеальную эквивалентную модель для резонансного контура на рисунке 2.

Рисунок 2: Модель резонансного резервуара индукционного нагревателя и его сопряжения с заготовкой.

На этой схеме \ (C \) — резонансный конденсатор, \ (C_ {blk} \) — блокирующий конденсатор, а \ (L \) — индуктивность намагничивания рабочей катушки.Показанный трансформатор представляет собой трансформатор \ (N: 1 \). Заготовка моделируется как закороченный одиночный виток. Сопротивление \ (R \) учитывает резистивный нагрев и гистерезисный нагрев, который происходит в заготовке, когда в ней индуцируются вихревые токи. К тому же индукционный нагреватель — далеко не идеальный трансформатор. Заготовка в идеале значительно меньше рабочей катушки. Это объясняется введением константы связи трансформатора, \ (k \), которая представляет собой значение от 0 до 1 и приблизительно представляет долю магнитного потока от катушки, которая проходит через заготовку.

Эту модель можно упростить для анализа, объединив конденсаторы и отразив резистор поперек трансформатора (с учетом константы связи). Это дает схему, показанную на рисунке 3.

Рисунок 3: Упрощенная модель резонансного резервуара индукционного нагревателя.

На рисунке 3 эквивалентная емкость задается как \ (C_ {eq} = \ frac {C \ cdot C_ {blk}} {C + C_ {blk}} \).Кроме того, отражение резистора дает \ (R_ {ref} = \ frac {N \ cdot R} {k} \). Эта схема дает понять, что меньшее значение \ (R_ {ref} \) уменьшает добротность резонатора, поскольку больший ток отводится от резервуара и рассеивается в резисторе.

Резонансная конструкция резервуара

Эта модель позволяет выбирать компоненты. Одним из основных факторов, влияющих на выбор резонансного конденсатора \ (C \), является тот факт, что это должен быть конденсатор высокого напряжения.Примерная оценка показывает, что для наведения всего 2 В на резисторе на идеальном 40-витковом трансформаторе может потребоваться до 80 В на первичной стороне. С учетом константы связи и других паразитных факторов потребуется большее напряжение. Таким образом, выбор \ (C \) ограничен имеющимися конденсаторами на 400 В, поэтому емкость будет порядка 20 — 200 нФ.

Прежде чем принять решение о точной емкости резонансного конденсатора, полезно проверить катушки, которые будут использоваться.Индукционный нагреватель в идеале должен поддерживать катушки различной геометрии, чтобы можно было нагревать различные предметы. Для этого эксперимента я намотал две катушки из провода магнита AWG 22, которые кратко описаны ниже.

Диаметр (см) \ (l \) (см) \ (N \) (оборотов) \ (L_ {theor} (\ mu H) \) \ (L_ {mes} (\ mu H \)) СОЭ (\ (\ Omega \))
5 2 27 90 75 0. 2 \ pi} {l} $$ Фактические индуктивности были измерены на измеритель импеданса на частоте 100 кГц.Я буду называть первую катушку «большой катушкой», а вторую катушку — «маленькой катушкой».

Индуктивности двух вышеупомянутых катушек предполагают, что жизнеспособная емкость составляет \ (90 мкФ), состоящую из P1074-ND (22 нФ), подключенного параллельно к P1080-ND (68 нФ). Это даст резонансную частоту 61,3 кГц для большой катушки и 108 кГц для маленькой катушки.

\ (C_ {blk} \) теперь можно выбрать, чтобы он имел низкий (\ (\ le5% \)) импеданс по сравнению с резонансным конденсатором в резонансе.Блокирующая емкость \ (1,8 мкФ \) достаточна и может быть изготовлена ​​из 2 пленочных конденсаторов P4675-ND (\ (1 \ мкФ \)).

Анализ частотной характеристики

Отсюда можно провести частотный анализ для определения ожидаемого усиления и резонансной частоты. 2 + \ frac {s} {R_ {ref} C_ {eq}} + \ frac {1} {LC_ { eq}}} $$

Прежде чем строить график Боде, необходимо обратить внимание на два важных момента относительно \ (R_ {ref} \).Отраженное сопротивление зависит от сопротивления детали и коэффициента связи. Оба эти значения нелегко измерить или рассчитать, и поэтому их необходимо оценивать.

  • Значение \ (R \) (до отражения) является мерой потерь в заготовке. Это различно для разных объектов, но я выбрал значение \ (2 \ Omega \) после некоторого первоначального тестирования и исследования в Интернете. Хотя это может показаться довольно большим для учета омических потерь, создаваемых вихревыми токами, этот резистор также отражает гистерезисные потери в ферромагнитных материалах, которые возникают во время нагрева.Таким образом, \ (R \) не представляет собой исключительно омическое сопротивление материала.
  • Другое предположение состоит в том, что заготовка относительно мала по сравнению с рабочей катушкой. То есть в трансформаторе плохая связь. Учитывая, что значения \ (k> 0,5 \) считаются сильно связанными, я оценил \ (k \ приблизительно 0,1 \).

Эти значения дали графики Боде, показанные на рисунке 4 в MATLAB.Маленькая катушка имеет резонансную частоту 110 кГц и коэффициент усиления по напряжению 25,4. Большая катушка имеет резонансную частоту 62,5 кГц и коэффициент усиления по напряжению 18,2.

Рисунок 4: График Боде упрощенной схемы с большой катушкой (слева) и маленькой катушкой (справа).

Выбор MOSFET

IRF540 является подходящим выбором в качестве переключающего элемента, поскольку он имеет постоянный ток стока 28 А при комнатной температуре.Работая при напряжении около 1 А от общего напряжения 2-20 В, он находится в пределах максимальной безопасной рабочей зоны. По практическим соображениям в сборке повторно использовалась тотемная плата, на которой были установлены полевые МОП-транзисторы IRF1407. IRF1407 имеет более высокие рейтинги и отлично подходит для этого проекта.

Результаты

Следующие осциллограммы были сняты во время начальной фазы тестирования, во время которой небольшое напряжение (1-2 В) использовалось в верхней части тотемного столба с маленькой катушкой.На рисунках 5 и 6 показано, что наблюдаемый результат вполне соответствует прогнозируемому. Выигрыш оказался не таким большим, как прогнозировалось, что может быть связано с паразитами, которые не были включены в идеализированную модель. Также интересно то, что блокирующий конденсатор успешно снимает напряжение постоянного тока, как показано на рисунке 7. Зеленая форма волны сосредоточена около 0 В. Однако резкие переходы прямоугольной волны не отфильтровываются и видны как дефекты синусоиды на напряжении рабочей катушки.

Рисунок 5: Управляющий сигнал (зеленый), напряжение рабочей катушки (желтый), 1 В на тотемном столбе.

Рисунок 6: Управляющий сигнал (зеленый), напряжение рабочей катушки (желтый), 2 В на тотемном столбе.

Рисунок 7: Напряжение после \ (C_ {blk} \) (зеленый), напряжение рабочей катушки (желтый), дифференциальное напряжение конденсатора (розовый), 2 В на общей клемме.

Кроме того, когда нагреватель приближается к резонансу, заметна разность фаз. На рисунке 8 нагреватель далек от резонанса, а напряжение катушки и напряжение инвертора совпадают по фазе, тогда как на рисунке 9, где нагреватель находится в резонансе, два напряжения сдвинуты по фазе на 90 градусов. Если бы использовалась фазовая автоподстройка частоты, эти два напряжения были бы синхронизированы вместе, чтобы поддерживать резонанс.

Рисунок 8: Напряжение инвертора (зеленый), напряжение рабочей катушки (желтый), вне резонанса.

Рисунок 9: Напряжение инвертора (зеленый), напряжение рабочей катушки (желтый), при резонансе.

Как только было подтверждено, что цепь безопасна и работает, было добавлено больше мощности за счет увеличения напряжения на вершине тотемного столба. Это позволяло нагревать предметы до очень высоких температур. Используя большую катушку, металлический радиатор нагревали путем повышения напряжения до тех пор, пока через инвертор не протекал ток 1А.Радиатор помещался плашмя поверх катушки. На рисунке 10 показана температура радиатора.

Температуру контролировали с помощью цифрового лазерного инфракрасного термометра. Как и ожидалось, начальная скорость нагрева довольно высока, когда температура радиатора близка к комнатной. Однако с повышением температуры скорость отвода тепла от радиатора также увеличивается. В конце концов, мощность индукционного нагревателя не успевает за мощностью, передаваемой из радиатора, и кривая начинает выравниваться.\ circ C \) в течение 45 секунд, при этом рабочая катушка лишь слегка нагрелась на ощупь. На полной мощности напряжение на катушке достигнет 200 В от пика до пика, как показано на рисунке 11.

Рисунок 11: Напряжение рабочей катушки при работе на большой мощности. Обратите внимание, что вертикальный масштаб составляет 50 В / дел.

Обратная связь

В качестве интересного дополнения к этому проекту я решил реализовать автоматический поиск резонанса с помощью микроконтроллера.Идея состоит в том, что когда пользователь нажимает кнопку, микроконтроллер должен запускать подпрограмму для определения резонансной частоты. Этот вид настройки на самом деле удобен, потому что вставка заготовки внутрь рабочей катушки изменит индуктивность рабочей катушки и, таким образом, также изменит резонансную частоту контура.

Основная идея поиска резонанса заключается в том, что при резонансе синусоида на выходе катушки достигает максимума.Таким образом, если мы сможем создать сигнал, который пропорционален выходному сигналу для подачи в АЦП микроконтроллера, и позволить ему подавать управляющий сигнал на тотемный полюс, мы можем превратить задачу поиска резонанса в задачу поиска пиков программного обеспечения. .

На практике возникает несколько трудностей. Прежде всего, индукционный нагреватель работает на частоте порядка 100 кГц. Это означает, что для микроконтроллера с частотой 16 МГц, такого как Arduino Uno, в лучшем случае будет около 160 тактов на цикл инвертора, что серьезно ограничивает наши возможности для генерации сигнала ШИМ.Кроме того, АЦП на Arduino требуется около 100 микросекунд для чтения ввода, что ограничивает его частоту дискретизации до 10 кГц. Таким образом, сигнал не может быть дискретизирован напрямую.

Поколение ШИМ

Частота ШИМ на Arduino с помощью команды analogWrite () устанавливается равной 490 Гц на большинстве контактов и 980 Гц на контактах 5 и 6. Таким образом, использование команды analogWrite () для создания квадрата не является жизнеспособным вариантом, поскольку частота не является допустимой. регулируемый (только рабочий цикл).(Важно помнить, что цель здесь на самом деле не в том, чтобы модулировать ширину импульса, а в том, чтобы изменить частоту прямоугольной волны.) Другой вариант — использовать бит ШИМ и просто вручную переключить вывод на высокий уровень и низкий с соответствующей задержкой. Это можно сделать с помощью команды delayMicroseconds, но это не обеспечивает достаточно хорошего разрешения при 100 кГц. Ясное решение — работать напрямую с регистрами времени на микросхеме Atmega. Если бы у нас было больше времени, это было бы хорошим вариантом для изучения, но, как оказалось, более быстрым решением было переключиться на Teensy 3.1 микроконтроллер. Teensy — это микроконтроллер с напряжением 3,3 В, работающий на частоте 96 МГц. Он имеет функцию под названием analogWriteFrequency (pin, freq), которая позволяет вам установить частоту analogWrite в установочном коде. Он может легко устанавливать частоты от нескольких Гц до сотен кГц. Единственным недостатком является то, что все выводы ШИМ, привязанные к одному таймеру, будут одновременно менять свою частоту, но для этого проекта нам нужен только один. Простота этого решения побудила использовать Teensy в качестве микроконтроллера.

После того, как мы выбрали микроконтроллер, нам нужно подумать, как на самом деле управлять инвертором с помощью Teensy. Хотя можно управлять сигналами DELAY и #DELAY в программном обеспечении, гораздо проще просто создать одну прямоугольную волну из Teensy и отправить ее через сеть задержки 74HC14. Это очень просто реализовать: мы просто заменяем LM311 и генератор 74HC14 на Teensy. Важно помнить, что Teensy — это 3.Устройство 3 В, которое теперь взаимодействует с устройством 0-5 В (уровень TTL). Оказывается, это нормально, потому что пороговых значений TTL для высокого и низкого логических уровней более чем достаточно для обеспечения правильного вывода. Если бы требовалось большее размах напряжения, было бы несложно подать сигнал в соответствующий компаратор (например, LM311) с правильным напряжением смещения для увеличения амплитуды.

Сигнал обратной связи

Последнее соображение касается обратной связи с Teensy.Напряжение на катушке, которое может возрасти до 300 В (размах), должно быть понижено до безопасного для Teensy уровня (т. Е. 3,3 В (размах)). Наиболее очевидным решением является простой делитель напряжения 100 к 1, который я реализовал с помощью резистора \ (100 к \ Омега \) и \ (1 к \ Омега \) (не совсем 100 к 1, но абсолютные значения не нужны. для этого приложения). Кстати, я изначально выбрал чрезвычайно высокие значения для резисторов (в диапазоне десятков мегаомов), и это приводило к очень запутанным результатам на осциллографе, пока я не понял, что мои щупы осциллографа являются пробниками \ (1M \ Omega \).Таким образом, я сильно нагружал свою схему, когда измерял ее. Указанных выше значений в киломах более чем достаточно для ограничения потребляемого тока.

Наконец, я не хотел, чтобы АЦП просто как можно быстрее считывал сигнал из-за высокой частоты сигнала. Arduino Uno может производить выборку только до 10 кГц. Я не смог найти явного верхнего предела частоты дискретизации для Teensy 3.1, но некоторые быстрые исследования в Интернете показали, что она составляет около 600 кГц.Это будет около 6 точек за период, что недостаточно для надежного определения пика. Мне пришло в голову, что нет необходимости находить пики сигнала в цифровом виде. Вместо этого я мог бы выпрямить синусоидальную волну, а затем отфильтровать ее с помощью фильтра нижних частот, чтобы получить значение постоянного тока, пропорциональное размаху напряжения синусоидальной волны. Это постоянное напряжение может быть максимизировано при очень низких требованиях к частоте дискретизации, поскольку это сигнал постоянного тока. Я выбрал простой однополупериодный выпрямитель и параллельный RC-фильтр нижних частот.

Защита входа

В качестве последнего штриха к схеме я добавил стабилитрон на 3,3 В и резистор перед выводом АЦП в качестве защиты входа в Teensy в случае ошибки пользователя (например, пользователь слишком сильно поворачивает тотем и поднимается выше 300 В (размах)). от напряжения катушки).

Рисунок 12: Полная схема цепи обратной связи.

Программное обеспечение

Код этого проекта можно найти на Github. Основы кода заключаются в том, чтобы пройти через предварительно установленный диапазон частот (50-150 кГц) с шагом 10 кГц, найти диапазон, который дает наибольший отклик, и пройти через этот диапазон с шагом 1 кГц, чтобы найти резонансную частоту в пределах 1 кГц. Поскольку сигнал обратной связи был немного зашумленным, в программном обеспечении был реализован усредняющий фильтр, чтобы предотвратить любые неправильные показания.

Результаты обратной связи

Следующие формы сигналов показывают работу цепи обратной связи. Обратите внимание, что сигнал постоянного тока имеет более низкое значение, когда частота не резонансная, чем когда она находится в резонансе.

Рисунок 13: Вне резонанса, сигнал постоянного тока (синий) имеет очень низкое значение.

Рисунок 14: При резонансе сигнал постоянного тока (синий) имеет более высокое значение.

При желании резистивный делитель можно отрегулировать для максимального увеличения динамического диапазона. АЦП Teensy был достаточно точным, чтобы система могла найти резонансную частоту лучше, чем у человека, но чувствительность и точность можно отрегулировать, изменив программное обеспечение и изменив схему резисторного делителя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *