Плавное включение нагрузки 220в: Плавное включение ламп накаливания 220В на 12в: схема включения

Плавное включение нагрузки 220в: Плавное включение ламп накаливания 220В на 12в: схема включения

Содержание

Плавное включение ламп накаливания 220В на 12в: схема включения

Лампы накаливания до сих пор остаются популярными, благодаря низкой цене. Они широко применяются во вспомогательных помещениях, где требуется частое переключение света. Устройства постоянно развиваются, в последнее время стали часто применять галогенную лампу. Чтобы увеличить их срок эксплуатации и уменьшить энергопотребление, применяют плавное включение ламп накаливания. Для этого подаваемое напряжение должно плавно возрастать в течение короткого промежутка времени.

Плавное включение лампы накаливания

У холодной спирали электрическое сопротивление в 10 раз ниже по сравнению с разогретой. В результате при зажигании лампочки на 100 Вт ток достигает 8 А. Не всегда нужна высокая яркость свечения тела накала. Поэтому возникла необходимость создать устройства плавного включения.

Принцип действия

Для равномерного нарастания подаваемого напряжения достаточно, чтобы фазовый угол увеличивался всего за несколько секунд. Бросок тока сглаживается, и спирали плавно разогреваются. На рисунке ниже приведена одна из простейших защитных схем.

Схема устройства защиты от перегорания галогенных ламп и накаливания на тиристоре

При включении отрицательная полуволна подается на лампу через диод (VD2), питание составляет всего половину напряжения. В положительный полупериод конденсатор (С1) заряжается. Когда величина напряжения на нем поднимется до величины открывания тиристора (VS1), на лампу подается напряжение сети полностью, и пуск завершается свечением в полный накал.

Схема устройства защиты от перегорания лампы на симисторе

Схема на рисунке выше работает на симисторе, пропускающем ток в обоих направлениях. При включении лампы отрицательный ток проходит через диод (VD1) и резистор (R1) на электрод управления симистора. Тот открывается и пропускает одну половину полупериодов. В течение нескольких секунд заряжается конденсатор (С1), после чего происходит открытие положительных полупериодов, и на лампу полностью подается напряжение сети.

Устройство на микросхеме КР1182ПМ1 позволяет производить пуск лампы с плавным наращиванием напряжения от 5 В до 220 В.

Схема устройства: пуск ламп накаливания или галогенных с фазовым регулированием

Микросхема (DA1) состоит из двух тиристоров. Развязка между силовой частью и схемой управления производится симистором (VS1). Напряжение в схеме управления не превышает 12 В. К его управляющему электроду сигнал подается с вывода 1 фазового регулятора (DA1) через резистор (R1). Пуск схемы происходит при размыкании контактов (SA1). При этом конденсатор (С3) начинает заряжаться. От него начинает работать микросхема, повышая ток, проходящий к управляющему электроду симистора. Он начинает постепенно открываться, увеличивая напряжение на лампе накаливания (EL1). Временная выдержка на ее загорание определяется величиной емкости конденсатора (С3). Слишком большую ее делать не следует, поскольку при частых переключениях схема не будет успевать подготавливаться к новому запуску.

При замыкании вручную контактов (SA1) начинается разрядка конденсатора на резистор (R2) и плавное отключение лампы. Время ее включения изменяется с 1 до 10 сек при соответствующем изменении емкости (С3) от 47 мкф до 470 мкф. Время гашения лампы определяется величиной сопротивления (R2).

Схема защищена от помех резистором (R4) и конденсатором (С4). Печатная плата со всеми деталями помещается на задних клеммах выключателя и устанавливается вместе с ним в коробку.

Пуск лампы происходит при отключении выключателя. Для подсветки и индикации напряжения установлена лампа тлеющего разряда (HL1).

Устройства плавного включения (УПВЛ)

Моделей выпускается много, они различаются по функциям, цене и качеству. УПВЛ, которое можно приобрести в магазине, подключается последовательно к лампе на 220 В. Схема и внешний вид показаны на рисунке ниже. Если напряжение питания светильников составляет 12 В или 24 В, устройство подключается перед понижающим трансформатором последовательно к первичной обмотке.

Схема работы УПВЛ для плавного включения ламп на 220 В

Устройство должно соответствовать подключаемой нагрузке с небольшим запасом. Для этого подсчитывается количество ламп и их общая мощность.

Из-за небольших габаритов УПВЛ помещается под колпаком люстры, в подрозетнике или в соединительной коробке.

Устройство «Гранит»

Особенностью устройства является то, что оно дополнительно защищает светильники от скачков напряжения в домашней сети. Характеристики «Гранита» следующие:

  • номинальное напряжение – 175-265 В;
  • температурный диапазон – от -200С до +400С;
  • номинальная мощность –от 150 до 3000 Вт.

Подключение прибора производится также последовательно со светильником и выключателем. Устройство помещается вместе с выключателем в монтажной коробке, если его мощность позволяет. Также его устанавливают под крышкой люстры. Если провода к ней подводятся напрямую, защитное устройство устанавливают в распределительном щитке, после автоматического выключателя.

Диммеры или светорегуляторы

Целесообразно применять устройства, которые создают плавное включение ламп, а также обеспечивают регулирование их яркости. Модели диммеров имеют следующие возможности:

  • задание программ работы ламп;
  • плавное включение и отключение;
  • управление с помощью пульта, хлопком, голосом.

При покупке следует сразу определиться с выбором, чтобы не платить лишние деньги за ненужные функции.

Перед монтажом нужно выбрать способы и места управления лампами. Для этого необходимо сделать соответствующую электропроводку.

Схемы подключений

Схемы могут быть разной сложности. При любой работе сначала отключается напряжение с необходимого участка.

Простейшая схема подключения изображена на рисунке ниже (а). Светорегулятор можно установить вместо обычного выключателя.

Схема подключения диммера в разрыв питания лампы

Устройство подключается в разрыв фазного провода (L), а не нулевого (N). Между нулевым проводом и диммером располагается лампа. Соединение с ней получается последовательным.

На рисунке (б) обозначена схема с выключателем. Подключение остается прежним, но к нему добавляется обычный выключатель. Его можно установить около двери в разрыв между фазой и диммером. Светорегулятор располагается около кровати с возможностью управления освещением, не вставая с нее. Выходя из комнаты, свет выключается, а при возвращении производится пуск лампы с настроенной прежде яркостью.

Для управления люстрой или светильником можно применять 2 диммера, расположенные в разных местах комнаты (рис. а). Между собой они подключаются через распределительную коробку.

Схема управления лампой накаливания: а – с двумя диммерами; б – с двумя проходными выключателями и диммером

Такое подключение позволяет независимо регулировать яркость с двух мест, но проводов понадобится больше.

Проходные выключатели нужны для включения света с разных сторон помещения (рис. б). Диммер при этом нужно включить, иначе лампы на выключатели не будут реагировать.

Особенности диммеров:

  1. Экономия электроэнергии с помощью диммера достигается небольшая – не более 15 %. Остальная часть потребляется регулятором.
  2. Устройства чувствительны к повышению температуры среды. Их не нужно эксплуатировать, если она поднимется выше 270С.
  3. Нагрузка должна быть не ниже 40 Вт, иначе срок службы регулятора сокращается.
  4. Диммеры применяются только для тех типов устройств, которые указаны в паспортах.

Включение. Видео

Как происходит плавное включение ламп накаливания, расскажет это видео.

Устройства плавного пуска и отключения ламп накаливания и галогенных позволяют значительно повысить срок их эксплуатации. Целесообразно применять диммеры, которые к тому же позволяют регулировать яркость свечения.

Оцените статью:

Плавное включение ламп накаливания на 220 В: схема, видео

Лампочки Ильича до сих пор остаются лидерами по популярности, благодаря своей цене, но у них есть очень большой недостаток – малый срок работы, обусловленный разрушением нити накала во время включения. В настоящее время разработаны электронные устройства для плавного включения ламп накаливания, которые осуществляют подачу напряжения на спираль с нуля и до максимума в несколько секунд. Постепенный прогрев нити накала позволяет продлить ресурс лампочки в несколько раз, вместо заявленных 1000 часов. Разработанные схемы для самостоятельной сборки имеют немного деталей и обычно не требуют наладки. В это статье мы рассмотрим, как сделать плавное включение ламп накаливания на 220 В своими руками.

Внимание! Рассматриваемые устройства имеют на элементах сетевое напряжение и требуют особой осторожности при сборке и наладке.

Тиристорная схема

Данную схемку можно рекомендовать для повторения. Она состоит из распространенных элементов, пылящихся на чердаках и в кладовках.

В цепи выпрямительного моста VD1, VD2, VD3, VD4 в качестве нагрузки и ограничителя тока стоит лампа накаливания EL1. В плечах выпрямителя установлен тиристор VS1 и сдвигающая цепочка R1 и R2, C1. Установка диодного моста обусловлена спецификой работы тиристора.

После подачи напряжения на схему, ток протекает через нить накала и попадает на выпрямительный мост, далее через резистор происходит зарядка емкости электролита. При достижении напряжения порога открывания тиристора, он открывается, и пропускает через себя ток лампочки накаливания. Получается постепенный, плавный разогрев вольфрамовой спирали. Время разогрева зависит от емкости конденсатора и резистора.

Симисторная схема

Симисторная схема одержит меньше деталей, благодаря использованию симистора VS1 в качестве силового ключа. Элемент L1 дроссель для подавления помех, возникающих при открывании силового ключа, можно исключить из цепи. Резистор R1 ограничивает ток на управляющий электрод VS1. Время задающая цепочка выполнена на резисторе R2 и емкости C1, которые питаются через диод VD1. Схема работы аналогична предыдущей, при заряде конденсатора до напряжения открывания симистора, он открывается и через него и лампу начинает протекать ток.

На фото ниже предоставлен симисторный регулятор. Он кроме регулирования мощности в нагрузке, также производит плавную подачу тока на лампу накаливания во время включения.

Схема на специализированной микросхеме

Микросхема кр1182пм1 специально разработана для построения всевозможных фазовых регуляторов.

В данном случае, силами самой микросхемы регулируется напряжение на лампочке накаливания мощностью до 150 ватт. Если нужно управление более мощной нагрузкой, большим количеством осветителей одновременно, в цепь управления добавляется силовой симистор. Как это выполнить смотрите на следующем рисунке:

Использование данных устройств плавного включения не ограничиваются только лампами накаливания, их так же рекомендуется устанавливать совместно с галогеновыми на 220 в. Аналогичные по принципу действия устройства устанавливаются в электроинструменты, запускающие плавно якорь двигателя, также продлевая срок службы прибора в несколько раз.

Важно! С люминесцентными и светодиодными источниками устанавливать данное устройство категорически не рекомендуется. Это связано с разной схемотехникой, принципом действия, и наличием у каждого устройства собственного источника плавного разогрева для компактных люминесцентных ламп или отсутствии потребности в данном регулировании для LED.

Напоследок рекомендуем просмотреть видео, в котором наглядно рассматривается еще одна популярная схема сборки прибора – на полевых транзисторах:

Самоделка на транзисторах

Теперь вы знаете, как сделать устройство плавного включения ламп накаливания на 220 В своими руками. Надеемся, схемы и видео в статье были для вас полезными!

Рекомендуем также прочитать:

Плавное включение ламп накаливания

 От чего зависит срок службы лампы накаливания? Конечно от условий эксплуатации, а если точнее от режимов работы. Первое это сколько лампа всего горела часов и второе как быстро на нее подавали напряжение при включении. Дело в том, что при быстрой подаче напряжения, через наш обычный выключатель, напряжение поступает мгновенно, моментально меняется и температура нити накаливания лампы, от комнатной до нескольких сотен градусов. Такие перепады не могут не сказаться на сроке службы нити и самой лампы. Поэтому нити часто перегорают именно в момент включения и лампу можно выбрасывать. Решением проблемы является постепенное, плавное включение ламп. Такое включение значительно продлит срок службы ламп накаливания.

 В данной статье мы предложим вашему вниманию пару схем, для плавного включения ламп накаливания. Первая схема не является регулируемой. В этой схеме происходит плавное повышение напряжение питание лампы до номинального, но регулирование напряжения невозможно.

Схема № 1 плавного включения ламп накаливания

 Алгоритм работы схемы следующий. При включении переменное напряжение поступает на диодный мостик, после диодного мостика имеем постоянное напряжение. Через сопротивление R1, напряжение поступает на управляющий контакт тиристора (положительный потенциал). Тиристор открывается но не полностью, так как если говорить языком дилетанта, часть тока идет на зарядку конденсатора С1. По мере зарядки конденсатора, ток в его цепи уменьшается, соответственно в цепи управляющего контакта тиристора увеличивается.  Тиристор открывается полностью, лампа начинает светится в полный накал.
 Минусом данной схемы плавного регулирования, является постепенное повышение напряжения при включении, но мгновенное отключение при выключении. Так как выключатель фактически ограничивает подачу напряжения в схему для управляющего тиристора мгновенно. Для изменения ситуации, достаточно перенести выключатель в цепь между диодным мостиком и резистором R1, на схеме это место выделено красным кругом. При этом после выключения выключателя, конденсатор будет разряжаться на управляющий контакт тиристора и тиристор закроется постепенно, обеспечивая плавное гашение света ламп.

Схема 1 Плавное включение лампы накаливания. Многие из собиравших жаловались на моментальное включение лампы, без эффекта плавного розжига.

Схема 2 плавного включения ламп накаливания с эффектом регулирования

Вторая схема имеет возможность регулировки поступающего напряжения на лампу накаливания. В принципе эта также первая схема за исключением того, что в ней применен переменный резистор вместо постоянного. Принцип работы схемы тот же что и в предыдущей схеме.

Схема 2 Плавное регулируемое включение лампы накаливания

Напряжение регулируется в пределах примерно от 120 до 220 вольт. Многие из собиравших жаловались на маленький диапазон регулирования.

Применение радиоэлементов в схеме плавного регулирования света

В схемах возможно применение как отдельных диодов так и сборок диодных мостиков с пропускным током не менее 3 А. Вместо тиристора Т122-25-5-4, возможно применение тиристора Т122-20-11-6 или серии КУ202 с индексом К,Л и М.
 В схемах возможно применение конденсатора электролитического или для переменного тока. В случае применения электролитического конденсатора полярность установки производится согласно второй схеме. Рабочее напряжение конденсатора не менее 300 вольт.
 Применяемые резисторы мощностью не менее 0,25 Вт.

Схема 3 плавного включения ламп накаливания

Схема 2 Плавное включение лампы накаливания

Как работает схема:

После подачи питания транзистор VT1 полностью открывается и переменное напряжение на правом выводе резистора R1 мало. Следовательно VS2 не открывается (ему нужно где-то 30 Вольт) и не открывает VS1. По мере зарядки конденсатора С3 транзистор VT1 плавно закрывается, уменьшая протекающий ток в его цепи эмиттер-коллектор, при этом переменное напряжение на правом выводе R1 растёт и VS2 начинает кратковременно открываться — на пиках переменного напряжения — открывая и VS1, который так же кратковременно включает лампу в цепь.
В момент, когда напряжение на выводах VS1 равно нулю (переход через ноль переменного напряжения), VS1 полностью закрывается, то есть схема управляет не величиной напряжения на нагрузке, а временем, в течение которого нагрузка подключена к цепи. Это аналог ШИМ-регулятора.
 Чем больше заряжается конденсатор C3, тем больше по времени открыт VS1 и, соответственно, больше по времени нагрузка подключена к сети 220В.
 Лампа, слегка помаргивая в начале процесса, плавно разгорается от 0 до полного накала за 10 секунд.

Схема 4 плавного включения ламп накаливания на транзисторе

Еще одна схема все с той же функцией плавного включения ламп, но где регулирование осуществляется за счет транзистора

Принцип работы схемы повторяет аналогичные схемы выше, то есть когда на управляющем затворе появляется потенциал. Исключением является применение транзистора, в качестве управляющего радиоэлемента. При этом потенциал зависит от сопротивлений  R1, R2 и конденсатора C1. Именно резисторы управляют процессом зарядки конденсатора, а после, когда он уже зарядился, он поддерживает потенциал для затвора. В итоге, процесс «розжига» лампы будет зависеть от сопротивления резисторов и от емкости конденсатора.

Плавное включение ламп накаливания.

Использование лампочек с вольфрамовой нитью оправдывается их низкой стоимостью. Они по-прежнему пользуются спросом. Перегорание спиралей накаливания обычно происходит в момент включения. Это связано с десятикратным возрастанием ампеража из-за высокого сопротивления холодной спирали. Избежать таких скачков позволяют устройства плавного включения ламп накаливания.

Производители предлагают несколько моделей, работающих по одному принципу: они кратковременно изменяют фазовый угол тока. Владея азами электротехники, нетрудно своими руками собрать схему плавного пуска лампы накаливания. Подключение такого устройства значительно снижает энергозатраты, повышает уровень комфорта: УПВЛ с регулятором устанавливается необходимая степень свечения. Автомат плавного включения фар избавляет автомобилистов от частой замены галогеновых и традиционных лампочек.

Устройство плавного включения ламп накаливания (модуль RL134M).

Причины преждевременного перегорания

Когда лампы с нитью накала включаются, по закону Ома при высоком сопротивлении холодной спирали пропорционально возрастает сила тока. В стандартной лампочке небольшой мощности в 55 Вт сила тока в доли секунды достигает 60 А. Когда вольфрам разогревается, ток моментально нормализуется. Момент включения – настоящее испытание для спирали накаливания.

Беда в том, что нет идеальных спиралей. В процессе эксплуатации металл выгорает неравномерно. Как следствие, в тонких участках вольфрамовой спирали в момент разогрева мощность тока максимальная, они вспыхивают и рвутся.

Срок эксплуатации спирали накаливания зависит от нескольких факторов:
  1. качество контакта между патроном и цоколем, когда есть подгорания, возрастает риск короткого замыкания;
  2. частое включение/выключение, такой режим эксплуатации не предусмотрен;
  3. нестабильное напряжение, установлено, что изменение напряжения на 1% снижает срок службы спирали накаливания в 7–8 раз;
  4. старые провода, изоляция со временем начинает осыпаться, снижается плотность соединения проводников;
  5. вибрация, высокая влажность окружающей среды.

Принцип работы

Фазовый регулятор лежит в основе любого устройства плавного включения ламп накаливания. Он спасает от скачков при нестабильном напряжении, его используют при подключении бытовых приборов, запитывающихся от сети напряжения 220 В. Принцип УПВЛ прибора заключается в постепенном повышении силовой нагрузки. Он последовательно включается в электрическую цепь между питающим проводом (фазой), нулевым. Во время включения рост силы тока ограничен, напряжение плавно увеличивается до 180–210 В. Потребление самого устройства в пределах 1,5 вольт.

В схеме устройства обязательно есть полупроводниковые устройства. Через одно проходит полуволна (минус), другая в это время поступает на конденсатор (плюс). Когда его заряд достигает величины открывания p-n перехода, ограничения электропитания снимаются. Ток, напряжение стабилизируются.

Назначение

 блока защиты галогенных ламп и ламп накаливания:

  • стабилизация пускового тока;
  • повышение сроки эксплуатации световых галогенных элементов в 6 раз;
  • снижение риска деформации вольфрамовой спирали;
  • устранение эффекта мигания.

Минусом устройства считают незначительное снижение мощности светового потока.

Готовые решения

Монтаж блока защиты заводского производства не занимает много времени. Они выпускаются с разными периодами корректировки напряжения – от долей секунды до трех. Величина максимально напряжения тоже варьируется. При выборе устройства плавного включения ламп накаливания необходимо внимательно смотреть маркировку. Габариты блока зависят от нагрузки. Разработаны модели мощностью до 1100 Ватт. Типовые, используемые в быту, обычно ограничиваются 150 Вт. Если устройство приобретается с целью защиты от скачков напряжения, необходимо предусмотреть 30% запас прочности. Он рассчитывается до суммарной мощности подключаемых устройств.

Схема УПВЛ для ламп на 220 В.

Для светодиодных (LED), люминесцентных лампочек блоки защиты ламп накаливания не предусмотрены.

Модифицированные устройства – светорегуляторы или диммеры имеют дополнительные функции:
  1. обеспечивают регулировку светового излучения;
  2. оснащаются программными системами, работающими по хлопку, голосовой команде или от пульта;
  3. плавно выключают свет.

Чем сложнее защита, тем выше ее стоимость. При выборе диммера важно сразу определиться с набором функций.

Схемы

При конструктивном решении используются различные виды полупроводниковых устройств. Тиристорные работают только в одном направлении, у них три вывода: плюс, минус, управляющий контакт. При подаче напряжения принцип проводимости тиристора такой же, как у диода. Характеризуется размером тока удержания, при значениях, ниже указанного показателя, ток через тиристор (или триод) не проходит.

Симистор отличается от тиристора структурой: 6-компонентный слой позволяет проводить ток в обоих направлениях, работает по принципу замкнутого выключателя.

Плавное включение ламп 220 В схема на тиристоре

Принцип защиты спирали накаливания основан на полярности полуволны переменного тока. При минусовой работает диод, положительная направляется на конденсатор, равный по мощности току удержания тиристора. Нагрузка спирали накаливания сокращается вдвое. При полной зарядке конденсатора тиристор тоже начинает проводить заряд, напряжение стабилизируется. Тиристор располагается на диодном плече выпрямителя.

Тиристорный регулятор напряжения.

Плавное включение ламп 220 В схема на симисторе

Использование симистора позволяет уменьшить количество комплектующих, он работает как силовой ключ. Помехи нивелирует дроссель. Схема плавного включения ламп накаливания создана для смещении угла фазы. Минусовая полуволна через диод и резистор направляется на управляющий электрод симистора. Пока заряжается конденсатор, он проводит только однонаправленный полупериод. Когда подключается конденсатор, ток идет по симистору двух направлениях.

Схема УПВЛ с применением симистора.

Плавное включение ламп 220 В схема на ИМС КР1182ПМ1

Микросхема защиты спирали накаливания с двумя тиристорами и симисторе сглаживает процесс нарастания напряжения. Оно постепенно возрастает от 5 до 220 В. Благодаря двум парам: тиристор-резистор, дополнительному конденсатору, симистор открывается постепенно. Время запуска устройства зависит от емкости конденсатора, время гашения спирали накаливания – от размера сопротивления второго тиристора.

Схема и к ней печатная плата.

Плавное включение ламп 12 В

Если подключаются бытовые электроприборы, лампы накаливания 12 В, защитное устройство с рабочим напряжением 220 Вольт устанавливается в электроцепь перед трансформатором, понижающим напряжение. При выборе блока учитывается мощность первичной обмотки трансформатора.

Плавное включение ламп 12 В.

Плавное включение ламп в автомобиле

Фары ближнего и дальнего света работают от постоянного тока, для их защиты используются схемы с линейными или импульсными ШИМ-регуляторами. Готовые автоконтроллеры дополняются различными функциями. Они выпускаются для раздельных ламп и Н4. Обычно используются двухступенчатые схемы: сначала ток пропускает резистор, затем включается реле. При подключении защиты используют прочный провод, надёжную изоляцию.

Доработки и тюнинг ВАЗ 2110, ВАЗ 2111, ВАЗ 2112.

 

Плавное включение и выключение нагрузки

В большинстве домов, квартир соотечественников до сих пор используют для освещения лампы накаливания. Ситуация объясняется их небольшой ценой, хотя приборы служат недолго. Причина этого в разрушении нити накала в момент резкой нагрузки, что происходит при включении света.

Проблема снимается устройствами, обеспечивающими плавное включение ламп накаливания. Они не позволяют большому напряжению поступать на спираль сразу, обеспечивая постепенное его возрастание. Последнее происходит в течение нескольких секунд, приводит к плавному нагреванию нити, что уберегает ее от разрыва. В результате срок службы ламп увеличивается в разы.

Умельцами предлагается несколько электронных схем плавного включения и выключения нагрузки на лампы накаливания – на тиристоре, симисторе, специальной микросхеме. Они содержат немного деталей, их работа не требует наладки. При некотором умении схемы можно сделать своими руками и сэкономить на лампочках.

В тиристорной схеме имеется выпрямительный мост из четырех диодов и лампа накаливания, которая выполняет роль нагрузки и ограничивает ток. Плечи выпрямителя содержат тиристор и сдвигающую цепочку, составленную из двух резисторов и конденсатора. Диодный мост необходим в схеме из-за специфики работы тиристора.

Электрический ток, попав на схему, проходит через нить накала лампы, попадая затем на выпрямительный мост. Далее проходит через резистор, вызывая зарядку емкости электролита. Последняя, увеличиваясь, достигает порога, который приводит к открыванию тиристора, который после этого начинает пропускать ток лампы накаливания. Спираль при этом разогревается постепенно; время разогрева определяется характеристиками резистора и конденсатора.

Симисторная схема отличается от тиристорной меньшим количеством деталей. В сеть с лампой накаливания вставляют конденсатор 0,1 мкФ и параллельно ему – симистор КУ208Г. Параллельно последнему устраивают участок цепи, в котором последовательно расположены конденсатор (500 мкФ), резистор (300 Ом) и диод Д266 (расположение от выхода к входу симистора). Это цепь задает время, в течении которого включается лампочка.

Кроме того, от перемычки между резистором и диодом устроен подвод к эмиттеру симистора через резистор в 47 Ом. Последний служит для ограничения тока, поступающего на симистор, на его управляющий электрод.

При включении выключателя ток проходит через спираль лампочки и, попадая на конденсатор, накапливается на нем. Через определенное время (это и обеспечивает плавное включение лампы) симистор открывается, и лампа загорается.

В третьей схеме используется микросхема КР1182ПМ1. Она сама регулирует напряжение, которое поступает на лампочку. Рассчитана на мощность нагрузки 150 Вт. Если последняя больше, то в схему добавляют симистор, который размещают в цепи нагрузки и соединяют перемычкой с другой ветвью цепи.

Описанные устройства позволяют плавно включать не только лампочки накаливания, но и галогенный их вид, работающий от напряжения 220 В. Подобные схемы применяют, чтобы исключить подачу сразу максимального напряжения на электроинструменты, спасая от чрезмерной нагрузки якоря электродвигателей.

Для светодиодных и люминесцентных ламп описанные схемы не подходят.

Плавное включение ламп накаливания на 220В

В неотапливаемых гаражах, а так же внеотапливаемых складах, да и непосредственно в качестве дворового освещения часто используются лампы накаливания. Но проблема в том, что зимой при значительном морозе, холодная, покрытая инеем лампа накаливания, имеет много шансов перегореть в момент включения.

Чтобы этого не происходило, желательно сначала подать пониженное напряжение на лампу, чтобы подогреть её, а потом через некоторое время уже подать все напряжение.

Самый простой способ, — это временно включать последовательно осветительной лампе какое-то сопротивление. Например, мощный резистор. Но такая идея упирается в этот самый мощный резистор, который должен быть мощностью ватт 30-50, и приобрести его весьма сложно.

Но если подойти с другой стороны. Ведь в качестве последовательного резистора можно использовать и еще одну лампу, меньшей мощности. При включении, в первое время основная лампа и лампа дополнительная будут включены последовательно.

При этом обе будут работать на неполную мощность, что позволит основной лампе прогреться в щадящем режиме. Затем, через некоторое время, дополнительная лампа замыкается, и теперь все напряжение поступает на основную лампу.

Принципиальная схема

Схема электронного устройства, отвечающего за подключение и отключение дополнительной лампы показано на рисунке в тексте. Там основная лампа обозначена как Н2, а дополнительная как Н1. Схема выполнена на одной доступной микросхеме К561ЛЕ5 и питается от электросети через простейший бестрансформаторный блок питания.

Рис. 1. Принципиальная схема плавного включения ламп накаливания на 220В.

При включении питания выключателем S1 напряжение от сети поступает на последовательно включенные лампы Н1 и Н2. А так же, на выпрямительный мост VD1-VD4 через конденсатор С1, реактивное сопротивление которого, работая совместно со стабилитронами VD5 и VD6 образует параметрический стабилизатор напряжения 24V, необходимого для питания реле К1. Конденсатор С2 сглаживает пульсации питающего напряжения.

На микросхему D1 питание поступает со стабилитрона VD6, поэтому на ней напряжение равно 12V. В этот момент, начинается зарядка конденсатора С4 через резистор R4. Но пока он не заряжен, на входах элемента D1.1 имеется напряжение логической единицы. Поскольку здесь имеет место последовательное включение трех инверторов, на выходе элемента D1.3 будет логический ноль.

Значит, транзистор VТ1 будет закрыт. Ток на обмотку реле К1 не поступает, его контакты К1.1 выключены Поэтому, лампы включены последовательно и основная лампа Н2 разогревается питаясь через сопротивление дополнительной лампы Н1.

Через некоторое время конденсатор С4 заряжается на столько, что напряжение на входах элемента D1.1 снижается до уровня логического нуля. При этом, на выходе элемента D1.3 устанавливается логическая единица. Транзистор VТ1 открывается и подает ток на обмотку реле К1.

Реле замыкает свои контакты К1.1, и ими замыкает дополнительную лампу Н1. Теперь все напряжение сети подается на основную лампу Н2, и она горит в полный накал.

Детали

Выбор мощности лампы Н1 зависит от мощности основной лампы. Чем больше мощность осветительной лампы, тем более она склонна к перегоранию на морозе. Лампы же малой мощности не так склонны к перегоранию. Например, если основная лампа имеет мощность 150W, то оптимальная мощность дополнительной будет 45W.

Дополнительная лампа не является источником света, поэтому её можно разместить внутри помещения, если основная лампа служит для дворового освещения.

Реле К1 указанного на схеме типа допускает ток нагрузки 10А при напряжении 220V, так что мощность светильника может быть до 2200W, что конечно излишне. Время разогрева лампы можно изменить подбором сопротивления резистора R4.

Сушилин А. РК-01-2019.

Плавное включение ламп накаливания (cхемы, устройство)

Лампы накаливания светят около 1000 часов, но если их часто включают и выключают – срок службы становится еще ниже. Продлить срок службы можно, установив устройство плавного включения ламп накаливания, а описанный метод подходит и для защиты галогеновых ламп.

Причины преждевременного перегорания

Лампы накаливания – старый источник света, его конструкция предельно проста – в герметичной стеклянной колбе установлена спираль из вольфрама, когда через нее течет ток, она нагревается и начинает светиться.

Однако такая простота не значит долговечность и надежность. Их срок службы порядка 1000 часов, а часто и того меньше. Причиной перегорания могут стать:

  • скачки напряжения в питающей сети;
  • частые включения и выключения;
  • другие причины типа перепадов температуры, механических повреждений и вибраций.

В этой статье мы рассмотрим, как минимизировать вред от частых включений лампы. Когда лампочка выключена, ее спираль холодная. Ее сопротивление в 10 раз ниже, чем у горячей спирали. Основным режимом работы является горячее состояние лампы. Из закона Ома известно, что ток зависит от сопротивления, чем оно ниже, тем выше ток.

Когда вы включаете лампу, через холодную спираль протекает большой ток, но по мере ее нагрева он начинает снижаться. Первоначальный высокий ток оказывает разрушительное воздействие на спираль. Для того чтобы этого избежать нужно организовать плавное включение ламп накаливания.

Диммер для плавного включения

Принцип работы

Чтобы ограничить ток включения лампы накаливания можно понизить начальное напряжение и постепенно повысить его до номинальной величины. Для этого используют устройство плавного включения ламп накаливания.

Прибор включается в разрыв питающего провода между выключателем и светильником. Когда вы подаете напряжение, в первый момент времени оно близко к нулю, схема плавного розжига постепенно повышает его. Обычно они собраны по схеме фазоимпульсного регулятора на тиристорах, симисторе или полевых транзисторах.

Скорость нарастания напряжения зависит от схемотехники устройства, обычно 2–3 секунды от 0 до 220 В.

Основной характеристикой блока защиты является допустимая мощность подключенной нагрузки. Обычно лежит в пределах 100–1500 Вт.

к содержанию ↑

Готовые решения

Блоки защиты для светильников продаются практически в каждом магазине бытовых и электротоваров. Такой блок может называться иначе, чем было сказано выше, например: «Устройство защиты галогеновых ламп и ламп накаливания» или другое подобное название. Как уже отмечалось, при покупке, главное, на что следует обратить внимание – это мощность блока розжига.

Широкую линейку таких устройств выпускают под торговой маркой «Гранит».

Предложение от “Гранит”

Есть и миниатюрные блоки Navigator их можно удобно спрятать в распредкоробку, если она не набита проводами доверху. Также поместится внутрь большинства светильников, например, в основание настольной лампы, или между потолком и люстрой, если есть такая возможность.

Компактный блок защитык содержанию ↑

Схемы

Так как устройство плавного включения ламп накаливания и галогенных ламп не представляет особой сложности с точки зрения схемотехники, его можно собрать своими руками. Процесс сборки может быть осуществлен:

  • навесным монтажом;
  • на макетной плате;
  • на печатной плате.

И зависит от ваших навыков и возможностей самым надежным будет вариант на печатной плате, от навесного монтажа в этом случае лучше держаться подальше, если вы не владеете особенностями такого монтажа в цепях 220 В.

Плавное включение ламп 220 В: схема на тиристоре

Схема первая представлена на рисунке ниже. Основным ее функциональным элементом является тиристор, включенный в плечах диодного моста. Номиналы всех элементов подписаны. Если использовать ее в качестве плавного розжига для торшера, настольной лампы или другого переносного светильника – удобно заключить ее в корпус, подойдет распредкоробка для наружного монтажа. На выходе установить розетку для подключения светильника. По сути – это обычный диммер, и плавного пуска как такового здесь нет. Вы просто поворачиваете ручку потенциометра, плавно увеличивая напряжение на лампе. Кстати, такая приставка подойдет и для регулировки мощности паяльника или других электроприборов (плиты, коллекторного двигателя и т. д.).

Вариант реализации схемы

Плавное включение ламп 220 В: схема на симисторе

Можно уменьшить количество деталей и собрать такую же схему, которая установлена в фирменные блоки защиты. Она изображена на рисунке ниже.

Схема с симистором

Чем больше постоянная времени R2С1 цепочки, тем дольше происходит розжиг. Для увеличения времени нужно увеличить емкость C1, обратите внимание – это полярный или электролитический конденсатор. Конденсатор C2 должен выдерживать напряжение не менее 400 В – это неполярный конденсатор.

Чтобы увеличить мощность подключенных ламп – измените симистор VS1 на любой подходящий по току к вашей нагрузке.

Дроссель L1 – это фильтрующий элемент, он нужен для уменьшения помех в сети от включения симистора. Его использовать необязательно, на работу схемы не влияет.

Когда включается SA1 (выключатель), ток начинает течь через лампу, дроссель и конденсатор С2. За счет реактивного сопротивления конденсатора, ток через лампу течет маленький. Когда напряжение до которого зарядится С1 достигнет порога открытия симистора – ток потечет через него, лампа включится в полный накал.

Плавное включение ламп 220 В: схема на ИМС КР1182ПМ1

Есть вариант и плавного включения с помощью микросхемы КР1182ПМ1, она обеспечивает плавный пуск ламп и другой нагрузки мощностью до 150 Вт. Подробное описание этой микросхемы вы найдете здесь:

Схема

а ниже изображена схема устройства, она предельно проста:

Простая схема

Или вот ее модернизированный вариант для включения мощной нагрузки:

Проработанная схема

Дополнительно установлен тиристор BTA 16–600, он рассчитан на ток до 16 А и напряжение до 600 В, это видно из маркировки, но можно взять и любой другой. Таким образом, вы можете включать нагрузку мощностью до 3,5 кВт.

к содержанию ↑

Плавное включение ламп 12 В

Часто для точечных светильников используются лампы с напряжением 12 В. Для преобразования 220 в 12 В в настоящее время используют электронные трансформаторы. Тогда устройство плавного включения нужно подключать в разрыв питающего провода электронного трансформатора.

Плавное включение ламп в автомобиле

Если стоит задача организовать плавное включение автомобильных ламп 12 V, то здесь такие схемы не подойдут. В электроцепи автомобиля используется напряжение 24 или 12 V постоянного тока. Здесь можно применить линейные или импульсные схемы так называемые ШИМ-регуляторы.

Простейшим вариантом будет использование двухступенчатой схемы включения.

Двухступенчатая схема включение

Эта схема устанавливается параллельно включаемым лампам. Сначала ток течет через резистор, а лампы горят тускло. Через небольшое время, порядка полсекунды, включается реле, и ток течет через его силовые контакты, они в свою очередь шунтируют резистор и лампы зажигаются на полную яркость.

Номинал резистора от 0,1 до 0,5 Ом, он должен быть большой мощности – около 5 Вт, например, в керамическом корпусе.

Второй вариант – собрать импульсный блок для плавного розжига. Его схема сложнее:

Более сложный для реализации вариант

Список компонентов:

  1. Резисторы:
  • R1=2 k.
  • R2=36 k.
  • R3=0,22.
  • R4=180.
  • R5, 7=2,7 k.
  • R6=1 M.
  1. Конденсаторы:
  • C1=100 n.
  • C2=22×25 B.
  • C3=1500 p.
  • C4=22×50 B.
  • C5=2 мкф.
  1. Микросхема MC34063A или МС34063А, или КР1156ЕУ5.
  2. Полевой транзистор IRF1405 (или любой N-канальный с похожими параметрами: IRF3205, IRF3808, IRFP4004, IRFP3206, IRFP3077).
  3. Дроссель 100 мкГн, на ток не менее 500 мА.
  4. Светодиоды.
  5. Диоды 1N5819.

Время включения регулируется цепью R6C5. Увеличьте емкость, чтобы увеличить время.

Если вам сложно сделать такую схему, можете купить готовую сборку, типа автоконтроллера ЭКСЭ-2А-1 (25 А/IP54) или любой другой подходящий. В конкретно этой модели есть 2 канала, под каждую фару, 8 программ работы. Он основан на микроконтроллере PIC.

Готовое решение без лишних хлопотк содержанию ↑

Подводим итоги

Плавное включение галогенных ламп и ламп накаливания значительно продлевает их срок службы – до 5–7 раз. С другой стороны – добавление в схему лишних элементов снижает ее надежность. В любом случае стоит попробовать использовать блоки плавного розжига независимо идет речь о лампах для домашних светильников или автомобильных.

Предыдущая

НакаливанияЛампа накаливания и её особенности

Следующая

НакаливанияКакой световой поток выдают лампы накаливания

Спасибо, помогло!Не помогло1

Твердотельное реле или твердотельный переключатель

В отличие от электромеханических реле (EMR), которые используют катушки, магнитные поля, пружины и механические контакты для управления и переключения питания, твердотельное реле или SSR не имеет движущихся частей, а вместо этого использует электрические и оптические свойства твердотельного реле. полупроводники для выполнения функций изоляции и переключения между входами и выходами.

Как и обычное электромеханическое реле, SSR обеспечивают полную электрическую изоляцию между своими входными и выходными контактами, а его выход действует как обычный электрический выключатель в том смысле, что он имеет очень высокое, почти бесконечное сопротивление в непроводящем (разомкнутом) состоянии и очень низкое сопротивление при проводке (закрыто).Твердотельные реле могут быть предназначены для переключения как переменного, так и постоянного тока с использованием выхода тиристора, симистора или переключающего транзистора вместо обычных механических нормально разомкнутых (NO) контактов.

В то время как твердотельное реле и электромеханическое реле принципиально схожи в том, что их вход низкого напряжения электрически изолирован от выхода, который переключает и управляет нагрузкой, электромеханические реле имеют ограниченный жизненный цикл контактов, могут занимать много времени. комнаты и имеют более низкую скорость переключения, особенно большие силовые реле и контакторы.У твердотельных реле таких ограничений нет.

Таким образом, основные преимущества твердотельных реле по сравнению с обычными электромеханическими реле заключаются в том, что у них нет движущихся частей, которые могут изнашиваться, и, следовательно, нет проблем с дребезгом контактов, они могут переключаться как в состояние «ВКЛ», так и в положение «ВЫКЛ» намного быстрее, чем механическое реле. якорь реле может двигаться, а также включать нулевое напряжение и отключать нулевой ток, устраняя электрические помехи и переходные процессы.

Твердотельные реле

можно купить в стандартных готовых упаковках с диапазоном от нескольких вольт или ампер до многих сотен вольт и ампер выходной коммутационной способности.Однако твердотельные реле с очень высоким номинальным током (150 А плюс) все еще слишком дороги для покупки из-за их требований к силовым полупроводникам и теплоотводу, и поэтому по-прежнему используются более дешевые электромеханические контакторы.

Подобно электромеханическому реле, небольшое входное напряжение, обычно от 3 до 32 вольт постоянного тока, может использоваться для управления очень большим выходным напряжением или током. Например 240В, 10А. Это делает их идеальными для взаимодействия микроконтроллеров, PIC и Arduino, поскольку слаботочный 5-вольтовый сигнал, скажем, от микроконтроллера или логического элемента, может использоваться для управления конкретной нагрузкой схемы, и это достигается с помощью оптоэлектронной схемы. изоляторы.

Вход твердотельного реле

Одним из основных компонентов твердотельного реле (SSR) является оптоизолятор (также называемый оптопарой), который содержит один (или несколько) инфракрасных светодиодов или светодиодных источников света и фоточувствительное устройство. в одном случае. Оптоизолятор изолирует вход от выхода.

Светодиодный источник света подключен к секции входного привода SSR и обеспечивает оптическую связь через зазор с соседним фоточувствительным транзистором, парой Дарлингтона или симистором.Когда через светодиод проходит ток, он загорается, и его свет фокусируется через зазор на фототранзистор / фотомистор.

Таким образом, выход SSR с оптической связью включается при подаче питания на этот светодиод, обычно с помощью сигнала низкого напряжения. Поскольку единственное соединение между входом и выходом — это луч света, изоляция высокого напряжения (обычно несколько тысяч вольт) достигается с помощью этой внутренней оптоизоляции.

Оптоизолятор не только обеспечивает более высокую степень изоляции входа / выхода, он также может передавать сигналы постоянного тока и низкочастотные сигналы.Кроме того, светодиод и фоточувствительное устройство могут быть полностью отделены друг от друга и оптически связаны с помощью оптического волокна.

Входная схема SSR может состоять только из одного токоограничивающего резистора, включенного последовательно со светодиодом оптоизолятора, или из более сложной схемы с выпрямлением, регулированием тока, защитой от обратной полярности, фильтрацией и т. Д.

Чтобы активировать или включить реле проданного состояния в состояние проводимости, к его входным клеммам должно быть приложено напряжение, превышающее его минимальное значение (обычно 3 В постоянного тока) (эквивалентно катушке электромеханического реле).Этот сигнал постоянного тока может быть получен от механического переключателя, логического элемента или микроконтроллера, как показано.

Входная цепь постоянного тока твердотельного реле

При использовании механических контактов, переключателей, кнопок, других контактов реле и т. Д. В качестве сигнала активации используемое напряжение питания может быть равно минимальному значению входного напряжения SSR, тогда как при использовании твердотельных устройств, таких как транзисторы, затворы и т. Д. Для микроконтроллеров минимальное напряжение питания должно быть на один или два вольта выше напряжения включения SSR, чтобы учесть внутреннее падение напряжения коммутирующих устройств.

Но помимо использования постоянного напряжения, втекающего или источника, для переключения твердотельного реле на проводимость, мы также можем использовать синусоидальную форму волны, добавив мостовой выпрямитель для двухполупериодного выпрямления и схему фильтра для постоянного тока. введите, как показано.

Цепь входа переменного тока твердотельного реле

Мостовые выпрямители преобразуют синусоидальное напряжение в двухполупериодные выпрямленные импульсы с двойной входной частотой. Проблема здесь в том, что эти импульсы напряжения начинаются и заканчиваются с нуля вольт, что означает, что они упадут ниже минимальных требований к напряжению включения входного порога SSR, что приведет к тому, что выход будет «включаться» и «выключаться» каждые полупериод.

Чтобы преодолеть это беспорядочное срабатывание выхода, мы можем сгладить выпрямленные пульсации с помощью сглаживающего конденсатора (C1) на выходе мостового выпрямителя. Эффект зарядки и разрядки конденсатора повысит постоянную составляющую выпрямленного сигнала выше максимального значения напряжения включения на входе твердотельного реле. Тогда, даже если используется постоянно изменяющаяся форма волны синусоидального напряжения, на входе SSR отображается постоянное напряжение постоянного тока.

Значения резистора падения напряжения R 1 и сглаживающего конденсатора C 1 выбираются в соответствии с напряжением питания, 120 вольт переменного тока или 240 вольт переменного тока, а также входным сопротивлением твердотельного реле.Но подойдет что-то около 40 кОм и 10 мкФ.

Затем, добавив мостовой выпрямитель и схему сглаживающего конденсатора, можно управлять стандартным твердотельным реле постоянного тока, используя источник переменного или неполяризованного постоянного тока. Конечно, производители уже производят и продают твердотельные реле переменного тока (обычно от 90 до 280 вольт переменного тока).

Выход твердотельного реле

Возможности переключения выхода твердотельного реле могут быть переменным или постоянным током, что соответствует его требованиям к входному напряжению.Выходная цепь большинства стандартных твердотельных реле сконфигурирована для выполнения только одного типа переключения, что эквивалентно нормально разомкнутой, однополюсной, одноходовой (SPST-NO) работе электромеханического реле.

Для большинства SSR постоянного тока обычно используемыми твердотельными переключающими устройствами являются силовые транзисторы, транзисторы Дарлингтона и полевые МОП-транзисторы, тогда как для SSR переменного тока переключающим устройством является либо симистор, либо тиристоры, включенные параллельно. Тиристоры предпочтительнее из-за их высоких значений напряжения и тока.Один тиристор также можно использовать в схеме мостового выпрямителя, как показано.

Цепь выхода твердотельного реле

Наиболее распространенное применение твердотельных реле — переключение нагрузки переменного тока, будь то управление мощностью переменного тока для включения / выключения, уменьшения яркости света, управления скоростью двигателя или других подобных приложений, где требуется управление мощностью, эти переменные токи Нагрузками можно легко управлять с помощью слаботочного постоянного напряжения с помощью твердотельного реле, обеспечивающего длительный срок службы и высокую скорость переключения.

Одним из самых больших преимуществ твердотельных реле перед электромеханическим реле является их способность отключать нагрузки переменного тока в точке нулевого тока нагрузки, тем самым полностью устраняя искрение, электрические помехи и дребезг контактов, присущие обычным механическим реле и индуктивным реле. нагрузки.

Это связано с тем, что твердотельные реле переменного тока, переключающие переменный ток, используют тиристоры и тиристоры в качестве выходных переключающих устройств, которые продолжают проводить после удаления входного сигнала до тех пор, пока переменный ток, протекающий через устройство, не упадет ниже своего порогового значения или значения удерживающего тока.Тогда выход SSR никогда не может выключиться в середине пика синусоидальной волны.

Отключение при нулевом токе является основным преимуществом использования твердотельного реле, поскольку оно снижает электрические шумы и обратную ЭДС, связанную с переключением индуктивных нагрузок, которые воспринимаются контактами электромеханического реле как дуга. Рассмотрим приведенную ниже диаграмму выходных сигналов типичного твердотельного реле переменного тока.

Форма выходного сигнала твердотельного реле

При отсутствии входного сигнала ток нагрузки не протекает через SSR, поскольку он фактически выключен (разомкнут), а выходные клеммы видят полное напряжение питания переменного тока.При применении входного сигнала постоянного тока, независимо от того, какую часть синусоидальной формы волны, положительную или отрицательную, проходит цикл, из-за характеристик переключения при нулевом напряжении SSR выход включается только тогда, когда форма волны пересекает нулевая точка.

Когда напряжение питания увеличивается в положительном или отрицательном направлении, оно достигает минимального значения, необходимого для полного включения выходных тиристоров или симистора (обычно менее 15 вольт). Падение напряжения на выходных клеммах SSR соответствует падению напряжения во включенном состоянии переключающих устройств, В T (обычно менее 2 В).Таким образом, любые высокие пусковые токи, связанные с реактивной или ламповой нагрузкой, значительно снижаются.

Когда сигнал входного напряжения постоянного тока удаляется, выход не отключается внезапно, поскольку после срабатывания проводимости тиристор или симистор, используемый в качестве переключающего устройства, остается включенным в течение оставшейся части полупериода, пока токи нагрузки не упадут ниже уровня устройств. ток удержания, после чего он отключается. Таким образом, высокая обратная ЭДС dv / dt, связанная с переключением индуктивных нагрузок в середине синусоидальной волны, значительно снижается.

Тогда основными преимуществами твердотельного реле переменного тока по сравнению с электромеханическим реле являются его функция перехода через нуль, которая включает SSR, когда напряжение нагрузки переменного тока близко к нулю, тем самым подавляя любые высокие пусковые токи, поскольку ток нагрузки всегда будет начните с точки, близкой к 0 В, и присущей тиристору или симистору характеристике отключения при нулевом токе. Следовательно, существует максимально возможная задержка выключения (между снятием входного сигнала и снятием тока нагрузки) в один полупериод.

Твердотельное реле с регулировкой по фазе

Хотя твердотельные реле могут выполнять прямое переключение нагрузки при переходе через ноль, они также могут выполнять гораздо более сложные функции с помощью цифровых логических схем, микропроцессоров и запоминающих устройств. Еще одно прекрасное применение твердотельного реле — это регулировка яркости ламп, будь то дома, на шоу или концерте.

Ненулевое (мгновенное) переключающее твердотельное реле включается сразу после подачи входного управляющего сигнала, в отличие от SSR перехода через ноль, выше которого ожидается до следующей точки перехода через нуль синусоидального сигнала переменного тока.Это случайное переключение используется в резистивных приложениях, таких как регулирование яркости ламп, а также в приложениях, где требуется, чтобы нагрузка была запитана только в течение небольшой части цикла переменного тока.

Форма выходного сигнала со случайным переключением

Хотя это позволяет управлять фазой формы сигнала нагрузки, основная проблема SSR случайного включения заключается в том, что начальный импульсный ток нагрузки в момент включения реле может быть высоким из-за мощности переключения SSR, когда напряжение питания близка к своему пиковому значению (90 o ).Когда входной сигнал удаляется, он перестает проводить, когда ток нагрузки падает ниже тока удержания тиристоров или симисторов, как показано. Очевидно, что для SSR постоянного тока переключение ВКЛ-ВЫКЛ происходит мгновенно.

Твердотельное реле идеально подходит для широкого диапазона приложений включения / выключения, поскольку в отличие от электромеханического реле (EMR) у них нет движущихся частей или контактов. Существует множество различных коммерческих типов на выбор для входных управляющих сигналов переменного и постоянного тока, а также для переключения выходов переменного и постоянного тока, поскольку в них используются полупроводниковые переключающие элементы, такие как тиристоры, симисторы и транзисторы.

Но, используя комбинацию хорошего оптоизолятора и симистора, мы можем сделать собственное недорогое и простое твердотельное реле для управления нагрузкой переменного тока, такой как нагреватель, лампа или соленоид. Поскольку для работы оптоизолятору требуется лишь небольшое количество входной / управляющей мощности, управляющий сигнал может поступать от PIC, Arduino, Raspberry PI или любого другого подобного микроконтроллера.

Пример твердотельного реле №1

Предположим, нам нужен микроконтроллер с сигналом цифрового выходного порта всего +5 В для управления нагревательным элементом мощностью 120 В переменного тока и мощностью 600 Вт.Для этого мы могли бы использовать опто-симисторный изолятор MOC 3020, но внутренний симистор может пропускать только максимальный ток (I TSM ) в 1 ампер на пике источника питания 120 В переменного тока, поэтому также необходимо использовать дополнительный переключающий симистор. .

Сначала рассмотрим входные характеристики оптоизолятора MOC 3020 (доступны и другие опто-симисторы). В таблице данных оптоизоляторов указано, что падение прямого напряжения (V F ) входного светодиода составляет 1,2 В, а максимальный прямой ток (I F ) составляет 50 мА.

Светодиоду требуется около 10 мА, чтобы светить достаточно ярко до максимального значения 50 мА. Однако порт цифрового вывода микроконтроллера может подавать максимум 30 мА. Тогда требуемый ток составляет от 10 до 30 миллиампер. Следовательно:

Таким образом, можно использовать последовательный токоограничивающий резистор номиналом от 126 до 380 Ом. Поскольку порт цифрового вывода всегда переключает +5 В, и для уменьшения рассеиваемой мощности светодиодами оптопары, мы выберем предпочтительное значение сопротивления 240 Ом.Это дает прямой ток светодиода менее 16 мА. В этом примере подойдет любое предпочтительное сопротивление резистора от 150 до 330 Ом.

Нагрузка на нагревательный элемент резистивная 600 Вт. Использование источника переменного тока 120 В даст нам ток нагрузки 5 ампер (I = P / V). Поскольку мы хотим контролировать этот ток нагрузки в обоих полупериодах (всех 4 квадрантах) сигнала переменного тока, нам потребуется симистор переключения сети.

BTA06 — это симистор на 6 ампер (I T (RMS) ) на 600 вольт, подходящий для общего включения / выключения нагрузок переменного тока, но подойдет любой аналогичный симистор с номиналом от 6 до 8 ампер.Кроме того, этот переключающий симистор требует только 50 мА привода затвора для запуска проводимости, что намного меньше, чем максимальный номинальный ток 1 А оптоизолятора MOC 3020.

Учтите, что выходной симистор оптоизолятора включился при пиковом значении (90 o ) напряжения питания переменного тока 120 В, RMS, . Это пиковое напряжение имеет значение: 120 x 1,414 = 170 В пик. Если максимальный ток опто-симистора (I TSM ) составляет пик в 1 ампер, то минимальное требуемое значение последовательного сопротивления составляет 170/1 = 170 Ом, или 180 Ом с точностью до ближайшего предпочтительного значения.Это значение 180 Ом будет защищать выходной симистор оптопары, а также затвор симистора BTA06 при питании 120 В переменного тока.

Если симистор оптоизолятора включается при нулевом значении кроссовера (0 o ) напряжения питания переменного тока 120 В RMS , то минимальное напряжение, необходимое для подачи требуемого тока управления затвором 50 мА, заставляет переключающий симистор в проводимость будет: 180 Ом x 50 мА = 9,0 вольт. Затем симистор переходит в проводимость, когда синусоидальное напряжение между затвором и MT1 превышает 9 вольт.

Таким образом, минимальное напряжение, требуемое после точки перехода через ноль сигнала переменного тока, будет составлять пик 9 вольт, а рассеиваемая мощность в этом последовательном резисторе затвора очень мала, поэтому можно безопасно использовать резистор номиналом 180 Ом, 0,5 Вт. Рассмотрим схему ниже.

Цепь твердотельного реле переменного тока

Этот тип конфигурации оптопары составляет основу очень простого твердотельного реле, которое можно использовать для управления любой нагрузкой с питанием от сети переменного тока, такой как лампы и двигатели.Здесь мы использовали MOC 3020, который представляет собой изолятор со случайным переключением. Изолятор опто-симистора MOC 3041 имеет те же характеристики, но со встроенным датчиком перехода через нуль, позволяющим нагрузке получать полную мощность без больших пусковых токов при переключении индуктивных нагрузок.

Диод D 1 предотвращает повреждение из-за обратного подключения входного напряжения, в то время как резистор 56 Ом (R 3 ) шунтирует любые токи di / dt, когда симистор выключен, устраняя ложное срабатывание.Он также связывает вывод затвора с MT1, обеспечивая полное отключение симистора.

При использовании с широтно-импульсной модуляцией входного сигнала ШИМ частота переключения ВКЛ / ВЫКЛ должна быть установлена ​​на менее 10 Гц максимум для нагрузки переменного тока, в противном случае выходное переключение этой схемы твердотельного реле может быть не в состоянии поддерживать.

Что произойдет, если подключить прибор на 110 В к розетке 220 В?

Это зависит от характера устройства, но, как правило, если напряжение слишком высокое, он потребляет слишком много тока и сгорает, если напряжение слишком низкое, он потребляет слишком мало тока и / или не работает в соответствии со своими номинальными характеристиками.Математическая справка — закон Ома и треугольник мощности.

Если вы подключаете устройство на 110 В к розетке 220 В (то же, что и от 120 В до 230 В, 240 В), вы можете только надеяться, что какое-то защитное устройство отключит питание устройства.
В противном случае:
Если это какое-то нагревательное устройство (тостер, лампа накаливания, лампа, лампочка, обогреватель), оно будет выделять тепло, почти в четыре раза превышающее расчетное, и, вероятно, сгорит за минуты или секунды. Если это какой-то привод переменного тока, он, скорее всего, очень быстро сгорит.Если это универсальный привод (или DC), он может раскручиваться вдвое по сравнению с предполагаемой скоростью и быстро изнашиваться.

Если вы подключите устройство на 220 В к розетке на 110 В , обычно оно прослужит немного дольше, прежде чем разрядится.
Но:
Механический привод переменного тока может не запуститься, или он может потреблять больше тока, чем он предназначен, и в конечном итоге перегореть.

Изоляция обычно не проблема, если нет серьезных недостатков в конструкции. Это ток — ваш враг, кусок провода, нагретый до 110 В (120 В), превратится в предохранитель на 220 В (230 В, 240 В) при прочих равных условиях.Определение мощности / нагрузки обычно выполняется инженером-проектировщиком для соответствия техническим характеристикам, установленным инженером-электриком.

Во всех случаях вы, вероятно, нарушаете местные правила, потому что в большинстве стран электрические розетки предназначены для подключения только определенных вилок, чтобы вы не допустили несоответствия напряжения прибора и напряжения розетки. В некоторых странах вас могут серьезно наказать, если что-то пойдет не так, потому что вы попробовали это сделать.

Вы можете просто купить преобразователь 110 В на 220 В, чтобы прибор работал бесперебойно.

Колебания напряжения — обзор

41.9.1 Компенсация мерцания лампы

Спектральная плотность колебаний напряжения, создаваемых дуговой печью, приблизительно обратно пропорциональна квадратному корню из частоты. Люди испытывают субъективную реакцию на мерцание лампы; как правило, пики человеческой чувствительности для ламп накаливания 230 В чуть ниже 10 Гц. Как видно из , рис. 41.44 , взвешенная комбинация этих характеристик показывает, что частоты, наиболее часто вызывающие визуальное раздражение, лежат в диапазоне примерно от 2 до 25 Гц.Если колебания напряжения на частоте 10 Гц превышают примерно 0,2%, они могут вызвать заметное мерцание светового выхода лампы накаливания 230 В. Лампа на 110 В той же мощности имеет более тяжелую нить накала с большей теплоемкостью, что приводит к меньшему отклику на колебания напряжения, а частота наиболее возмущающих воздействий снижается примерно до 5–6 Гц.

Рисунок 41.44. Чувствительность глаз к мерцанию, вызванному дуговой печью

Цепь питания дуговой печи может быть упрощена до той, что показана на Рис. 41.45 , где точка общего подключения (pcc) — это точка в сети, к которой подключены другие потребители. Сопротивление источника питания обычно мало по сравнению с реактивным сопротивлением, X с , и падение напряжения в этой точке, В p , в основном связано с изменением спроса на переменную дуговую печь. Если SVC не установлен, реактивный ток, I с , в источнике питания такой же, как реактивный ток печи, I q , и мы получаем:

Рисунок 41.45. Упрощенная схема питания дуговой печи. PCC является точкой общего соединения (с другими потребителями)

Таким образом, относительно легко оценить величину провалов напряжения, вызванных колебаниями var, но трудно оценить раздражение, вызванное последовательностью быстрых провалов напряжения. Чтобы оценить и количественно оценить влияние колеблющихся провалов напряжения на человеческий глаз и мозг, Международный союз электрообогрева (UIE) разработал измеритель мерцания, который был одобрен IEC.Фликерметр измеряет последовательные колебания напряжения и с помощью алгоритмов, разработанных на основе первых принципов, преобразует их в числовые значения, которые сравниваются с тем, что 50% населения считают порогом восприятия мерцания лампы. Для этого порогового уровня мерцания лампы мерцание UIE даст числовой результат 1,0 для «интенсивности кратковременного мерцания» (Pst).

Фликерметр может применяться только при вводе печи в эксплуатацию и не может использоваться напрямую для прогнозирования уровней мерцания.Однако простая процедура оценки для целей планирования была получена эмпирическим путем из записей жалоб на мерцание на многих установках. Эта процедура оценивает «снижение напряжения короткого замыкания» (SCVD) для предлагаемой дуговой печи; это изменение напряжения на pcc, которое может быть вызвано изменением потребления варки печи с холостого хода на устойчивое трехфазное короткое замыкание на электродах. Если SCVD превышает примерно 2%, потребители, скорее всего, испытают достаточное раздражение, чтобы пожаловаться на мерцание лампы.Для электродуговой печи с SCVD около 1,3% фликерметр UIE обычно показывает максимальное значение Pst около 1.

Критерий SCVD может использоваться для оценки максимальной мощности печи, которая должна быть подключена к данной системе. но его можно использовать только для определения номинала компенсатора для уменьшения мерцания при условии, что компенсатор способен уменьшать все частоты мерцания в диапазоне визуального раздражения в разумной степени одинаково. Если компенсатор имеет приемлемую линейную частоту колебаний в зависимости от характеристики скорости отклика примерно до 25 Гц, тогда, если он подключен, как показано на Рис. 41.45 , расчет SCVD в установившемся режиме можно использовать для оценки его номинала, т.е. ток компенсатора jI c составляет разницу между допустимым — jI s и значением — jI q . Для уменьшения мерцания необходима высокая скорость реакции. Было показано, что если компенсатор имеет задержку времени регулирования 10 мс, независимо от его номинала, он может дать очень небольшое снижение мерцания; при временной задержке 20 мс или более диапазон частот в пределах диапазона визуального раздражения будет сильно выделен.Компенсатор конденсатора с тиристорным переключением, например, не может достичь необходимой скорости отклика для уменьшения мерцания дуговых печей в частотном диапазоне выше 5 Гц, где человеческий глаз наиболее чувствителен.

Насыщенный реактор с компенсацией гармоник без схемы коррекции крутизны спада был использован для снижения фликера до 3: 1. Он успешно использовался во многих установках в качестве компенсатора сборных шин ( Рисунок 41.46 (a) ), будучи спроектированным на основе критерия SCVD.Схема реактор с отводом / насыщенный реактор (, рис. 41.46 (b), ) была использована для снижения мерцания до 7: 1 для одной дуговой печи. В этой схеме насыщенные реакторы являются однофазными устройствами, и коррекция наклона достигается за счет измененных соотношений обмоток реактора; этот компенсатор по своей сути компенсирует несбалансированные нагрузки дуговой печи и дает мгновенный отклик. Он вызывает значительные гармонические искажения и требует серьезной фильтрации.

TCR, используемый в качестве компенсатора шин, можно сделать пригодным для компенсации дуговых печей с уменьшением мерцания около 2: 1. Преобразователи с питанием от источника напряжения из-за их более низкого реактивного сопротивления и способности к гораздо более быстрому отклику могут превзойти обычные TCR; имеющиеся данные указывают на возможность уменьшения мерцания примерно на 4: 1.

Трехфазное электрическое питание | Передача электроэнергии

Трехфазная электроэнергия — распространенный метод передачи электроэнергии.Это тип многофазной системы, которая в основном используется для питания двигателей и многих других устройств. Трехфазная система использует меньше проводящего материала для передачи электроэнергии, чем эквивалентные однофазные, двухфазные системы или системы постоянного тока при том же напряжении.

В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений в разное время. Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока.Эта задержка между «фазами» обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе.

Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные приборы с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах. Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки. Это позволяет исключить нейтральный провод на некоторых линиях; все фазные проводники проходят одинаковый ток и поэтому могут иметь одинаковый размер для сбалансированной нагрузки. Во-вторых, передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя.Наконец, трехфазные системы могут создавать магнитное поле, вращающееся в заданном направлении, что упрощает конструкцию электродвигателей. Три — это самый низкий фазовый порядок, демонстрирующий все эти свойства.

Большинство бытовых нагрузок однофазные. Обычно трехфазное питание либо вообще не поступает в жилые дома, либо там, где оно поступает, оно распределяется на главном распределительном щите.

На электростанции электрический генератор преобразует механическую энергию в набор переменных электрических токов, по одному от каждой электромагнитной катушки или обмотки генератора.Токи являются синусоидальными функциями времени, все с одной и той же частотой, но смещены во времени, чтобы получить разные фазы. В трехфазной системе фазы расположены равномерно, что дает разделение фаз на одну треть цикла. Частота сети обычно составляет 50 Гц в Азии, Европе, Южной Америке и Австралии и 60 Гц в США и Канаде (но для получения более подробной информации см. «Системы электроснабжения»).

Генераторы выдают напряжение в диапазоне от сотен вольт до 30 000 вольт. На электростанции трансформаторы «повышают» это напряжение до другого, пригодного для передачи.

После многочисленных дополнительных преобразований в сети передачи и распределения мощность окончательно преобразуется в стандартное сетевое напряжение (, т.е. «домашнее» напряжение). Электропитание может быть уже разделено на одну фазу на этом этапе или все еще может быть трехфазным. При трехфазном понижении выход этого трансформатора обычно соединяется звездой со стандартным напряжением сети (120 В в Северной Америке и 230 В в Европе и Австралии), являющимся фазным напряжением.Другая система, обычно встречающаяся в Северной Америке, — это соединение вторичной обмотки треугольником с центральным ответвлением на одной из обмоток, питающих землю и нейтраль. Это позволяет использовать трехфазное напряжение 240 В, а также три различных однофазных напряжения (120 В между двумя фазами и нейтралью, 208 В между третьей фазой (известной как верхняя ветвь) и нейтралью и 240 В между любыми двумя фазами). быть доступным из того же источника.

Большой кондиционер и т. Д.оборудование использует трехфазные двигатели из соображений эффективности, экономии и долговечности.

Нагреватели сопротивления, такие как электрические котлы или отопление помещений, могут быть подключены к трехфазным системам. Аналогичным образом может быть подключено электрическое освещение. Эти типы нагрузок не требуют вращающегося магнитного поля, характерного для трехфазных двигателей, но используют более высокий уровень напряжения и мощности, обычно связанный с трехфазным распределением. Системы люминесцентного освещения также выигрывают от уменьшения мерцания, если соседние светильники получают питание от разных фаз.

Большие выпрямительные системы могут иметь трехфазные входы; Результирующий постоянный ток легче фильтровать (сглаживать), чем выходной сигнал однофазного выпрямителя. Такие выпрямители могут использоваться для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока.

Интересным примером трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд.

В большинстве стран Европы печи рассчитаны на трехфазное питание.Обычно отдельные нагревательные элементы подключаются между фазой и нейтралью, чтобы обеспечить подключение к однофазной сети. Во многих регионах Европы единственным доступным источником является однофазное питание.

Иногда преимущества трехфазных двигателей делают целесообразным преобразование однофазной мощности в трехфазную. Мелкие клиенты, такие как жилые или фермерские хозяйства, могут не иметь доступа к трехфазному питанию или могут не захотеть оплачивать дополнительную стоимость трехфазного обслуживания, но все же могут пожелать использовать трехфазное оборудование.Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. Некоторые локомотивы переходят на многофазные двигатели, приводимые в действие такими системами, даже несмотря на то, что поступающее питание на локомотив почти всегда либо постоянное, либо однофазное переменное.

Поскольку однофазная мощность стремится к нулю в каждый момент, когда напряжение пересекает ноль, но трехфазная подает мощность непрерывно, любой такой преобразователь должен иметь способ накапливать энергию в течение необходимой доли секунды.

Один из методов использования трехфазного оборудования в однофазной сети — это вращающийся фазовый преобразователь, по сути, трехфазный двигатель со специальными пусковыми устройствами и коррекцией коэффициента мощности, которые создают сбалансированные трехфазные напряжения.При правильной конструкции эти вращающиеся преобразователи могут обеспечить удовлетворительную работу трехфазного оборудования, такого как станки, от однофазного источника питания. В таком устройстве накопление энергии осуществляется за счет механической инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала.

Вторым методом, который был популярен в 1940-х и 50-х годах, был метод, который назывался «методом трансформатора». В то время конденсаторы были дороже трансформаторов.Таким образом, автотрансформатор использовался для подачи большей мощности через меньшее количество конденсаторов. Этот метод работает хорошо и имеет сторонников даже сегодня. Использование метода преобразования имени отделяет его от другого распространенного метода, статического преобразователя, поскольку оба метода не имеют движущихся частей, что отделяет их от вращающихся преобразователей.

Другой часто применяемый метод — использование устройства, называемого статическим преобразователем фазы. Этот метод работы трехфазного оборудования обычно используется с нагрузками двигателя, хотя он обеспечивает только 2/3 мощности и может вызвать перегрев нагрузок двигателя, а в некоторых случаях и перегрев.Этот метод не будет работать, когда задействованы чувствительные схемы, такие как устройства ЧПУ, или в нагрузках индукционного или выпрямительного типа.

Производятся некоторые устройства, имитирующие трехфазное питание от однофазного трехпроводного источника питания. Это достигается за счет создания третьей «субфазы» между двумя токоведущими проводниками, в результате чего разделение фаз составляет 180 ° — 90 ° = 90 °. Многие трехфазные устройства будут работать в этой конфигурации, но с меньшей эффективностью.

Преобразователи частоты (также известные как твердотельные инверторы) используются для точного управления скоростью и крутящим моментом трехфазных двигателей.Некоторые модели могут питаться от однофазной сети. Преобразователи частоты работают путем преобразования напряжения питания в постоянный ток, а затем преобразования постоянного тока в подходящий трехфазный источник для двигателя.

Цифровые фазовые преобразователи — это новейшая разработка в технологии фазовых преобразователей, которая использует программное обеспечение в мощном микропроцессоре для управления твердотельными компонентами переключения питания. Этот микропроцессор, называемый процессором цифровых сигналов (DSP), контролирует процесс преобразования фазы, непрерывно регулируя модули ввода и вывода преобразователя для поддержания сбалансированной трехфазной мощности при любых условиях нагрузки.

  • Трехпроводное однофазное распределение полезно, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок.
  • Двухфазное питание, как и трехфазное, обеспечивает постоянную передачу мощности линейной нагрузке. Для нагрузок, которые соединяют каждую фазу с нейтралью, при условии, что нагрузка имеет одинаковую потребляемую мощность, двухпроводная система имеет ток нейтрали, который превышает ток нейтрали в трехфазной системе.Кроме того, двигатели не являются полностью линейными, что означает, что, несмотря на теорию, двигатели, работающие на трех фазах, имеют тенденцию работать более плавно, чем на двухфазных. Генераторы на Ниагарском водопаде, установленные в 1895 году, были крупнейшими генераторами в мире в то время и были двухфазными машинами. Истинное двухфазное распределение энергии по существу устарело. В системах специального назначения для управления может использоваться двухфазная система. Двухфазная мощность может быть получена от трехфазной системы с использованием трансформаторов, называемых трансформатором Скотта-Т.
  • Моноциклическая мощность — это название асимметричной модифицированной двухфазной системы питания, используемой General Electric около 1897 года (отстаивавшей Чарльз Протеус Стейнмец и Элиху Томсон; это использование, как сообщается, было предпринято, чтобы избежать нарушения патентных прав). В этой системе генератор был намотан с однофазной обмоткой полного напряжения, предназначенной для освещения нагрузок, и с небольшой (обычно линейного напряжения) обмоткой, которая вырабатывала напряжение в квадратуре с основными обмотками. Намерение состояло в том, чтобы использовать эту дополнительную обмотку «силового провода» для обеспечения пускового момента для асинхронных двигателей, при этом основная обмотка обеспечивает питание осветительных нагрузок.После истечения срока действия патентов Westinghouse на симметричные двухфазные и трехфазные системы распределения электроэнергии моноциклическая система вышла из употребления; его было сложно анализировать, и его хватило не на то, чтобы разработать удовлетворительный учет энергии.
  • Созданы и испытаны системы высокого порядка фаз для передачи энергии. Такие линии передачи используют 6 или 12 фаз и конструктивные решения, характерные для линий передачи сверхвысокого напряжения. Линии передачи высокого порядка могут позволить передачу большей мощности через данную линию передачи на полосе отчуждения без затрат на преобразователь HVDC на каждом конце линии.

Многофазная система — это средство распределения электроэнергии переменного тока. Многофазные системы имеют три или более электрических проводника, находящихся под напряжением, по которым проходят переменные токи с определенным временным сдвигом между волнами напряжения в каждом проводнике. Полифазные системы особенно полезны для передачи энергии электродвигателям. Самый распространенный пример — трехфазная система питания, используемая в большинстве промышленных приложений.

Один цикл напряжения трехфазной системы

На заре коммерческой электроэнергетики на некоторых установках для двигателей использовались двухфазные четырехпроводные системы.Основным преимуществом этого было то, что конфигурация обмоток была такой же, как у однофазного двигателя с конденсаторным пуском, а при использовании четырехпроводной системы концептуально фазы были независимыми и легко анализировались с помощью математических инструментов, доступных в то время. . Двухфазные системы заменены трехфазными. Двухфазное питание с углом между фазами 90 градусов может быть получено из трехфазной системы с использованием трансформатора, подключенного по Скотту.

Многофазная система должна обеспечивать определенное направление вращения фаз, поэтому напряжения зеркального отображения не учитываются при определении порядка фаз.Трехпроводная система с двумя фазными проводниками, разнесенными на 180 градусов, по-прежнему остается только однофазной. Такие системы иногда называют разделенной фазой.

Полифазное питание особенно полезно в двигателях переменного тока, таких как асинхронный двигатель, где оно генерирует вращающееся магнитное поле. Когда трехфазный источник питания завершает один полный цикл, магнитное поле двухполюсного двигателя вращается на 360 ° в физическом пространстве; Двигатели с большим количеством пар полюсов требуют большего количества циклов питания, чтобы совершить один физический оборот магнитного поля, и поэтому эти двигатели работают медленнее.Никола Тесла и Михаил Доливо-Добровольский изобрели первые практические асинхронные двигатели, использующие вращающееся магнитное поле — ранее все коммерческие двигатели были постоянного тока, с дорогими коммутаторами, щетками, требующими большого технического обслуживания, и характеристиками, непригодными для работы в сети переменного тока. Многофазные двигатели просты в сборке, они самозапускаются и мало вибрируют.

Были использованы более высокие номера фаз, чем три. Обычной практикой для выпрямительных установок и преобразователей HVDC является обеспечение шести фаз с интервалом между фазами 60 градусов, чтобы уменьшить генерацию гармоник в системе питания переменного тока и обеспечить более плавный постоянный ток.Построены экспериментальные линии передачи высокого фазового порядка, содержащие до 12 фаз. Они позволяют применять правила проектирования сверхвысокого напряжения (СВН) при более низких напряжениях и позволяют увеличить передачу мощности в коридоре той же ширины линии электропередачи.

Жилые дома и малые предприятия обычно снабжаются одной фазой, взятой из одной из трех фаз коммунального обслуживания. Индивидуальные клиенты распределяются по трем фазам, чтобы сбалансировать нагрузки. Однофазные нагрузки, такие как освещение, могут быть подключены от фазы под напряжением к нейтрали цепи, что позволяет сбалансировать нагрузку в большом здании по трем фазам питания.Сдвиг фаз линейных напряжений составляет 120 градусов; Напряжение между любыми двумя живыми проводами всегда в 3 раза больше между живым и нулевым проводом. См. Статью Системы электроснабжения для получения списка однофазных распределительных напряжений по всему миру; трехфазное линейное напряжение будет в 3 раза больше этих значений.

В Северной Америке в жилых многоквартирных домах может быть распределено напряжение 120 В (линия-нейтраль) и 208 В (линия-линия). Основные однофазные приборы, такие как духовки или варочные панели, предназначенные для системы с разделением фаз на 240 вольт, обычно используемой в односемейных домах, могут не работать должным образом при подключении к 208 вольт; нагревательные приборы будут развивать только 3/4 своей номинальной мощности, а электродвигатели не будут правильно работать при подаче напряжения на 13% ниже.

онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов. «

Russell Bailey, P.E.

Нью-Йорк

«Он укрепил мои текущие знания и научил меня еще нескольким новым вещам

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей компании

имя другим на работе «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, а курс был очень информативным, особенно потому, что я думал, что уже знаком.

с деталями Канзас

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что позволили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.э., позволяя

студент для ознакомления с курсом

материалов до оплаты и

получает викторину «

Arvin Swanger, P.E.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие «

Mehdi Rahimi, P.E.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курсов.»

Уильям Валериоти, P.E.

Техас

«Этот материал во многом оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемые темы »

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, П.Е.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании какой-то неясной секции

законов, которые не применяются

до «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы использовать свой медицинский прибор.

организация. «

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

Доступно и просто

использовать. Большое спасибо. «

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

обзор текстового материала. Я

также оценил просмотр

Предоставлено фактических случаев »

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.

испытание потребовало исследований в

документ но ответы были

в наличии »

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов

в транспортной инженерии, которая мне нужна

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, П.Е.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. До сих пор все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курсов со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курсов. Процесс прост, и

намного эффективнее, чем

приходится путешествовать. «

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

.

Инженеры получат блоки PDH

в любое время.Очень удобно »

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

пора искать где на

получить мои кредиты от. «

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теорий. «

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

до метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес который

сниженная цена

на 40% «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

коды и Нью-Мексико

регламентов. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительных

Сертификация . «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материал был кратким, а

хорошо организовано. «

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна »

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлен. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор где угодно и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, никакой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полная

и комплексное »

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили курс

поможет по телефону

работ.»

Рики Хефлин, П.Е.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, П.Е.

Монтана

«Легко выполнить. Никакой путаницы при прохождении теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Luan Mane, P.E.

Conneticut

«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

вернись, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродский, П.Е.

Нью-Джерси

«Веб-сайт прост в использовании, вы можете скачать материал для изучения, а потом вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график. «

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Dennis Fundzak, P.E.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат

. Спасибо за изготовление

процесс простой. »

Fred Schaejbe, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и закончил

один час PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея для оплаты

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

Свидетельство

. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

.

многие различные технические зоны за пределами

по своей специализации без

надо ехать.»

Гектор Герреро, П.Е.

Грузия

NATRUSS 1pc 220V 63A 3P Mini Intelligent Dual Power Automatic Transfer Switch Автоматические выключатели, центры нагрузки и электрические предохранители mhiberlin.de

Doctolib.de

NATRUSS 1 шт., 220 В, 63A, 3P, мини интеллектуальный автоматический выключатель с двойным питанием, автоматический выключатель

Самая дешевая сделка от Amazon. Купите оригинальную ручку переключения передач Hyundai 08190-2C000: ручки — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА для соответствующих покупок.Купить Killer Filter Replacement для WIX D43A10GBV: Воздушные фильтры — ✓ БЕСПЛАТНАЯ ДОСТАВКА при определенных покупках. Эта сумка наполнит вашу жизнь романтикой. Чистка у специалиста по коже. через плечо или плотно под мышкой. NATRUSS 1pc 220V 63A 3P Mini Intelligent Dual Power Automatic Transfer Switch Автоматический выключатель . Наш широкий выбор дает право на бесплатную доставку и бесплатный возврат. Подушка + чехол для подушки с двусторонней печатью: декоративные наволочки — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при определенных покупках.ПРЕМИАЛЬНЫЙ МАТЕРИАЛ И ПРОЧНАЯ КОНСТРУКЦИЯ: конструкция из высококачественной нержавеющей стали sus304 с гладкой и высококачественной масляной бронзовой отделкой. Если вы не уверены, что эта деталь правильная, пожалуйста, сообщите нам о полной регистрации (покупатели из других стран, пожалуйста, предоставьте марку производителя. От производителя: карбидные вершины премиум-класса Century с микрозернистым покрытием обеспечивают более прочную защиту. ▲ Уход за шелком ▼ Сухая чистка или ручная стирка в холодной воде. NATRUSS 1 шт. 220V 63A 3P Mini Intelligent Dual Power Автоматический выключатель , твердая вишня — одна из самых популярных и прочных пород дерева для высококачественной мебели.Высококачественная персонализированная ручка для офиса. Пожалуйста, свяжитесь с нами, чтобы узнать стоимость доставки, если вы являетесь международным клиентом. — В задней части сумки есть карман, который закрывается на молнию. но так как сырье натуральное, олени подарочные олени кошелька кожаного кошелька темно-синего цвета. NATRUSS 1pc 220V 63A 3P Mini Intelligent Dual Power Automatic Transfer Switch Автоматический выключатель . Свадебная подвязка темно-синего цвета и цвета слоновой кости из атласа и органзы, украшенная прозрачным цветком, окуляры WF0x в сочетании с 2-кратным объективом обеспечивают 20-кратное увеличение и остаются надежно закрытыми для комфорта.【ФУНКЦИОНАЛЬНЫЙ МАТЕРИАЛ И УДОБСТВО】 — Пылезащита, новый дизайн с зажимом. 🥇 ALPHA 🥇 🇬🇧 Одежда NativeFit обеспечивает лучшие спортивные топы и футболки для профессионалов в области фитнеса, NATRUSS 1pc 220V 63A 3P Mini Intelligent Dual Power Automatic Transfer Switch, автоматический выключатель , Хрустальная поющая чаша изготовлена ​​из 99.

Ватт Дешевле на 110 или 220 Вольт?

Ватт Дешевле на 110 или 220 Вольт?

Сколько я сэкономлю на счете за электроэнергию, если включу свет в 220 вольт?

Быстрый ответ: Наверное, ничего.

Это распространенное заблуждение о том, как работает электричество и как
компании взимают с вас плату. Часто упоминаемый аргумент в пользу экономии денег
в том, что сила тока вдвое меньше, когда на ходу горит 220 вольт.
110 вольт. Это правда, но коммунальная компания не взимает плату за силу тока,
они берут с вас плату за мощность. Они выставляют вам счет в киловатт-часах. Киловатт-час
составляет 1000 ватт использования в течение одного часа или примерно соответствует 1000 ватт света при работе
на один час.Для этого есть хорошая формула: мощность / напряжение = сила тока. Если
мы подставляем цифры для натриевой лампы для выращивания на 1000 ватт, вы можете видеть, что, хотя
напряжение и сила тока могут изменяться, мощность всегда остается неизменной.

1000 Sodium Grow Light
На 110 В: 1100 Вт / 110 В = 10 А — На 220 В: 1100 Вт / 220 В = 5 А
Обратите внимание, что натриевый балласт мощностью 1000 Вт потребляет 1100 Вт.

Прямо сейчас, когда я получаю вопрос «а почему они заставляют вещи работать
на 220 вольт? »Обычно большие машины и приборы, потребляющие много энергии
работать от 220 вольт (или больше) в основном из-за размера провода, который вам понадобится
запустить их на 110 вольт было бы очень большим.Калибр и длина провода будут
определите максимальную силу тока, которую он выдержит, прежде чем он расплавится! По цепи 220 вольт,
нагрузка разделена между двумя проводами на 110 вольт. Это позволяет использовать провод меньшего размера.
Это подводит нас к «вероятно» части ответа. Есть еще один фактор, это
падение напряжения или потеря напряжения, когда мощность проходит по проводу. Нижний
сопротивление на проводе, тем меньше падение напряжения. Если вы используете один или
два фонаря в типичном доме с автоматическим выключателем на небольшом расстоянии, эффективность
потери из-за падения напряжения могут быть недостаточно значительными, чтобы оправдать замену проводки.
комната для выращивания на 220 вольт.

Дополнительная информация:

Рассчитайте стоимость электроэнергии для эксплуатации
растут свет.

Как построить четырехколесный светильник для выращивания растений
Контроллер менее чем за 80 долларов

Этот предмет слишком тяжелый, слишком большой, опасный или слишком хрупкий для отправки с помощью UPS или USPS, и его необходимо отправить на поддоне.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *