Подключение батареи: Способы и схемы подключения радиаторов отопления: как правильно провести монтаж

Подключение батареи: Способы и схемы подключения радиаторов отопления: как правильно провести монтаж

Содержание

Как лучше подключить радиаторы отопления: разные способы подсоединения

Способы подключения радиаторов отопления

Комфорт, комфорт и еще раз комфорт. Эта мысль все время сопровождает нас, когда дело касается проживания в доме. Согласитесь — кто не хочет, чтобы в доме всегда было уютно и комфортно? Таких не найдется. А теперь второй вопрос — от чего зависит качество проживания? Критериев много, но один нас интересует в первую очередь — это тепло в доме. Оно обеспечивается грамотно созданной системой отопления, где немаловажную роль играет подключение радиаторов.

Именно об этом и пойдет разговор дальше. В первую очередь определимся, какие виды отопления сегодня используются. Их два:

  • Однотрубное.
  • Двухтрубное.

Чем же они отличаются друг от друга? Количеством контуров, а, соответственно, и объемом используемых материалов.

Однотрубная схема

По сути, это кольцо из труб, где центром является отопительный котел. Это самая простая схема разводки, которую лучше всего использовать в одноэтажных строениях, где применяется система с естественной циркуляцией теплоносителя. Или в многоэтажных зданиях с принудительной циркуляцией.

Скажем прямо — эта схема не самая лучшая, хотя очень экономичная в плане затрачиваемых для ее сооружения материалов. Но у нее есть один большой недостаток — невозможность регулировать подачу тепла. Устанавливать в такую схему какие-то контролирующие проборы проблематично. Поэтому в домах, где смонтирована именно однотрубная схема развязки, показатель тепловой отдачи равен проектируемой. Вот почему так важно правильно рассчитать данный показатель.

Внимание! Однотрубное отопление допускает лишь последовательное подключение радиаторов. То есть теплоноситель проходит все радиаторы один за другим, отдавая тепло. И чем дальше прибор расположен в цепи, тем меньше тепла ему достается.

Двухтрубная схема

В этой схеме присутствует два контура — подача и обратка. По первому контуру теплоноситель поступает на радиаторы отопления (алюминиевые, биметаллические, чугунные или стальные), а по второму он отводится к котлу. Но что удивительно, теплоноситель равномерно распределяется по всем батареям, что и является огромным плюсом этой схемы подключения.

Немаловажный момент — с двухтрубным подключением появляется возможность регулировать температуру в каждом отдельном радиаторе путем открытия или закрытия прохода в него. Здесь устанавливается обычный отсекающий вентиль, который позволяет увеличивать или уменьшать объем теплоносителя в каждой батарее.

Место установки

Установка радиаторов отопления

Казалось бы, место установки радиатора отопления уже давно определено. Ведь его основная функция — это отдача тепла. Но давайте смотреть шире на поставленную задачу. Установка радиаторов — дело серьезное. С их помощью необходимо создать определенные температурные нормы, которые будут влиять на оптимальный режим в квартире. А значит, их лучше всего устанавливать под окнами, откуда проникает холодный воздух, или около входных дверей. То есть отсекать зону холодного воздуха — это еще одна их задача.

И опять возникает «НО». Просто так взять и установить радиатор отопления под окном — это полдела. Существуют определенные нормы, которые необходимо принять во внимание. Правильное подключение радиатора отопления зависит во многом и от этих норм.

Что они в себя включают?

  • Во-первых, любые батареи — алюминиевые, биметаллические, стальные или чугунные — должны монтироваться горизонтально. Небольшое отклонение в 1 градус допустимо, но лучше выставить приборы точно по горизонтали.
  • Во-вторых, расстояние от радиатора до подоконника должно быть в пределах 10–15 см.
  • Практически то же расстояние должно быть от пола до батареи.
  • От стены до радиатора оно не должно превышать 5 см.

Именно эти нормы определяют максимально правильную и эффективную теплоотдачу отопительных приборов. Поэтому принимайте их как руководство к действию.

Способы подключения радиаторов отопления

Теперь можно переходить к основной теме и рассматривать непосредственно подключение радиаторов отопления. Существует три способа, как правильно подключить отопительные батареи.

Способ №1 — боковое подключение

Боковое подключение радиаторов

Самый распространенный вид подключения, когда дело касается системы отопления в городской квартире. В многоквартирных домах трубная развязка сооружается вертикально из квартиры в квартиру по этажам. Поэтому вертикальные контуры подачи и обратки называются стояками.

К ним батареи подключаются сбоку, отсюда и название. Чаще всего подключение проводят по схеме:

  1. Подача — в верхний патрубок.
  2. Обратка — в нижний.

Хотя это не столь принципиально, если вопрос затрагивает схему с принудительной циркуляцией теплоносителя. Правда, специалисты утверждают, что данная схема была выбрана не зря. Если поменять местами патрубки на батареях, то эффективность и коэффициент полезного действия отопительного прибора снижается на 7%. Это существенный показатель, так что его придется учитывать при включении радиаторов в отопительную систему дома. В системе отопления вообще нет неважных показателей или моментов. Небольшое отклонение от нормы может привести к достаточно серьезным потерям и в тепле, и в топливе, а, соответственно, и в деньгах.

И еще один момент. Если количество секций в батарее РИФАР не превышает 12 штук, то боковое подключение к системе отопления оптимально. Если же количество секций больше, то применяется диагональное подключение, которое еще называют перекрестным.

Способ №2 — диагональное подключение

Диагональное подключение

Специалисты считают, что диагональное подключение является идеальным. Для этого контуры отопления подсоединяются следующим образом:

  • Подача — к верхнему патрубку батареи.
  • Обратка — к нижнему, но с противоположной стороны прибора.

То есть оба контура соединяются между собой через радиатор по его диагонали. Отсюда и название. Преимущество этого соединения заключается в том, что теплоноситель внутри радиатора распределяется равномерно, за счет чего и происходит отдача тепла по всей площади прибора. Именно таким способом достигается существенная экономия топлива.

Способ №3 — нижнее подключение

Этот способ подсоединить радиаторы РИФАР к системе отопления встречается крайне редко. С нижним подключением много проблем, и особенно это касается равномерного распределения теплоносителя по всем радиаторам. Такой вид используется в однотрубной схеме подключения, где радиаторы установлены последовательно, и теплоноситель движется по цепочке от одного к другому.

Нижнее подключение радиатора

Кстати, схема «Ленинградка» — одна из самых распространенных, если говорить об отоплении одноэтажного дома. По сути, это закольцованная труба, в которую врезаны радиаторы. Подключить их довольно просто — для этого из нижних патрубков отводятся трубы, которые врезаются в сам контур. Получается, что теплоноситель, двигаясь в контуре по замкнутому циклу, поступает в каждый радиатор. Но при этом чем дальше отопительный прибор располагается по направлению движения горячей воды, тем меньше ему достается тепла.

Что делать? Есть два решения данной проблемы:

  1. Увеличить количество секций радиаторов, расположенных в дальних от котла комнатах.
  2. Установить циркуляционный насос, который создаст внутри отопления небольшое давление. Именно оно позволит равномерно распределить горячую воду по помещениям.

Кстати, циркуляционный насос сразу делает систему энергозависимой. В этом есть свой минус. Все дело в том, что отключение электричества во многих загородных поселках — дело обычное. Так что проблема с нижним подключением остается. Но чтобы движение теплоносителя было эффективным даже при выключенном насосе, необходимо позаботиться об установке байпаса.

Заключение по теме

Итак, вы смогли убедиться в том, что подключение радиаторов (РИФАР и других типов) — дело непростое и очень серьезное. Считается, что в городских квартирах оптимальный вариант — боковое соединение. Если дело касается частного домостроения, то диагональная схема подойдет лучше всего. С нижним подключением слишком много проблем. К тому же практика и тестирование показали, что этот вариант при неправильном подходе к организации монтажного процесса отличается слишком большими тепловыми потерями — до 40%.

Схемы подключения радиаторов отопления (батарей)

 Мало купить составляющие системы отопления частного дома или квартиры, важно еще также и правильно подключить эти элементы, чтобы впоследствии система работала эффективно с полной отдачей, при этом у вас не возникало проблем по ее обслуживанию. Все это мы к тому, что на первый взгляд кажущаяся простота применения некоторых составляющих является иллюзией. Вот кажется радиаторы отопления, вход и выход, всего-то ничего. Так нет, и здесь их можно подключить тремя разными способами, о которых мы и поговорим в нашей статье.

Виды, способы (схемы) подключений радиаторов отопления (батарей)

 Итак, какие же виды подключения радиаторов отопления возможны? Всего существует 3 вида возможного подключения радиаторов отопления, а именно:

— Одностороннее;
— Перекрестное;
— Нижнее.

А теперь по порядку разберем каждый из вариантов.

Односторонняя схема подключения радиаторов отопления (батарей) частного дома

 Односторонняя схема наиболее часто применяемая. Все дело в простоте монтажа. Две трубы с теплоносителем подсоединяются с одной стороны батареи, а вот с другой стороны радиатора устанавливаются заглушки. Вместо верхней заглушки может быть установлен кран Маевского, для сброса воздуха из системы отопления.
 Схема имеет неплохие показатели, часто применяется в многоэтажных домах с байпасной линией. Наиболее эффективно подключение потока теплоносителя сверху вниз. В это случае КПД возрастает на 5-7 процентов.
 К ограничениям подключения радиаторов по такой схеме можно отнести условия монтажа не более 15 секционных радиаторов отопления. В противном случае крайние секции не будет прогреваться, а кроме того, в них возможно возникновение пробок непроходимости из-за образования застойных зон.

Перекрестная схема подключения радиаторов отопления (батарей) частного дома

 Такая схема подключения хотя и незначительно сложнее, но при этом наиболее эффективна, особенно это можно сказать о применении относительно многосекционных радиаторах отопления. Все дело в принципе подключения, а осуществляется он следующим образом.
 Один трубопровод подключается снизу или сверху с одной стороны, а второй оппозитно при этом с противоположной стороны. В итоге теплоноситель проходит в радиаторе отопления по диагонали, что позволяет обеспечивать наиболее эффективную отдачу тепла от теплоносителя в корпус, а далее от радиатора отопления в помещение.
 Итак, схема эффективна, не требовательна к исполнению радиаторов по количеству секций. Единственный значительный недостаток это возможное увеличение метража трубопроводов, если стояк идет с одной стороны радиатора отопления.
 Тем не менее, этот вариант подключения будет наиболее оптимальный из всех приведенных.
 Как и в предыдущем случае, возможна установка крана Маевского для спуска воздуха из системы отопления.

Подключение радиаторов отопления (батарей) с нижним подключением частного дома

  Такое подключение больше подходит для дизайнерских решений, так как в нем больше эстетики, чем прагматизма. Все дело в том, что здесь теплоноситель слабо разносит тепло по секциям, а перетекает в основном сразу по низу батарей из «входа» в «выход». Если изначально не было расчет на расход теплоносителя и возможное сопротивление радиатора отопления, то потери тепла могут достигать в этом случае рекордных 60 процентов.
 Зато нижнее подключение может незаменимо выгодно смотреться для частных домов, где разводка тепловой системы выполнена по полу.
 Так скажем это вариант для тех у кого система отопления со значительным запасом, то есть радиаторы отопления будут использоваться не совсем эффективно, но этого должно будет хватить для отопления помещения.

Общие требования к подключению радиаторов отопления (батарей)

 При монтаже радиаторов отопления важную роль играет не только схема их подключения, но и способы декорирования. Первым делом необходимо размещать радиаторы  непосредственно вблизи «мостиков холода»,  других возможных поглотителей тепла (окна, форточки,  менее утепленные стены). В этом случае вы снизите вероятность появления сквозняков. Кроме того распределение тепла в помещении будет более целенаправленным и эффективным, что позволит сэкономить до 7 процентов энергоресурсов.
 Монтаж радиаторов отопления в стены, которые будут окружать батареи как с боков, так и сверху, также чреват снижением КПД и повышением затрат на тепловую энергию. Так подоконник над радиатором отопления может снизить эффективность на 4 процента. В некоторых случаях красота требует жертв, некоторые декоративные экраны могут снизить теплоотдачу радиаторов до 20 процентов.
 Еще раз необходимо вспомнить об устройствах сброса воздуха из системы, о выборе эффективного теплоносителя, о правильном расчете системы отопления. Все эти критерии будут влиять на эффективную работу отопительной системы, что соответственно скажется и на комфортной температуре в помещении.

Схемы и способы подключения радиаторов отопления

Без качественной отопительной системы ни один дом не будет максимально комфортным и уютным. Особенно, если он находится в России – ведь наша страна не отличается мягким климатом. Планируя отопительную систему в собственном доме и то, какая будет система подключения радиаторов отопления, мы стараемся сделать так, чтоб она хорошо обогревала дом или квартиру, была качественно выполнена и работала без сбоев.

Радиатор отопления

Но многие владельцы добавляют еще одно требование, которое, надо отметить, является вполне логичным. Система отопления должна быть еще и экономичной. То есть, и ее приобретение, и монтаж, и дальнейшая эксплуатация, и то, какое подключение радиаторов отопления лучше, не должны владельцу «влетать в копеечку», как принято говорить.

Одним из наиболее распространенных способов сэкономить на отопительной системе является приобретение и монтаж ее без привлечения специалистов.

И следует отметить, что даже те, кто никогда прежде не имел дела с отопительными системами, прекрасно справляются с подобной задачей. Конечно, чтоб все сделать правильно, необходимо ознакомится с некоторой информацией, в числе которой – схемы подключения радиаторов отопления. Рассмотрим же способы подсоединения радиаторов отопления и как лучше подсоединить радиатор отопления именно вам.

Принцип подключения радиаторов

Отопительные приборы могут подключаться к системе разными способами. Рассмотрим примеры подключения радиаторов отопления. Во многом выбор типа радиатора зависит от его размера и расположения относительно иных радиаторов системы, а также типа самой системы.

Существуют такие способы подключения радиаторов отопления: боковое, диагональное, радиаторы отопления с нижней подводкой, последовательное соединение радиаторов отопления и параллельное.

К наиболее распространенным можно отнести боковое подключение и радиаторы отопления с нижним подключением. Рассмотрим детальнее эти типы:

  • боковое подключение. Для такого метода характерно подключение подводящей трубы к верхнему патрубку, а отводящей – к нижнему. То есть, обе трубы – и подачи, и оттока теплоносителя, – расположены с одной стороны радиатора. Этот метод достаточно распространен по той причине, что позволяет добиться максимального прогрева радиатора, и соответственно – максимальной теплоотдачи. Однако радиаторы отопления с боковым подключением не следует применять для большого количества секций – в таком случае, последние могут быть недостаточно прогретыми. Однако если иного способа подсоединения нет, то для устранения проблемы следует воспользоваться удлинителем протока воды.
  • батареи отопления с нижней подводкой. Применяется такой вариант в том случае, если батареи отопления с нижней разводкой проходят под плинтусами или полом. Нижнее подключение называют самым красивым – батареи отопления с нижним подключением и подачи теплоносителя, и его оттока спрятаны под пол и подключаются к радиатору при помощи патрубков, направленных в пол.

Варианты подключения радиаторов отопления

Типы отопительных систем

На сегодняшний день существует достаточно большое количество видов отопительных систем. Каждая из них имеет свои особенности подключения радиаторов. Несомненно, если вы решили для установки батарей привлечь мастера – ему все это известно. А вот если вы планируете устанавливать радиаторы самостоятельно, то необходимо различать типы подключения радиаторов отопления – ведь вам нужно знать, какая именно система будет функционировать в вашем доме.

Однотрубная система

Такой тип отопления распространен в многоэтажных домах. Простота планирования и монтажа, а также минимальное количество используемых материалов делают ее весьма выгодной.

Рекомендуем к прочтению:

Но однотрубное подключение радиаторов отопления имеет весомый недостаток – отсутствует возможность корректирования подачи тепла (степень нагрева батарей). А в некоторых случаях это – весомый минус.

При этом теплоотдача системы рассчитывается еще при создании проекта отопления, и в дальнейшем в полной мере соответствует заданному параметру.

Однотрубная система отопления

Двухтрубное отопление

Принцип работы данной отопительной системы прост – по одному контуру к батарее подается нагретый теплоноситель. А отток охлажденного теплоносителя осуществляется по другому контуру. Все отопительные устройства в системе подключаются параллельно. Весомое достоинство двухтрубной отопительной системы состоит в том, что можно контролировать и в случае необходимости – корректировать уровень нагрева. Для этого на двухтрубное подключение радиаторов отопления – на отдельный радиатор ставятся специальные вентили. Важно помнить – при подключении радиаторов необходимо с точностью соблюдать все правила, указанные в СНиП 3.05.01-85.

Двухтрубное отопление

Где лучше устанавливать радиатор?

Отопительные радиаторы, устанавливаемые в любом помещении, помимо отопительной функции, имеют еще одну, не менее важную – защитную. То есть, поток теплого воздуха, идущий от отопительного прибора, создает своеобразный щит, который защищает помещение от проникновения холодного воздуха. И, в таком случае, не имеет значения, каким образом подключены радиаторы – параллельное подключение радиаторов отопления или это последовательное подключение радиаторов отопления.

Именно создание такого заслона от холода и заставляет нас устанавливать радиаторы там, где возможно просачивание холодного воздуха – в нише под окнами.

Поэтому – параллельное или последовательное подключение батарей отопления будет в таком случае – не имеет значение.

Установка батареи отопления под окном

Для того чтобы помещение было максимально защищено от холода, прежде чем приступать непосредственно к установке радиаторов, необходимо правильно определить места, где они будут располагаться. Это не лишняя мера предосторожности – ведь в дальнейшем изменить что-либо возможности не будет.

Еще одна важная особенность – вам следует не только знать, где именно расположить батареи, но и как это правильно сделать, а в дальнейшем – какая будет схема подсоединения радиаторов отопления.

В частности, есть несколько правил относительно того, на каком расстоянии от поверхностей должен быть установлен отопительный прибор:

Рекомендуем к прочтению:

  • от нижней точки подоконника до верхней точки радиатора должно быть не менее 10 см;
  • от поверхности пола до нижней точки радиатора должно быть не менее 12 см;
  • от задней стенки радиатора до стены должно быть не менее 2 см.

Требования к установке радиаторов отопления

Типы циркуляции теплоносителя и варианты подключения

Теплоноситель, которым в большинстве случаев выступает вода, может циркулировать в отопительной системе двумя способами – принудительно и естественно. Принудительная циркуляция подразумевает наличие в отопительной системе специального насоса, посредством которого и производится перемещение теплоносителя. Насос может быть элементом отопительного котла (то есть, он встроен вовнутрь) или же его устанавливают непосредственно перед нагревательным котлом – на трубу обрата. При разработке схема подключения батарей отопления должна заранее правильно определить место для насоса.

Система с естественной циркуляцией носителя – прекрасное решение для тех домов, в которых часто бывают перебои с электроэнергией. В основе движения теплоносителя – элементарные законы физики. В такой системе котел является энергонезависимым.

Во многом виды подключения радиаторов отопления зависят не только от типа циркуляции теплоносителя. Помимо этого, необходимо также учитывать продолжительность труб системы и особенность их расположения.

Одностороннее подключение

Данный тип подключения радиатора предполагает, что и труба подачи горячего теплоносителя, и труба обрата будут подключены к одной стороне батареи. Использование подобного принципа подключения является наиболее рациональным для одноэтажных домов. Особенно он подходит в том случае, если планируется подключение достаточно длинных радиаторов – до 14-15 секций. Однако в случае если число секций больше 15, возможно снижение эффективности обогрева – то есть, последние секции радиатора будут более холодные, чем те, которые ближе к трубам. Поэтому, в таком случае, следует выбирать иные варианты подключения радиаторов отопления.

Одностороннее подключение

Седельное и нижнее подключение

Подобное подключение подходит для тех систем, трубы которых вмонтированы под поверхность пола. В таком случае, над поверхностью будет лишь небольшой отрезок трубы, который подводится к нижнему патрубку. При этом подводящая труба монтируется с одной стороны радиатора, а отводящая – с другой. Недостатком такого метода подключение является существенная (до 15%) теплопотеря. В верхней части радиатор может прогреваться не полностью.

Нижнее подключение

Диагональное (перекрестное) подключение

Диагональное подключение радиаторов отопления рациональнее всего применять для радиаторов с большим количеством секций. Конструкция радиатора позволяет теплоносителю распределяться внутри секций максимально равномерно – это дает возможность получать максимальную теплоотдачу. Суть подключения проста – к верхнему патрубку подключается труба подачи нагретого теплоносителя. А к нижнему патрубку с другой стороны радиатора подводится труба обрата. Достоинством подобного типа подключения является минимальная теплопотеря – она составляет всего 2%.

Диагональное (перекрестное) подключение

От того, насколько правильно вы определите способы подключения батарей отопления к вашей отопительной системе, и будет зависеть качество обогрева помещения. Предложенные варианты подключения батарей отопления являются предельно простыми и максимально качественными.

Нижнее подключение радиаторов — плюсы и минусы, фото

Привычное глазу подключение батарей с заходящими сбоку трубами перестает удовлетворять все большее количество потребителей. Хочется, чтобы интерьер комнат был идеальным, отделка аккуратной и стильной. Решить такую задачу позволяют радиаторы с нижним подключением. При этом, вместе с достижением аккуратного вида комнаты, удалось добиться и лучших показателей работы отопительной системы, а также – разработать интересные конструкционные варианты.

Что такое радиатор с нижним подключением

Нижнее подключение радиатора

Стандартный радиатор, который имеет знакомое много лет инженерное решение, оснащен четырьмя точками подключения. При этом предусматривается подвод труб строго сбоку. Их сложно маскировать, для укрытия приходится прокладывать трассы за фальш отделкой стены и прибегать к другим хитростям.

В отличие от привычного, нижнее угловое подключение радиатора подразумевает подвод труб всего к двум точкам в нижней части панели. При этом:

  • нет ограничений в схеме разводки отопительной системы, можно использовать как однотрубную, так и двухтрубную;
  • используя трехходовый кран, легко обеспечить регулировку температуры батареи;
  • подводка труб без труда прячется;
  • кран перекрытия при двухтрубной схеме или трехходовой при однотрубной позволяют легко отсоединить панель от общей системы для ремонта или замены, без слива теплоносителя и прекращения отопления других комнат.

Для улучшения теплоотдачи и более удобного подвода труб используется клапан нижнего подключения радиатора. Это простое устройство увеличивает эффективность отопительной системы до 20%, при этом есть варианты с горизонтальным и вертикальным ориентированием подводных патрубков. Сегодня производители предлагают десятки вариантов такого изделия.

Чем привлекательны радиаторы вертикального ориентирования

Радиатор, подключенный через специальную арматуру

Если не применяется специальный клапан, нижнее подключение радиатора имеет один недостаток. Теплоноситель распределяется по объему очень быстро, скорость циркуляции велика. В результате на выходе падение температуры мало и в комнату отдается меньше тепла, чем это достигается при использовании, например, диагональной схемы бокового подключения. Но подключаемый снизу радиатор имеет неоспоримые достоинства:

  • прогрев поверхности происходит очень быстро;
  • вся панель имеет одинаковую температуру.

На основании таких преимуществ было предложено новое инженерное: вертикальные радиаторы. Это панель большой высоты и относительно малой ширины. Такой формат позволяет гораздо лучше вписать отопительный прибор в интерьер. Особенно привлекательно выглядит вертикальный обогреватель в ванных комнатах и других помещениях, где не так много открытого горизонтального пространства.

Одна из функций классического, настенного блока горизонтального типа – создавать тепловую завесу. После подсоединения и подачи теплоносителя над отопительным прибором формируется волна горячего воздуха. Установленная под окном, батарея не только греет комнату, но и предотвращает проникновения холодных масс внутрь помещения.

Вертикальная панель в меньшей степени способна создавать тепловую завесу. Поэтому ее используют там, где окон нет. Это может быть простенок, выступающая часть стены в интерьере. Особенно привлекательно выглядит конструкция вертикального типа в разрезе экономии места. К примеру:

  • установленные на поверхности прямоугольных колонн, вертикальные блоки обеспечат отличную теплоотдачу и не займут много места;
  • рядом с французским окном во всю высоту стены, вертикальные радиаторы с нижним подключением будут особенно хорошо смотреться, занимая минимум пространства в простенке;
  • благодаря большой высоте, блоки могут работать и как инфракрасные излучатели, батарея “ростом” с человека создаст новое ощущение комфорта;
  • предлагаются варианты радиаторов, которые могут имитировать предметы интерьера, например, оснащаться зеркалом.

Функциональные преимущества у вертикальных обогревателей такие же, как у горизонтальных панелей с нижним подключением. Используется специальный клапан, для отсоединения от системы отопления устанавливается кран перекрытия для двухтрубной схемы и трехходовой – для однотрубной.

При всех своих привлекательных чертах, вертикальные радиаторы с нижним подключением имеют ряд недостатков. В них низка степень конвекционной отдачи тепла – при большой высоте горячий воздух уходит под потолок, где создает почти бесполезную подушку. Кроме этого, из-за большой протяженности каналов прохода теплоносителя велика опасность закупоривания воздушными пробками.

Какими бывают радиаторы нижнего подключения

Кран нижнего подключения, угловой

По инженерному решению радиаторы нижнего подключения имеют некоторые ограничения. Схема циркуляции теплоносителя подразумевает наличие сплошной зоны распределения. Поэтому на массовом рынке просто невозможно найти секционных радиаторов с нижней схемой подключения. Зато можно приобрести:

  • панельные варианты для нижнего подключения, изготовленные из алюминиевых сплавов. Для больниц и детских учреждений предлагаются специальные варианты с гладкой поверхностью, обеспечивающей легкий уход, например, радиаторы Керми;
  • изделия из профилированной стали. Такие радиаторы очень долговечны, благодаря рифленой поверхности они показывают хорошую теплоотдачу и рекомендуются для частных домов и квартир.

Так как увеличивать количество секций блока теплоотдачи не представляется возможным, система отопления должна прокладываться так, чтобы тепло в комнате обеспечивалось числом панелей радиаторов с нижним подключением, а не их габаритными размерами. Это накладывает некоторые ограничения, если планировалось устанавливать блоки обогрева только под подоконниками.

Сложность с отсутствием возможности манипуляции размерами радиатора компенсируется достоинствами нижней схемы подключения. Трассы подачи и отвода теплоносителя, проведенные под полом, в плинтусах или бетонной стяжке – позволяют размещать панели на стенах, в любых удобных местах. При этом можно создать интересные интерьерные решения и обеспечить комфортный температурный режим в комнате.

Как устанавливаются и регулируются радиаторы

Панели нижнего подключения устанавливаются так же, как и другие решения с неизменяемой геометрией. Необходимо:

  • закрепить в стене соответствующие установочные элементы, согласно схеме для конкретной модели радиатора;
  • разместить панель и тщательно проверить параметры горизонтальной и вертикальной установки;
  • подключить установить перекрывающий кран, при необходимости – трехходовой, клапан нижнего подключения радиатора.

Подводы труб присоединяются и тщательно закрепляется. Если используется клапан нижнего подключения, позволяющий присоединение патрубков снизу-сзади, трассы можно спрятать в штробы или прорези стены. При этом трубы заделываются монтажной пеной. Для выпуска воздуха из радиатора нижнего подключения используются привычные методики и инструментарий в виде гаек Маевского.

Регулировка температуры в помещении может производиться несколькими способами:

  1. Вручную, при помощи трехходового крана или полным отключением одной или нескольких панелей.
  2. При помощи термоклапанов.

Термоклапаны бывают разных видов, с электронной установкой необходимой температуры, механической регулировкой, даже – возможностью задания программ подачи тепла. Для радиаторов нижнего подключения удобнее всего использовать осевые регулирующие вентили с термоголовками, практически у каждого производителя такого оборудования можно подобрать модель изделия, которая будет оптимально смотреться и удобно использоваться.

Нижнее подключение радиаторов плюсы и минусы – в качестве заключения

Радиаторы с нижним подключением весьма удобны. При их использовании можно легко избавиться от открытых трасс циркуляции теплоносителя, современные клапаны улучшат эффективность отопления, а помещение приобретет аккуратный стиль и привлекательный внешний вид.

К недостатку можно отнести панельный тип радиаторов нижнего подключения. Климат в комнате обеспечить сложнее, если нет достаточного количества мест для размещения блоков теплоотдачи. Кроме этого, места для размещения арматуры снизу – мало. Там необходимо установить кран для нижнего подключения радиатора, клапан, если хочется иметь и регулятор температуры – пространства требуется все больше и больше. Но при рациональном планировании легко компенсировать недостатки продуманной установкой панелей и тщательно спланированной системой отопления.

Подключение радиаторов при однотрубной системе отопления Ленинградка

23 октября, 2013. Прочитано 28645 раз(а)


При монтаже радиаторов используется несколько методов подключения к общей отопительной сети. Как правило, существенных отличийв них нет, все они используются в зависимости от применяемой схемы отопительной сети. Но однотрубная система имеет ряд существенных преимуществ.

ДИАГОНАЛЬНОЕ ПОДКЛЮЧЕНИЕ


При таком подключении радиатора отопления главный входной патрубок располагается наверху с одной стороны батареи, а второй-выходной − внизу на другой стороне радиатора. Считается, что данная схема подключения батареи отопления более эффективна с позиции теплоотдачи. Такая система рекомендуется для больших радиаторов (12 секций и более).

НИЖНЕЕ ПОДКЛЮЧЕНИЕ БАТАРЕЙ


 Данная система подключения радиатора отопления считается наименее эффективной по теплоотдаче среди всех имеющихся вариантов. Тем не менее, такой тип подключения часто используется в закрытых системах отопления собственных домов. Главная причина − при нижнем подключении трубы легко скрыть подводки,  особенно в том случае, когда используют специальная батарея с нижним подключением к сети. Такой вид трубы можно легко замаскировать под плинтусом или просто упрятать в стяжку под пол.

 Подключение радиаторов отопления при однотрубной системе отопления Ленинградка – самая надежная и простая схема для системы отопления. Просто монтируем трубопровод и подключаем радиаторы. При этом подача в радиатор и обратка идет в одну трубу. Основным достоинством данной системы выступает возможность подключения одновременно нескольких источников теплоснабжения. Всего одна труба, поэтому понадобится одна байпасная перемычка на котел и одна на стояк.


Незначительные недостатки

— Радиаторы можно подключить только нижним методом.

— Большая разница температур на последнем и первом радиаторе данной однотрубной системы может достигать 10 градусов. Поэтому лучше всего на такую систему монтировать чугунные батареи. У них не такая большая теплоотдача, и как следствие меньше перепад температур до 5 градусов. Алюминиевые радиаторы имеют высокий коэффициент теплоотдачи и большую разницу температур в системе.

Благодаря использованию насоса, циркуляция станет лучше, и разница температур станет незначительной.

Подключение радиаторов отопления при однотрубной системе отопления видео и фото представлены в нашей статье, где также описаны основные параметры и достоинства.

Рекомендуем вам еще:






Подключение радиатора отопления своими руками к двухтрубной системе

В качестве примера приводится подключение к стальному радиатору отопления теплопровода из металлопласта. Данная комбинация окажется наиболее выигрышной. И на эту сразу несколько причин: стальной радиатор обладает большим КПД, нежели его аналоги из других материалов, при своей работе способен использовать минимальное количество воды, а металлопласт долговечен и пластичен. Без огромного арсенала различных переходников и прочего комплектующего вы сможете выгнуть трубу отопления из металлопласта так, как вам нужно.

Описание подключения радиатора к существующей двухтрубной схеме отопления для удобства разобьем на несколько этапов.

Подготовка радиатора отопления перед подключением

Исходим из того, что вы уже закрепили радиатор на стену и пытаетесь понять, как его подключить. Определяемся с тепловыми контурами в вашем доме и определяем, откуда у вас течет теплая вода, а куда уже отработавшая: холодная.

Важное замечание: радиатор на стене должен висеть не строго горизонтально. Противоположная сторона от ввода должна быть приподнята как минимум на 5мм. В батареях отопления более 1м, перепад в сторону от ввода должен составлять не менее 1см. Это необходимо для отвода воздуха, но обо всем поподробнее.

Радиатор с двух сторон сверху и снизу имеет отверстия закрытые стандартными пластиковыми заглушками. Их нужно скрутить все, в обязательном порядке! В работе изделия из пластика долго вам не прослужат! Выкрутив заглушки, решаем, что будем вставлять в образованные отверстия.

Подключение ввода

Если ввод системы отопления расположен справа, закручиваем его в правый верхний угол и по аналогии с левой стороной. У нас используется труба из металлопласта. Чтобы подключить ее в стандартное отверстие в радиаторе, понадобится соответствующий металлический переходник. Поскольку труба ввода находится снизу, а место, куда ее нужно вкрутить – вверху, переходник должен быть угловым.

Вкручивается он особым образом, но сначала переходник лучше закрутить по-обычному и посчитать число оборотов до зажатия и фиксации в положении, при котором отверстие будет «смотреть» вниз. Запомните число, чуть позже оно пригодится. Выкрутив переходник, повторяем действие в обратном порядке, но уже по всем правилам сантехники. Резьбовое соединение нужно уплотнить.

Используем для этого сантехнический лен.

Наматываем его ровной нитью по резьбе переходника.

Но и это еще не все!

Поверху резьбы и намотанного лена намазываем шамотную глину (или силиконовый герметик).

Приобрести ее можно в магазинах сантехники. Поставляется глина в тюбиках.

Закручиваем подготовленный переходник в отверстие.

Излишки выступившей глины вытираем тряпкой.

К переходнику присоединяем трубу.

Выгибаем как нам нужно металлопласт и подводим его в требуемое место.

Намечаем необходимую длину и отрезаем лишнее с помощью специальных ножниц для этого вида трубы.

На трубу надеваем металлический элемент соединения с переходником, уже вкрученным ранее в радиатор. Для качественного соединения металлопластиковой трубы её нужно немного развальцевать.

Выполнить это поможет специальное ручное устройство. Просто вставляете его в трубу и вращаете.

После этого можно надевать соединительный элемент на трубу.

Затем металлическое соединение и переходник нужно просто скрутить. Для крепления трубы отопления используются специальные клипсы нужного размера предварительно закрепленные в нужных местах на стене.

Подключение вывода

Мы уже подключили ввод. На противоположной стороне в отверстие, находящиеся в нижнем углу радиатора крепим вывод холодной отработавшей воды.

Используем переходник, как и ранее.

Единственное, скорее всего, вам понадобится прямой, а не угловой.

Его закручивание в отвертие выполняется аналогичным способом.

Также по аналогии крепится к переходнику труба.

Установка воздухоотводящего клапана

В отверстие, находящееся в верхнем углу, расположенное напротив ввода, вкручиваем воздухоотводящий клапан или как принято его у нас называть «развоздушник». Соединение его с радиатором такое же, как и у других присоединяемых элементов: лен, глина.

Последний штрих перед запуском

Напоследок в последнее оставшееся отверстие устанавливаем металлическую заглушку. Ничего сложно. Принцип, как и ранее.

Запуск отопления – проверка подключения радиатора отопления

Запускаем отопление и смотрим, что вышло. Если течи не наблюдается – вы молодцы, все сделали как надо, но дело еще не закончено. Берем плоскую отвертку и направляемся к развоздушнику.

Слегка откручиваем его. Оттуда должно послышаться шипение.

Приготовьте заранее небольшое ведерко, чтобы не наделать луж, пусть и маленьких. Шипение в скором времени закончится, а вместо воздуха из отверстия пойдет вода – можно зажимать. Плотно закрутите клапан отверткой и всё, можно считать, что подключение радиатора отопления Вы выполнили успешно.

Способы подключения радиаторов отопления — виды и типы

Содержание статьи:

Продолжаем разговор об отоплении в доме. В прошлой статье мы рассматривали виды радиаторов отопления. Теперь же предлагаем посмотреть на способы подключения радиаторов отопления, а также рассмотрим схемы подключения отопления.

Варианты подключения радиаторов отопления

Радиаторы к системе отопления возможно подключать разными способами. Ниже мы рассмотрим наиболее популярные и целесообразные. В целом выбор радиаторов отопления зависит от их размера, материала, из которого он изготовлен и типа системы отопления.

Итак, существуют следующие виды подключения:

  • Боковое;
  • Перекрестное;
  • Нижнее;
  • Последовательное;
  • Параллельное.

На практике самыми популярными способами являются боковое и нижнее подключение.

Боковое – характеризуется подсоединением трубопровода подачи к патрубку, находящемуся наверху батареи, а обратки – к нижнему. По такой схеме все трубопроводы подключаются только на одну сторону батареи.

Популярность способа объясняется тем, что подобным образом достигается наилучший прогрев и, естественно, теплоотдача. Но при наличии большого количества батарей подобный способ будет не лучшим, т.к. последние в цепи обогреватели будут иметь наименьшую температуру теплоносителя.

Нижняя подводка – характеризуется подсоединением обоих трубопроводов к нижней части батареи. Такой способ используется тогда, когда трубы системы отопления прячутся в плинтусах или в стяжке. Благодаря этому методу достигается наилучший вид, т.к. трубопроводов отопления почти не видно. Батарея соединена с системой с помощью патрубков, которые уходят в пол.

Виды систем отопления

Сейчас возможно смонтировать системы отопления различных видов и у каждой имеются свои нюансы при монтаже радиаторов. Конечно, при использовании услуг профессионалов, то вникать в них вовсе и не нужно. Однако, если вы желаете разобраться, как подключить радиатор отопления, то следует их все же изучить.

Подключение однотрубной системы

Подобное подключение отопления популярно в многоквартирных домах. Его от всех аналогов отличает легкость в планировании и реализации, да и материалов для ее реализации уходит поменьше.

Однако однотрубное подключение радиаторов обладает значительным минусом – у вас не будет варианта регулировать уровень прогрева своих батарей. В отдельных случаях это бывает очень важно.

Подключение двухтрубной системы

Схема монтажа отопления по двухтрубной системе достаточно простая. Так, один контур предназначен для подачи прогретого теплоносителя, а второй – для отвода уже охлажденного. При таком способе все радиаторы подключены параллельно. Главным плюсом этого метода является то, что вы получаете возможность регулировать степень нагрева, а при необходимости и вовсе исключить его из системы. Для этого достаточно просто установить краны.

Где установить радиатор?

Правильное подключение радиаторов отопления позволяет получить помимо непосредственно обогрева еще и защитную функцию. Это значит, что поднимающиеся теплые потоки формируют полосу, препятствующую поступлению холодных потоков в помещение. При создании этого эффекта вам станет совершенно не интересно, по какой схеме подключать радиатор. Как раз в связи с этой особенностью чаще всего устройства и устанавливаются под оконными проемами.

Для обеспечения наилучшей защиты подобного рода, вам до того, как начинать установку радиаторов, следует правильно определиться с местом установки. Продумать это заранее не будет лишним, т.к. потом вы ничего не сможете изменить.

Еще не лишним будет не только определиться с местом расположения, но и типом расположения, т.к. это пригодится при дальнейшем планировании монтажа батарей отопления.

Существует несколько основных правил размещения от предметов и поверхностей, которые требуется соблюдать:

1. Расстояние от подоконника до батареи – не меньше, чем 10 сантиметров;

2. Расстояние от пола до батареи – не меньше, чем 12 сантиметров;

3. Расстояние от стены до батареи – не меньше, чем 2 сантиметра.

Циркуляция и виды подключения радиаторов отопления

Жидкость-теплоноситель (обычно вода) перемещается в системе отопления 2 методами – естественно и принудительно.

При обеспечении принудительного перемещения в систему включается специальный циркуляционный насос. Подобный насос мы рассматривали на примере системы теплый пол. Благодаря этому насосу и происходит движение воды. Он может быть встроен в прибор отопления (котел), а может быть дополнительно смонтирован на трубопроводе обратки. Когда планируется использовать насос, то место установки необходимо определять заранее.

Название естественной циркуляции говорит само за себя. В его основе лежит основополагающие физические законы. Подобный способ циркуляции является лучшим вариантом для домов, которые находятся в зоне с частыми отключениями электричества. Котлы в подобных системах тоже энергонезависимы.

В целом схемы подключения отопления выбираются не только исходя из способа циркуляции. Помимо всего прочего стоит принимать во внимание длину труб и отдельные нюансы их прокладки.

Односторонняя схема подключения радиатора

Подобный способ рассчитан на то, что оба трубопровода (и подающий, и обратка) подключаются на одном ребре радиатора. Наиболее оправдан этот способ в 1-этажных домах, при планировании монтажа до 15 секций батарей. Если же число планируется больше 15, то следует выбрать другой способ, т.к. как уже говорилось выше, последние в цепи батареи не будут прогреваться достаточно хорошо.

Седельное и нижнее подключение радиаторов

Этот метод предназначен при прокладке трубопроводов в полу. При такой укладке над полом будут выступать маленькие трубки, к которым впоследствии и будут подключаться батареи. Подводящий трубопровод подключается на одной стороне, а обратка – на другой. Этот вариант обладает следующим недостатком: верхняя часть батареи не всегда прогревается полностью и происходить до 15% теплопотерь.

Диагональное подключение радиаторов

Этот способ подключения наилучший для тех отопительных устройств, которые имеют значительное число секций. С подобным вариантом теплоноситель лучше всего распределяется, а это ведет к максимальной теплоотдаче. Принцип соединения очень прост – верхний патрубок монтируется к подающему трубопроводу, а нижний – к обратному. Теплопотери достигают лишь 2%.

Серия

, параллельное и последовательно-параллельное соединение батарей

Серия

, параллельная и последовательно-параллельная конфигурация батарей

Введение в соединения батарей

Можно подумать, какова цель последовательного, параллельного или последовательно-параллельного подключения аккумуляторов или какая конфигурация является правильной для зарядки аккумуляторов, системы аккумуляторных батарей, автономной системы или установки солнечных батарей. Ну, это зависит от требований системы i.е. для увеличения напряжения путем последовательного соединения батарей, ампер-часов батареи (поскольку батареи рассчитаны в Ач, а не в амперах) или просто тока или мощности батарей путем подключения батарей параллельно или последовательно-параллельно для поддержания системы в соответствии с вашими потребностями . Если вам нужно знать, как это сделать, прочитайте следующее пошаговое руководство о конфигурации первичных (неперезаряжаемых, например, элементы AAA) и вторичных (перезаряжаемых, например, свинцово-кислотных, никель-кадмиевых, никель-металлогидридных, литий-ионных и т. Д.) Батарей.

Мы получили несколько сбивающих с толку схем по этой теме, и они спрашивают, подключены ли батареи последовательно, параллельно или последовательно-параллельно и к какому из них они подходят ?. Итак, мы подробно обсудим последовательное, параллельное и последовательное параллельное соединение батарей со схемами и приложениями.

А теперь приступим…

Типы подключения батарей

Есть три основных типа подключения батарей.

  1. Последовательное соединение
  2. Параллельное соединение
  3. Последовательное параллельное соединение

Щелкните изображение, чтобы увеличить Серия

, параллельное и последовательно-параллельное соединение батарей

Ниже приводится подробная информация о каждом соединении.

Серия Подключение батарей

Если мы подключим положительный (+) полюс батареи к отрицательному (-), а отрицательный — к положительному полюсу, как показано на рисунке ниже, то конфигурация батарей будет последовательной.

Полезно знать:

При последовательном соединении батарей ток одинаков в каждом проводе или участке, а напряжение разное, т.е. напряжения складываются, например

В 1 + В 2 + В 3 ….Vn

На рисунке ниже две батареи по 12 В, 200 Ач соединены последовательно. Таким образом, общий эффективный ампер-час (Ач) будет таким же, пока напряжение является аддитивным.

т.е.

= 12 В + 12 В = 24 В, 200 Ач

Щелкните изображение, чтобы увеличить Серия

Подключение аккумуляторов

Когда нам нужно и как подключить аккумуляторы последовательно?

Когда вам нужно удвоить уровень напряжения в соответствии с потребностями вашей системы, сохраняя при этом ту же емкость или номинальную емкость в ампер-часах (Ач) батарей.

Например, если у вас есть две батареи на 12 В по 200 Ач, и вам нужна система на 24 В. для установки. Просто подключите обе батареи последовательно, чтобы получить 24 В и одинаковый номинал в ампер-часах, то есть 200 Ач.

Имейте в виду, что при последовательном подключении аккумуляторная батарея разряжается медленнее, чем при параллельном подключении аккумуляторов.

Вы можете сделать это с любым количеством батарей, т.е. получить 36 В, 48 В, 72 В постоянного тока и так далее, подключив батареи последовательно.

Эта система используется в различных установках солнечных панелей и других приложениях.

Параллельное соединение аккумуляторов

Если мы подключим положительную клемму (+) батареи к положительной, а отрицательную (-) к отрицательной клемме. Тогда конфигурация батарей будет параллельной.

Полезно знать:

При параллельном подключении напряжение будет одинаковым на каждом проводе или участке, а ток будет другим, т.е. ток складывается.

например

I 1 + I 2 + I 3 … + In

На рисунке ниже две батареи на 12 В, 200 Ач подключены параллельно.Таким образом, полное эффективное напряжение будет таким же, пока ампер-час складывается.

т.е.

= 200 Ач + 200 Ач = 400 Ач, 12 В.

Нажмите, чтобы увеличить изображение

Параллельное подключение батарей

Когда нам нужно и как подключить батареи параллельно?

Когда вам нужно удвоить емкость аккумулятора или номинальные ампер-часы (Ач) в соответствии с потребностями вашей системы, сохраняя при этом тот же уровень напряжения.

Например, если у вас есть две батареи на 12 В по 200 Ач и вам нужна система 12 В для установки.Просто подключите обе батареи параллельно, чтобы общая емкость батареи была бы 400 Ач и одинаковым уровнем напряжения, то есть 12 В.

Имейте в виду, что при параллельном подключении аккумуляторы быстро разряжаются по сравнению с последовательным подключением аккумуляторов.

Это можно сделать с любым количеством аккумуляторов, т.е. получить одинаковый уровень напряжения при одновременном увеличении емкости аккумулятора в ампер-часах при параллельном подключении аккумуляторов.

Эта система используется в различных установках солнечных панелей и других приложениях.

Последовательно-параллельное соединение батарей

Если мы соединим две пары из двух батарей последовательно, а затем соединим эти последовательно соединенные батареи параллельно, то такая конфигурация батарей будет называться последовательно-параллельным соединением батарей.

Другими словами, это последовательная или параллельная цепь, но известная как последовательно-параллельная цепь. Некоторые из компонентов включены последовательно, а другие — в параллельной или сложной цепи из последовательно и параллельно соединенных устройств и батарей.

Связанное сообщение:

На рисунке ниже.

Шесть (6) аккумуляторов на 12 В, 200 Ач каждая, подключены в последовательно-параллельной конфигурации.

т.е.

  • B 1 и B 2 последовательно… 12В + 12В = 24В, 200Ач… Последовательное соединение
  • B 3 и B 4 последовательно… 12В + 12В = 24В, 200Ач… Последовательное соединение
  • B 5 и B 6 последовательно… 12В + 12В = 24В, 200Ач… Последовательное соединение

И затем пара этих батарей соединяется параллельно i.е. два параллельных комплекта из трех батарей соединены последовательно.

т.е.

Установить 1 = B 1 , B 3 , B 5 = Серия

Установить 2 = B 2 , B 4 , B 6 = Серия

И затем ,

Набор 1 и Набор 2 = Параллельно.

Таким образом, эффективное напряжение и ампер-час будут

Ампер-час (Ач) = 200 Ач + 200 Ач + 200 Ач = 600 Ач

Напряжения = 12 В + 12 В = 24 В. (Параллельное соединение)

Щелкните изображение, чтобы увеличить

Последовательное параллельное соединение батарей

Калькуляторы, связанные с батареями:

Когда нам нужно и как соединить батареи последовательно-параллельно?

Когда вам нужно удвоить емкость аккумулятора или номинальные ампер-часы (Ач), а также напряжение аккумуляторов в соответствии с потребностями вашей системы.

Например, если у вас шесть батарей на 12 В, 200 Ач в час, и для установки вам потребуется емкость 600 Ач и система на 24 В. Теперь у вас есть два набора из трех батарей, просто подключите два набора из трех аккумуляторов последовательно, а затем подключите два набора параллельно (как показано на рисунке выше), при этом общая емкость аккумулятора составит 600 Ач, а уровень напряжения — 24 В.

Это можно сделать с любым количеством аккумуляторов, т.е. получить разный уровень напряжения, а также увеличить емкость аккумулятора в ампер-часах при последовательно-параллельном соединении аккумуляторов.

Эта система используется в различных установках солнечных панелей и других приложениях.

Сравнение последовательного, параллельного и последовательно-параллельного подключения

В приведенной ниже таблице показаны основные различия между последовательным и параллельным подключением.

Щелкните изображение, чтобы увеличить

Сравнение последовательного, параллельного и последовательно-параллельного подключений

Общие меры предосторожности и инструкции по подключению и установке батарей

Предупреждение и инструкции:

  • Никогда не замыкайте и не касайтесь положительного (+ ) клемма батареи с отрицательной (-) клеммой батареи, чтобы избежать короткого замыкания, повреждения, травмы, взрыва или пожара.
  • Всегда подключайте аккумулятор того же уровня напряжения и емкости, чтобы избежать проблем с зарядкой и сокращения срока службы аккумулятора.
  • Не путайте (это может быть опасно) со сложной разводкой и подключением аккумуляторов последовательно-параллельно. Всегда делайте правильные расчеты и делайте схемы и схемы соединений батарейных блоков, прежде чем применять их на практике, чтобы быть в безопасности.
  • Особое внимание следует уделять полярности при зарядке аккумуляторных батарей, чтобы избежать короткого замыкания и возникновения опасных ситуаций.
  • Когда аккумулятор полностью зарядится, снимите зарядное устройство, чтобы избежать перегрева (в случае неавтоматического зарядного устройства или контроллера заряда).
  • Всегда заряжайте аккумулятор при комнатной температуре.
  • Не пытайтесь заряжать первичные элементы. т.е. не заряжайте неперезаряжаемые батареи.
  • Отсоедините аккумулятор от подключенной нагрузки, если он больше не используется, чтобы избежать коррозии и утечки.
  • Отсоедините источник заряда аккумулятора и нагрузку перед подключением или отключением клемм.

Соответствующие руководства по подключению и подключению аккумуляторов:

BU-302: последовательная и параллельная конфигурации аккумуляторов

BU-302: Configuraciones de Baterías en Serie y Paralelo (Español)

Узнайте, как расположить аккумуляторы для увеличения напряжения или получить более высокую емкость.

Батареи достигают желаемого рабочего напряжения путем последовательного соединения нескольких ячеек; каждая ячейка складывает свой потенциал напряжения, чтобы получить общее напряжение на клеммах.Параллельное соединение обеспечивает более высокую мощность за счет суммирования общего ампер-часа (Ач).

Некоторые блоки могут состоять из комбинации последовательного и параллельного подключения. Аккумуляторы для ноутбуков обычно имеют четыре литий-ионных элемента 3,6 В последовательно для достижения номинального напряжения 14,4 В и два параллельно, чтобы увеличить емкость с 2400 мАч до 4800 мАч. Такая конфигурация называется 4s2p, что означает четыре последовательно соединенных ячейки и две параллельно. Изоляционная фольга между ячейками предотвращает электрическое короткое замыкание проводящей металлической оболочкой.

Аккумуляторы большинства типов подходят для последовательного и параллельного подключения. Важно использовать батареи одного и того же типа с одинаковым напряжением и емкостью (Ач) и никогда не смешивать батареи разных производителей и размеров. Более слабая ячейка вызовет дисбаланс. Это особенно важно в последовательной конфигурации, потому что мощность батареи определяется самым слабым звеном в цепи. Аналогия — это цепочка, звенья которой представляют последовательно соединенные элементы батареи (рис. 1).

Рисунок 1: Сравнение аккумулятора с цепью.
Звенья цепи представляют собой элементы, включенные последовательно для увеличения напряжения, удвоение звена означает параллельное соединение для повышения токовой нагрузки.

Слабая ячейка может не выйти из строя сразу, но при нагрузке будет разряжена быстрее, чем сильные. При зарядке аккумулятор с низким уровнем заряда заполняется раньше, чем с высоким уровнем, потому что его нужно заполнять меньше, и он остается в избыточном заряде дольше, чем другие. При разряде слабая ячейка опорожняется первой, и ее забивают более сильные братья.Ячейки в групповых упаковках должны быть согласованы, особенно при использовании под большими нагрузками. (См. BU-803a: Несоответствие ячеек, балансировка).

Одноэлементные приложения

Одноэлементная конфигурация представляет собой простейший аккумуляторный блок; элемент не требует согласования, и схема защиты на небольшом литий-ионном элементе может быть простой. Типичными примерами являются мобильные телефоны и планшеты с одним литий-ионным аккумулятором 3,60 В. Одноэлементный элемент также используется в настенных часах, в которых обычно используется щелочной элемент на 1,5 В, наручные часы и резервное копирование памяти, большинство из которых являются приложениями с очень низким энергопотреблением.

Номинальное напряжение аккумуляторной батареи на никелевой основе составляет 1,2 В, щелочной — 1,5 В; оксид серебра составляет 1,6 В, а свинцово-кислотный — 2,0 В. Первичные литиевые батареи находятся в диапазоне от 3,0 В до 3,9 В. Литий-ионный — 3,6 В; Li-фосфат — 3,2 В, а литий-титанат — 2,4 В.

В литий-марганцевых и других системах на основе лития часто используются элементы с напряжением 3,7 В и выше. Это связано не столько с химией, сколько с увеличением ватт-часов (Втч), что становится возможным при более высоком напряжении. Аргумент гласит, что низкое внутреннее сопротивление элемента поддерживает высокое напряжение под нагрузкой.Для рабочих целей эти ячейки подходят как кандидаты на 3,6 В. (См. BU-303. Путаница с напряжениями).

Подключение серии

В переносном оборудовании, требующем более высоких напряжений, используются аккумуляторные блоки с двумя или более элементами, соединенными последовательно. На рисунке 2 показан аккумуляторный блок с четырьмя последовательно соединенными литий-ионными элементами 3,6 В, также известными как 4S, для получения номинального напряжения 14,4 В. Для сравнения, свинцово-кислотная цепочка из шести элементов с 2 В на элемент будет генерировать 12 В, а четыре щелочных с 1,5 В на элемент — 6 В.

Рисунок 2: S eries соединение четырех ячеек (4s).
Добавление ячеек в цепочку увеличивает напряжение; емкость остается прежней.
Предоставлено Cadex

Если вам нужно нечетное напряжение, скажем, 9,50 В, подключите последовательно пять свинцово-кислотных, восемь NiMH или NiCd или три Li-ion. Конечное напряжение батареи не обязательно должно быть точным, если оно выше, чем указано в устройстве. Источник питания 12 В может работать вместо 9,50 В. Большинство устройств с батарейным питанием могут выдерживать некоторое перенапряжение; однако необходимо соблюдать напряжение в конце разряда.

Высоковольтные батареи сохраняют небольшой размер проводника. Аккумуляторные электроинструменты работают от батарей 12 В и 18 В; в моделях высокого класса используются 24 В и 36 В. Большинство электровелосипедов поставляются с литий-ионным аккумулятором 36 В, некоторые — 48 В. Автомобильная промышленность хотела увеличить стартерную батарею с 12 В (14 В) до 36 В, более известную как 42 В, путем последовательного размещения 18 свинцово-кислотных элементов. Логистика замены электрических компонентов и проблемы с дугой на механических переключателях сорвали ход.

Некоторые легкие гибридные автомобили работают от литий-ионных аккумуляторов 48 В и используют преобразование постоянного тока в 12 В для электрической системы.Запуск двигателя часто осуществляется отдельной свинцово-кислотной батареей на 12 В. Ранние гибридные автомобили работали от батареи 148 В; электромобили обычно 450–500 В. Такой аккумулятор требует более 100 последовательно соединенных литий-ионных элементов.

Высоковольтные батареи требуют тщательного согласования ячеек, особенно при работе с большими нагрузками или при работе при низких температурах. Если несколько ячеек соединены в цепочку, вероятность отказа одной ячейки реальна, и это приведет к сбою. Чтобы этого не произошло, твердотельный переключатель в некоторых больших батареях обходит неисправную ячейку, чтобы обеспечить непрерывный ток, хотя и при более низком напряжении в цепи.

Сопоставление ячеек является проблемой при замене неисправного элемента в устаревшей батарее. Новая ячейка имеет большую емкость, чем другие, что вызывает дисбаланс. Сварная конструкция усложняет ремонт, поэтому аккумуляторные блоки обычно заменяются целиком.

Высоковольтные батареи в электромобилях, полная замена которых невозможна, делят батарею на модули, каждый из которых состоит из определенного количества ячеек. Если одна ячейка выходит из строя, заменяется только затронутый модуль.Небольшой дисбаланс может возникнуть, если новый модуль будет оснащен новыми ячейками. (См. BU-910: Как отремонтировать аккумуляторный блок.)

На рисунке 3 показан аккумуляторный блок, в котором «элемент 3» выдает только 2,8 В вместо полностью номинальных 3,6 В. При пониженном рабочем напряжении эта батарея достигает точки окончания разряда раньше, чем обычная батарея. Напряжение падает, и устройство выключается с сообщением «Батарея разряжена».

Рисунок 3: S eries соединение с неисправной ячейкой.
Неисправная ячейка 3 снижает напряжение и преждевременно отключает оборудование.
Предоставлено Cadex

Батареи в дронах и пультах дистанционного управления для любителей, которым требуется высокий ток нагрузки, часто демонстрируют неожиданное падение напряжения, если одна ячейка в цепочке слабая. Максимальный ток нагружает хрупкие ячейки, что может привести к поломке. Считывание напряжения после заряда не позволяет выявить эту аномалию; проверка баланса ячеек или проверка емкости с помощью анализатора батарей.

Отвод в последовательную цепочку

Существует обычная практика, когда в последовательную цепочку свинцово-кислотного массива вводят ответвления для получения более низкого напряжения. Для тяжелонагруженного оборудования, работающего от батарейного блока 24 В, может потребоваться источник питания 12 В для вспомогательной работы, и это напряжение удобно доступно в промежуточной точке.

Постукивание не рекомендуется, так как это создает дисбаланс ячеек, так как одна сторона батарейного блока загружена больше, чем другая. Если несоответствие не может быть исправлено с помощью специального зарядного устройства, побочным эффектом является сокращение срока службы батареи.Вот почему:

При зарядке несбалансированного блока свинцово-кислотных аккумуляторов с помощью обычного зарядного устройства недозаряженная часть имеет тенденцию к сульфатированию, поскольку элементы никогда не получают полного заряда. Секция высокого напряжения батареи, которая не принимает дополнительную нагрузку, имеет тенденцию к перезарядке, что приводит к коррозии и потере воды из-за выделения газов. Обратите внимание, что зарядное устройство, заряжающее всю цепочку, проверяет среднее напряжение и соответственно прекращает заряд.

Нарезание резьбы также характерно для литий-ионных и никелевых аккумуляторов, и результаты аналогичны свинцово-кислотным: сокращение срока службы.(См. BU-803a: Согласование и балансировка ячеек.) В новых устройствах используется преобразователь постоянного тока в постоянный для обеспечения правильного напряжения. В электрических и гибридных транспортных средствах в качестве альтернативы используется отдельная низковольтная батарея для вспомогательной системы.

Параллельное соединение

Если требуются более высокие токи, а ячейки большего размера недоступны или не соответствуют конструктивным ограничениям, одна или несколько ячеек могут быть подключены параллельно. Большинство химикатов батарей допускают параллельную конфигурацию с небольшими побочными эффектами.На рисунке 4 показаны четыре ячейки, соединенные параллельно в схеме P4. Номинальное напряжение показанного блока остается на уровне 3,60 В, но емкость (Ач) и время работы увеличиваются в четыре раза.

Рисунок 4: Параллельное соединение четырех ячеек (4p).
При параллельном подключении ячеек емкость в Ач и время работы увеличиваются, а напряжение остается неизменным.

Предоставлено Cadex

Ячейка, которая развивает высокое сопротивление или размыкается, менее критична в параллельной цепи, чем в последовательной конфигурации, но выход из строя ячейки снижает общую нагрузочную способность.Это как двигатель, работающий только на трех цилиндрах, а не на всех четырех. С другой стороны, электрическое короткое замыкание является более серьезным, поскольку неисправный элемент забирает энергию из других элементов, вызывая опасность пожара. Большинство так называемых электрических коротких замыканий мягкие и проявляются как повышенный саморазряд.

Полное короткое замыкание может произойти из-за обратной поляризации или роста дендритов. Большие блоки часто включают в себя предохранитель, который отключает неисправный элемент от параллельной цепи в случае короткого замыкания.На рисунке 5 показана параллельная конфигурация с одной неисправной ячейкой.

Рисунок 5: Параллельное соединение / соединение с одной неисправной ячейкой.
Слабый элемент не повлияет на напряжение, но обеспечит малое время работы из-за пониженной емкости. Закороченный элемент может вызвать чрезмерный нагрев и стать причиной возгорания. В более крупных батареях предохранитель предотвращает высокий ток, изолируя элемент.

Предоставлено Cadex

Последовательное / параллельное соединение

Последовательная / параллельная конфигурация, показанная на Рисунке 6, обеспечивает гибкость конструкции и обеспечивает требуемые номинальные значения напряжения и тока со стандартным размером ячейки.Полная мощность — это сумма напряжения, умноженного на ток; батарея 3,6 В (номинальная), умноженная на 3400 мАч, дает 12,24 Втч. Четыре элемента питания 18650 емкостью 3400 мАч каждый можно подключить последовательно и параллельно, как показано, чтобы получить номинальное напряжение 7,2 В и общую мощность 48,96 Вт-ч. Комбинация с 8 ячейками даст 97,92 Втч, допустимый предел для перевозки на воздушном судне или перевозки без опасных материалов класса 9. (См. BU-704a: Доставка литиевых батарей по воздуху) Тонкий элемент позволяет гибкую конструкцию блока, но необходима схема защиты.

Рисунок 6: S eries / параллельное соединение четырех ячеек (2s2p).
Эта конфигурация обеспечивает максимальную гибкость проектирования. Распараллеливание ячеек помогает в управлении напряжением.

Предоставлено Cadex

Литий-ионный аккумулятор хорошо подходит для последовательной / параллельной конфигурации, но элементы нуждаются в мониторинге, чтобы оставаться в пределах напряжения и тока.Интегральные схемы (ИС) для различных комбинаций ячеек доступны для контроля до 13 литий-ионных ячеек. Для более крупных пакетов требуются специальные схемы, и это относится к аккумуляторным батареям для электронных велосипедов, гибридным автомобилям и Tesla Model 85, которая потребляет более 7000 ячеек 18650, чтобы составить батарею мощностью 90 кВт · ч.

Терминология для описания последовательного и параллельного соединения

В производстве аккумуляторов сначала указывается количество последовательно соединенных элементов, а затем — параллельно. Пример — 2с2п. При использовании литий-ионных аккумуляторов в первую очередь всегда изготавливаются параллельные струны; завершенные параллельные блоки затем помещаются последовательно.Литий-ионная система — это система, основанная на напряжении, которая хорошо подходит для параллельного формирования. Объединение нескольких ячеек в параллель с последующим последовательным добавлением блоков снижает сложность управления напряжением для защиты блока.

Сначала сборка гирлянд, а затем их параллельное размещение может быть более обычным для никель-кадмиевых аккумуляторов, чтобы удовлетворить механизму химического челнока, который уравновешивает заряд в верхней части заряда. «2с2п» — обычное дело; Были выпущены официальные документы, которые относятся к 2p2s при параллельном соединении последовательной строки.

Устройства безопасности при последовательном и параллельном подключении

Переключатели с положительным температурным коэффициентом (PTC) и устройства прерывания заряда (CID) защищают аккумулятор от перегрузки по току и избыточного давления. Хотя эти защитные устройства рекомендуются для обеспечения безопасности в меньших 2- или 3-элементных батареях с последовательной и параллельной конфигурацией, они часто не используются в более крупных многоэлементных батареях, например, для электроинструментов. PTC и CID работают, как ожидалось, переключая ячейку на чрезмерный ток и внутреннее давление в ячейке; однако завершение работы происходит в каскадном формате.Хотя некоторые ячейки могут рано отключиться, ток нагрузки вызывает избыточный ток на оставшихся ячейках. Такое состояние перегрузки может привести к тепловому разгоне до срабатывания остальных предохранительных устройств.

Некоторые ячейки имеют встроенные PCT и CID; эти защитные устройства также могут быть добавлены задним числом. Инженер-проектировщик должен знать, что любое предохранительное устройство может выйти из строя. Кроме того, PTC вызывает небольшое внутреннее сопротивление, которое снижает ток нагрузки. (См. Также BU-304b: Обеспечение безопасности литий-ионных аккумуляторов)

Простые инструкции по использованию бытовых первичных батарей

  • Следите за чистотой контактов аккумулятора.Конфигурация с четырьмя ячейками имеет восемь контактов, и каждый контакт добавляет сопротивление (ячейка к держателю и держатель к следующей ячейке).
  • Никогда не смешивайте батареи; замените все ячейки, когда они слабые. Общая производительность зависит от самого слабого звена в цепи.
  • Соблюдайте полярность. Перевернутая ячейка вычитает, а не добавляет к напряжению ячейки.
  • Извлеките батареи из оборудования, когда оно больше не используется, для предотвращения утечки и коррозии. Это особенно важно для первичных цинк-углеродных элементов.
  • Не храните незакрепленные элементы в металлическом ящике. Поместите отдельные ячейки в небольшие полиэтиленовые пакеты, чтобы предотвратить короткое замыкание. Не носите в карманах незакрепленные ячейки.
  • Храните батарейки в недоступном для маленьких детей месте. Ток от батареи может не только вызвать удушье, но и вызвать изъязвление стенки желудка при проглатывании. Батарея также может разорваться и вызвать отравление. (См. BU-703: Проблемы со здоровьем, связанные с батареями.)
  • Не заряжайте неперезаряжаемые батареи; скопление водорода может привести к взрыву.Выполняйте экспериментальную зарядку только под наблюдением.

Простые инструкции по использованию вторичных батарей

  • Соблюдайте полярность при зарядке вторичного элемента. Обратная полярность может вызвать короткое замыкание и создать опасную ситуацию.
  • Выньте полностью заряженные аккумуляторы из зарядного устройства. Потребительское зарядное устройство может не подавать правильный постоянный заряд при полной зарядке, что может привести к перегреву элемента.
  • Заряжайте только при комнатной температуре.

Запуск автомобильного аккумулятора от внешнего источника | Инструкции и видео | Автоаккумуляторы.com.

Ваша машина не заводится. Что теперь? Может показаться, что ваша батарея разряжена, но если свет и электрические системы все еще работают, вашей батарее может просто потребоваться запуск от внешнего источника. Выполните следующие действия, чтобы зарядить аккумулятор и вернуться в дорогу.

Как запустить автомобильный аккумулятор от внешнего источника

Узнайте, как быстро запустить аккумуляторную батарею.

ШАГ 1. Найдите кабели-перемычки (переходные провода)

Прочтите и соблюдайте информацию о безопасности и обращении на этом веб-сайте, а также о соединительных кабелях.Вам понадобится набор соединительных кабелей и другой автомобиль с заряженным аккумулятором. Вы можете найти кабели в магазинах автозапчастей, на заправках или практически везде, где вы покупаете автомобильные запчасти.

ШАГ 2: Припаркуйте автомобиль, который необходимо завести от внешнего источника, рядом с автомобилем с исправным аккумулятором.

Припаркуйте автомобиль с исправным аккумулятором рядом с автомобилем с разряженным аккумулятором. Поднимите автомобиль достаточно близко, чтобы кабели легко доходили от аккумулятора одного автомобиля до аккумулятора другого.Выключите оба двигателя и откройте капоты или багажники, в зависимости от того, где в автомобиле расположены аккумуляторные батареи.

ШАГ 3. Найдите красный (положительный) и черный (отрицательный) выводы батареи

Найдите батареи и их клеммы. Каждая батарея имеет две металлические клеммы. Один отмечен положительным (+), другой отрицательным (-). В наборе перемычек также есть положительный и отрицательный кабели. Красный — положительный (+), черный — отрицательный (-).Никогда не подключайте красный кабель к отрицательной клемме аккумуляторной батареи или к автомобилю с разряженной аккумуляторной батареей.

ШАГ 4: Разряженная батарея: Определите металлическое заземление

Обозначьте металлическое заземление в автомобиле с разряженным аккумулятором. Можно использовать металлический каркас автомобиля.

ШАГ 5: Разряженная батарея: Подключите положительный вывод перемычки к положительной клемме

Подсоедините положительный зажим кабеля к положительной (+) клемме разряженной аккумуляторной батареи.

ШАГ 6: Аккумулятор исправен: подсоедините другой положительный вывод перемычки к положительной клемме

Подсоедините другой положительный зажим кабеля к положительной (+) клемме заряженной аккумуляторной батареи.

ШАГ 7: Аккумулятор исправен: подключите отрицательный вывод перемычки к отрицательному выводу

Подсоедините зажим отрицательного кабеля к отрицательной (-) клемме заряженной аккумуляторной батареи.

ШАГ 8: Разряженная батарея: подсоедините другой отрицательный вывод перемычки к металлическому заземлению

Подсоедините другой отрицательный зажим к металлической массе автомобиля с разряженным аккумулятором.Вы можете использовать блок двигателя или другую металлическую поверхность автомобиля вдали от аккумулятора. Это последнее соединение, которое вам нужно установить.

ШАГ 9: Автомобиль с разряженной батареей: Заведите автомобиль

Заведите автомобиль с заряженным аккумулятором. Подождите одну-две минуты и попробуйте завести машину с разряженным аккумулятором.

Если автомобиль заводится:

Снимите черный отрицательный зажим с земли автомобиля, нуждающегося в прыжке.

Снимите черный отрицательный зажим с вспомогательного автомобиля.

Снимите красный положительный зажим с вспомогательной машины.

Снимите красный положительный зажим с ранее остановленного автомобиля.

Если автомобиль не заводится:

Подождите несколько секунд и повторите шаг 9.

Мы рекомендуем полностью зарядить аккумулятор при первой возможности после запуска от внешнего источника.

Батареи в последовательном и параллельном подключении (блоки батарей)

Изготовление блоков батарей большего размера часто требуется для увеличения времени автономной работы или увеличения напряжения для обеспечения работы определенных устройств.Например, если у вас есть солнечная энергетическая установка или инвертор, вы можете подключить к ним несколько батарей, чтобы получить больше энергии и время работы. В коммуникационных сетях, а также в малых и больших серверах также используются резервные ИБП, в цепи которых часто используется большое количество батарей или батарей большего размера. В зависимости от потребностей и для сокращения затрат на техническое обслуживание изготавливаются разные виды пакетов.

Здесь я подробно объяснил, как сделать параллельный, последовательный и последовательно-параллельный комбинированные аккумуляторные блоки (аккумуляторные батареи).Это руководство очень полезно для начинающих пользователей, которые хотят узнать, как соединить свинцово-кислотные батареи (герметичные, VRLA, MF, Gel, AGM, влажные или залитые) вместе при подключении их к солнечным энергетическим системам, системам бесперебойного питания (ИБП), силовые инверторы или зарядные устройства. Кроме того, я также обсудил некоторые часто задаваемые вопросы по этой теме в разделе часто задаваемых вопросов ниже. Обратите внимание, что аккумулятор также называется аккумуляторным блоком, а AGM и гелевые аккумуляторы также известны как необслуживаемые или сухие аккумуляторы в некоторых регионах.

Батареи в параллельном соединении (параллельный батарейный блок)

В этом типе батарейного блока батареи подключаются от клемм к тем же клеммам других батарей, то есть положительный полюс (+) одной батареи соединяется с положительным (+) клемма другой батареи и отрицательная клемма (-) одной батареи с отрицательной клеммой (-) другой батареи. См. Схему ниже для получения дополнительной информации:

Батареи в последовательном соединении (последовательный блок батарей)

Батареи подключаются от клеммы к клемме таким образом, что положительная (+) клемма одной батареи соединяется с отрицательной (-) клеммой. другой батареи и отрицательная клемма (-) одной батареи соединена с положительной клеммой (+) другой батареи.См. Диаграмму для получения дополнительной информации:

Батареи разного размера при параллельном или последовательном подключении
Параллельно
(Критерии: если батареи имеют одинаковое напряжение, но разную емкость)

Последовательно
(Критерии: Если батареи имеют одинаковое напряжение, но разную емкость)

Батареи, соединенные последовательно и параллельно

В комбинации последовательно-параллельных батарей один блок батарей, соединенных последовательно, соединяется параллельно с другим блоком батарей, соединенным последовательно.Таким образом, общее выходное напряжение последовательных блоков остается неизменным. Но емкость накопителя заряда увеличена.

9 Батареи в последовательном параллельном соединении — схема подключения


Часто задаваемые вопросы

1- Почему батареи подключаются параллельно?
При параллельном подключении аккумуляторов напряжение всей батареи остается неизменным, но увеличивается емкость аккумулятора и энергия в ампер-часах (Ач) и ватт-часах (Втч).

2- Почему батареи подключены последовательно?
При последовательном подключении аккумуляторов напряжение увеличивается, но емкость в ампер-часах (Ач) остается неизменной.Энергия в ватт-часах (Втч) увеличивается. Согласно здравому смыслу, общая емкость хранения заряда также увеличивается, потому что теперь доступно больше резервуаров для хранения заряда.

3- Последовательное или параллельное подключение аккумуляторов увеличивает емкость и резерв?
Да. Как я уже упоминал выше, теперь у вас есть два или более резервуара для хранения заряда вместо одного. Резервная копия, предоставляемая системой, будет увеличена. Но нельзя продолжать подключать батареи последовательно, если устройство питания рассчитано на определенное напряжение.Подключите их параллельно, чтобы увеличить резервную копию, или вместо этого купите батареи большего размера.

4- Почему подключение батарей разной емкости параллельно друг другу не рекомендуется для длительного использования?
Батареи разной емкости, но с одинаковым напряжением можно подключать параллельно, но желательно этого не делать. Потому что есть вероятность, что батареи разного размера имеют небольшую разницу в напряжении, даже если на этикетке они обозначены как одинаковое напряжение. Это приведет к разнице потенциалов между подключенными батареями, что означает, что батареи с более высоким напряжением будут пытаться зарядить батарею с более низким напряжением, что может привести к нагреву и разрушению этой батареи.Кроме того, когда батареи различной емкости подключены параллельно к ИБП или инвертору мощности, зарядное устройство ИБП может вызвать конфликт и начать работать ненормально. Чтобы свести к минимуму такие риски и неприятности, покупайте батареи одинаковой емкости и напряжения одной марки, произведенные одной и той же компанией. Никогда не используйте одновременно батареи разных марок от одного или разных производителей.

5- Почему нельзя последовательно подключать батареи разной емкости?
Никогда не подключайте батареи разной емкости последовательно друг к другу.При подключении батарея меньшей емкости будет заряжаться первой, но батарея большей емкости все равно будет разряжена. Это приведет к нагреву и перезарядке меньшей батареи. В режиме разряда батарея меньшего размера сначала разряжается, что приводит к ее глубокой разрядке. Чтобы сделать серию аккумуляторных батарей, купите батареи одинаковой емкости и напряжения той же марки и компании.

6- Могу ли я соединить старые и новые батареи параллельно и последовательно?
Очень плохая идея — одновременно использовать старые и новые батареи. Старые батареи, которые сильно изношены, не сохраняют напряжение, как новые батареи.Таким образом, если старые батареи смешать с новыми, это сократит срок службы новых батарей и повредит старые батареи. Но вы можете подключить старые и новые батареи последовательно, хотя я тоже не рекомендую это делать. Старая батарея может не достичь напряжения отключения, что приведет к перезарядке и перегреву новой и здоровой батареи.

7- Могу ли я использовать разные типы свинцово-кислотных аккумуляторов?
Нет. Никогда этого не делай. Каждый тип свинцово-кислотных аккумуляторов, включая VRLA, AGM, гелевые, влажные или залитые, имеет разную скорость заряда и разные максимальные и минимально допустимые напряжения.Смешивать их — значит испортить их и потратить впустую.

8- Почему делаются большие аккумуляторные батареи? Аккумулятор серии
предназначен для увеличения напряжения. Это помогает уменьшить размер трансформатора, который используется для повышения напряжения. Машины, которым для работы требуется постоянный ток высокого напряжения (HVDC), запрашивают серию аккумуляторных батарей. Параллельный аккумулятор просто увеличивает резерв.

Безопасность: С аккумуляторами большой емкости следует обращаться осторожно. Никогда не замыкайте их накоротко, так как короткое замыкание может вызвать возгорание и взрыв аккумуляторов.Необходимо правильно подключить батареи к ИБП, инвертору или солнечной системе. Неправильное подключение может повредить устройство.

Также прочтите:
Как подключить батареи параллельно с инвертором питания или ИБП [схемы подключения]
Как подключить батареи последовательно с инвертором или ИБП [электрические схемы]

Соединение батарей вместе — последовательно, параллельно и последовательно / Параллельно-комбинированный

Подключение батарей или элементов часто требуется, когда вы хотите увеличить напряжение или силу тока, или и то, и другое для различных приложений.Соединяя батареи вместе — последовательно, параллельно и последовательно / параллельно, вы создаете так называемый аккумуляторный блок, который дает вам больше энергии для ваших приложений.

Существует 3 метода подключения батарей и построения батарейного блока: последовательный, параллельный и последовательный / параллельный комбинированный. Мы кратко опишем каждый метод с помощью иллюстраций, чтобы дать вам четкое представление.

Что нужно знать перед тем, как соединять батареи вместе?

Перед тем, как построить аккумуляторную батарею, убедитесь, что вы следуете приведенным ниже советам:

Параллельное подключение аккумуляторной батареи №1 — увеличение силы тока (емкости)

Параллельное подключение батарей используется, когда вы хотите увеличить силу тока (емкость) и сохранить неизменным напряжение.Поясним этот метод на примере!

Этот метод используется, когда вы хотите, чтобы ваше приложение работало дольше между зарядками. Напряжение остается неизменным при параллельном подключении аккумуляторов. На иллюстрации ниже вы можете видеть 4 батареи, подключенные параллельно, положительный (+) вывод первой батареи соединен с положительной (+) клеммой второй батареи… до конца, а отрицательный (-) вывод первая батарея подключена к отрицательной (-) клемме второй батареи и так далее.

Параллельное подключение батарей, любезно предоставлено EngineeringPassion

В результате подключения будет 12 В, емкость 80 Ач . При увеличении силы тока до 80 Ач вам может понадобиться сверхпрочный кабель, чтобы кабель не перегорел. Для параллельного подключения требуется как минимум 2 батареи. При параллельном подключении батарей вам понадобится перемычка для подключения всех положительных (+) клемм и еще одна перемычка для подключения отрицательных (-) клемм.

Предпочтительный метод поддержания уровня заряда батарей заключается в подключении к плюсу (+) на одном конце батарейного блока и к минусу (-) на другом конце блока, как показано на рисунке выше.

Подключение батареи серии

# 2 — повышение напряжения

Эта конфигурация понадобится вам, когда вам нужно увеличить общее напряжение системы. При последовательном подключении батареи напряжение увеличивается, а номинальная сила тока (также известная как ампер-часы) остается неизменной. Поясним этот метод на примере!

Для этого метода вам понадобятся как минимум две батареи одинакового размера и номинала. Конфигурация последовательного подключения батарей — это когда вы объединяете две или более батарей, соединяя положительную (+) клемму первой батареи с отрицательной (-) клеммой второй батареи.Если бы использовались только две батареи, то у вас был бы кабель, идущий от отрицательной (-) клеммы первой батареи к вашему приложению, и кабель, отходящий от положительной (+) клеммы на второй батарее, ведущей к приложению, как показано на рисунок ниже.

Последовательное подключение батареи, любезно предоставлено EngineeringPassion

Это подключение приведет к 24 В, 20 Ач ёмкости . Далее мы объясним другой способ увеличения как напряжения, так и силы тока. Это может показаться запутанным, но мы объясним это ниже.

Серия № 3 / Параллельное комбинированное подключение аккумуляторных батарей — увеличение напряжения и силы тока

Для последовательного / параллельного комбинированного соединения батарей вам потребуется как минимум 4 батареи одинакового размера и мощности. Поясним это на примере!

У вас будет два или более банков батарей в последовательной / параллельной конфигурациях батарей. Каждая группа батарей объединяет батареи, настроенные последовательно на желаемое напряжение. Затем банки будут соединены вместе параллельно для увеличения общей пропускной способности системы, как показано на рисунке ниже.

Комбинированное последовательное и параллельное подключение аккумуляторов, любезно предоставлено EngineeringPassion

В результате этого подключения будет получено 24 В, 40 Ач, емкость . Комбинированное соединение похоже на объединение двух идентичных батарейных блоков вместе.

Какой способ подключения батареи мне выбрать?

Вы можете соединить столько батарей вместе, сколько захотите, но когда вы начинаете собирать путаницу из батарей и кабелей, это может сбить с толку, а путаница может быть опасной.Ответ на этот вопрос зависит от приложения. Помните о требованиях к вашему приложению и придерживайтесь их. Также используйте батареи того же номинала. По возможности избегайте смешивания и несовпадения размеров батарей.

Вы также можете использовать эти соединения для подзарядки батарей через солнечные батареи. Создавая аккумуляторный блок, всегда следите за своей безопасностью и следите за соединениями аккумулятора. Если это поможет, сделайте схему ваших батарейных блоков, прежде чем пытаться их построить.

Switching Battery представляет новый метод подключения электронных батарей

Пресс-релиз

обновлено: 9 июля 2021 г.


ГИЛРОЙ, Калифорния,
9 июля 2021 г. (Newswire.com) —

Компания Switching Battery Inc. представила инновационный электронный метод подключения батарей под названием «пара-серия».

Запатентованный метод para-series основан на динамическом переключении группы батарей между последовательным и параллельным подключением.Поскольку эти две схемы подключения имеют взаимодополняющие свойства, метод para-series может дать оптимальный результат для выходного напряжения. Когда две батареи 3,7 В соединены пара-последовательным соединением, напряжение 5,55 В является средним напряжением между параллельным и последовательным соединениями при рабочем цикле 50-50 параллельных последовательностей.

«Путем простой регулировки рабочего цикла между параллельными и последовательными цепями теперь можно иметь 100% параллельные или 100% последовательные цепи, а также любую промежуточную комбинацию для получения точного напряжения, требуемого нагрузкой или устройством», — говорит изобретатель из Сингапура Каннаппан Четтиар.

Метод para-series также имеет преимущества даже по сравнению со стандартными преобразователями постоянного тока в постоянный.

Наиболее важные характеристики модели para-series :

    ,

  1. выходное напряжение можно непрерывно изменять в широком диапазоне, просто регулируя рабочий цикл сигнала переключения;
  2. используется одна частота коммутации, которая может быть такой же низкой, как обычная частота сети 50/60 Гц. Это значительно снижает электромагнитные помехи (EMI) и необходимость соблюдения правил EMI;
  3. Состояние заряда системных батарей автоматически восстанавливается, а оставшийся заряд перераспределяется между батареями.Слабый аккумулятор постоянно подзаряжается другими, что позволяет избежать общего отказа из-за одного аккумулятора. Эта перебалансировка действует с самого начала, прежде чем возникнет какой-либо дисбаланс заряда, который подвергнет систему риску.
  4. В одной системе можно использовать батареи

  5. разного размера, что дает большую гибкость в конструкции блока батарей.

Чтобы показать пример эффекта с батареями разной емкости, предположим, что у нас есть две батареи, одна емкостью 1 Ач, а другая 2 Ач, соединенные последовательно.Когда первая батарея разрядила 90% своего заряда (т.е. 0,9 Ач), ее напряжение упадет до очень низкого значения, и серия больше не будет использоваться. Вторая батарея, имеющая такой же ток (последовательное соединение), также выдавала 0,9 Ач. Таким образом, система становится непригодной для использования, когда она выдала 2 x 0,9 Ач = 1,8 Ач, или только 60% от общего количества 3 Ач двух батарей. 40% энергии теперь непригодно для использования.

В методе p ara-series аккумулятор с емкостью 2 Ач подзаряжает другой в параллельной фазе; поэтому система будет разряжена, когда обе батареи будут заряжены на 90%; только 10% будут непригодны.Потенциал экономии 30% очень важен, потому что он всегда обеспечивает максимальную эффективность при использовании аккумуляторов разной емкости, разного уровня заряда, а также с течением времени развивавших другие характеристики.

Источник: Switching Battery Inc

Преимущества прямого подключения батареи

Портативные конструкции

В любом приложении с внутрисхемной перезаряжаемой батареей, таком как мобильный телефон, Bluetooth-гарнитура или GPS-приемник, разработчики схем управления питанием имеют два варианта.Один из подходов — изолировать аккумулятор от нагрузки во время зарядки аккумулятора, запитывая нагрузку напрямую от адаптера ( Рис. 1 ). В качестве альтернативы, оставьте аккумулятор подключенным к нагрузке, запитывая нагрузку от аккумулятора, одновременно заряжая аккумулятор от адаптера ( Рис. 2 ). Существует множество коммерческих микросхем зарядных устройств, которые реализуют любой из этих вариантов. Хотя обе топологии подключения имеют свои собственные компромиссы, преимущества в стоимости и производительности прямого постоянного подключения нагрузки к батарее являются лучшим выбором для многих приложений.

Бывают случаи, когда аккумулятор необходимо изолировать от нагрузки во время зарядки. Например, рассмотрим случай, когда система может работать при напряжениях ниже порогового напряжения предварительной зарядки ИС зарядного устройства. ИС зарядного устройства обычно подают небольшой ток капельного заряда до тех пор, пока напряжение элемента не превысит порог быстрой зарядки. Как только напряжение достигает этого порога, считается безопасным быстрая зарядка литий-ионного аккумулятора.

Если системе требуется нормальная работа при напряжениях ниже этого порогового значения, ИС зарядного устройства может быть не в состоянии обеспечить достаточный ток для зарядки аккумулятора и питания нагрузки.Отделив систему зарядки аккумулятора от источника питания нагрузки, как показано на рис. 1 , разработчик может подавать необходимые токи на нагрузку независимо от напряжения элемента батареи без ухудшения характеристик или сокращения времени зарядки аккумулятора. Однако, если можно управлять всеми компонентами нагрузки от низкого напряжения батареи, есть много преимуществ для зарядки батареи и питания нагрузки от одного и того же выхода ( Рис. 2 ).

Преимущества неизолированной зарядки

Одним из преимуществ конфигурации с неизолированной или прямой зарядкой батареи является то, что она позволяет создавать простые, компактные и недорогие конструкции.Линейные и переключающие регуляторы, а также другие элементы нагрузки, питаемые от батареи, могут работать даже во время зарядки батареи. Подключение нагрузки непосредственно к батарее также устраняет необходимость в переключателях с низким сопротивлением. Эти переключатели потребляют большие площади кремния, увеличивая стоимость ИС зарядного устройства или требуя использования дискретных компонентов, таких как полевой МОП-транзистор, показанный на рис. 1 .

Еще одним преимуществом этой конфигурации является то, что непрерывность питания нагрузки обеспечивается при подключении или отключении зарядного адаптера, а также в начале или в конце цикла зарядки аккумулятора.Это связано с тем, что не используются переключающие устройства, которые потенциально могут нарушить ток в нагрузке.

Кроме того, нагрузочные устройства не должны быть устойчивыми к входным переходным процессам и выбросам, вызванным электростатическим разрядом, выбросами адаптера при «горячем» подключении, шумом адаптера и зарядными адаптерами с неправильным выходным напряжением. Зарядное устройство изолирует зарядный адаптер от ступеней регулятора схемы нагрузки, питаемой от аккумулятора, обеспечивая защиту от перенапряжения и регулировку источника питания для последней.Кроме того, батарея действует как большой емкостный источник переходных процессов нагрузки, таких как пусковые токи через входной конденсатор регулятора, без зависимости от переходной характеристики адаптера для питания нагрузки.

Поскольку падение напряжения, связанное с переключателем изоляции батареи, устранено, эффективный диапазон рабочего напряжения разряда батареи расширяется. Это увеличивает эффективный срок службы батареи, позволяя системе работать при более низком напряжении аккумуляторных элементов.

Еще одно преимущество зарядки аккумулятора и питания нагрузки от одного выхода состоит в том, что можно использовать зарядные адаптеры с более низкими ограничениями по току. Если нагрузка питается напрямую от адаптера, когда она изолирована от аккумулятора, адаптер должен обеспечивать как зарядный ток, так и ток нагрузки. Если емкость адаптера по току меньше суммы зарядного тока и пикового тока нагрузки, напряжение адаптера (и напряжение нагрузки) будет понижено до напряжения, равного сумме напряжения батареи и отключения переключателя.Нагрузка может испытывать большие скачки напряжения питания.

Если зарядное устройство не имеет функции блокировки пониженного напряжения с низким пороговым напряжением, тогда зарядное устройство перезагрузится. Если аккумулятор остается подключенным непосредственно к нагрузке во время зарядки, адаптеру не требуется подавать большой ток для управления пиковой нагрузкой плюс зарядный ток. Вместо этого аккумулятор может обеспечивать любой большой пиковый ток нагрузки, в то время как зарядное устройство продолжает подавать средний ток нагрузки и средний ток зарядки.Если средний ток нагрузки меньше, чем предел тока зарядного устройства и предел тока адаптера, нагрузка будет запитана без скачков напряжения питания, и аккумулятор будет заряжаться без перебоев.

Снижение времени зарядки

Ток нагрузки будет потребляться от выхода зарядного устройства во время зарядки, поэтому фактический ток заряда аккумулятора во время этапа зарядки с постоянным током будет разницей между запрограммированным ограничением тока и током нагрузки.Хотя влияние на время зарядки не равно нулю, можно предпринять шаги, чтобы минимизировать увеличение времени зарядки.

Любые известные статические нагрузки могут быть добавлены к пределу зарядного тока и, таким образом, не будут влиять на фактические зарядные токи. Например, некоторые продукты будут запитывать определенные подсистемы при наличии питания адаптера, такие как подсветка дисплея или телефонная трубка в режиме ожидания. Эти нагрузки известны и относительно постоянны, поэтому их влияние можно устранить, просто увеличив соответственно предел тока.Динамически регулировать ограничение тока довольно просто и недорого. Если предел тока зарядного устройства обратно пропорционален программирующему резистору (распространенный метод программирования), просто включите программирующий резистор параллельного тока на землю, чтобы динамически увеличить ток быстрой зарядки.

Например, передатчики и приемники Bluetooth периодически включаются и выключаются, и диапазон нагрузки передатчика легко определяется. Запрограммированный зарядный ток может быть увеличен с помощью небольшого сигнального переключателя, управляемого сигналом разрешения передачи.Динамическая регулировка тока быстрой зарядки для компенсации изменений нагрузки сохранит преимущества соединения батареи с нагрузкой. Выключатели слабого сигнала менее дороги, чем дополнительные устройства дискретного питания, чтобы изолировать батарею от нагрузки и обходить зарядное устройство для питания нагрузки.

Динамическая регулировка зарядного тока может быть сколь угодно сложной или простой, но дополнительная сложность обеспечивает уменьшающуюся отдачу. Одного или двух уровней переключения тока будет более чем достаточно, несмотря на возникающие в результате небольшие колебания тока заряда с нагрузкой.Это особенно верно для литий-ионной зарядки, для которой увеличение тока быстрой зарядки (на стадии зарядки с постоянным током [CC]) обеспечивает меньшее сокращение общего времени зарядки. Таким образом, небольшое снижение среднего тока быстрой зарядки мало повлияет на общее время зарядки.

Более высокий ток в режиме CC может зарядить аккумулятор до стабилизации постоянного напряжения (CV) при 4,2 В (напряжение конца заряда для литий-ионного аккумулятора) раньше, но тогда для завершения части CV-заряда потребуется больше времени. .Учитывая, что фаза заряда CV обычно в два раза длиннее фазы CC, даже если батарея изначально сильно разряжена, поддержание максимального тока CC кажется еще менее важным. Влияние всего этого заключается в том, что общее время заряда не будет меняться с изменением тока быстрой зарядки почти так сильно, как можно было бы предположить при простом интегрировании тока заряда. Динамическая регулировка предельного тока зарядного устройства может сохранить минимальное время зарядки для зарядки изолированной батареи, но скромная выгода от этого может не окупить дополнительных затрат.

Для зарядных устройств аккумуляторных батарей с независимым программированием конечного тока эту настройку также можно отрегулировать в соответствии с известной нагрузкой. Однако обычно в этом нет необходимости. Нагрузки большинства цифровых портативных устройств сильно различаются. Во время зарядки CV (при регулируемом выходе 4,2 В) выходной ток складывается из тока заряда аккумулятора и тока нагрузки. Поскольку ток нагрузки изменяется от нескольких миллиампер до десятков или сотен миллиампер, например, с беспроводным устройством в состоянии ожидания, ток, который будет принимать аккумулятор (который зависит от его конкретного состояния заряда), суммируется с минимальной мгновенной нагрузкой.

Добавить комментарий

Ваш адрес email не будет опубликован.