Теплообменники для чего нужны: Назначение теплообменников пластинчатых, зачем нужны ПТО?

Теплообменники для чего нужны: Назначение теплообменников пластинчатых, зачем нужны ПТО?

Содержание

Что такое теплообменники, виды и особенности применения

Запросить цену

Процесс передачи тепла называют теплообменом. Аппараты, в которых происходит процесс – теплообменники. Если в процессе участвуют два агента, разделенные перегородкой – это поверхностные рекуперационные аппараты. Происходит процесс смешения теплого и холодного потока контактом – теплообменник смесительный.

Системы теплообмена, зачем нужен теплообменник

Пример смесительного устройства – градирни. Отходящие газы отдают тепло воде, распыляемой из форсунок. В аппаратах, где два агента протекают по отдельным контурам, тепло передается через стенку, поверхность.

Признаком теплообменника является развитая поверхность и подводка двух систем. Это может быть пар-вода, антифриз-вода, вода-вода. Вместо воды в процессе используют химический раствор, вместо пара – нагретые газы.

Применение теплообменников позволяет:

  • Использовать остаточное тепло при получении электрической энергии.
  • Вести химические процессы в точном режиме, поддерживая температуру теплообменниками.
  • Использовать вторичное тепло от энергоносителя для бытовых нужд.
  • Поддерживать температуру теплоносителя для бытовых систем отопления в параметрах, соответствующих стандарту.

Принцип работы теплообменника

Принцип работы поверхностных теплообменников очень прост. Изолированные между собой теплоноситель и теплопотребитель передают друг другу тепло через материал, который находится между ними. В зависимости от конструкции это могут быть трубы или пластины. Для этих целей используются теплопроводные материалы, например, нержавеющая сталь, сплавы и другие материалы. В итоге проходящая через теплообменник среда отдает тепло хладагенту не контактируя с ним. Ключевым принципом работы поверхностных теплообменников является то, что среды не контактируют, т.е не смешиваются.

Разновидности поверхностных теплообменников

Простейший т/о – труба в трубе. Холодная трубка с водой проходит в трубе большего сечения, заполненной горячим агентом. При этом поверхность внутренней трубки нагревается и передает тепло воде. Так работают бойлеры. Если трубок много и собраны они в пучок, то получается кожухотрубный теплообменник. Аппараты с трубным пучком, закрепленном с торцов решетками, распространены в промышленности и применяются для бытовой водоподготовки.

Витые теплообменники представляют змеевики, навитые в корпусе. Межтрубное пространство заполняется другим потоком. Аппаратура применяется при высоком давлении одного из агентов.

Двухтрубные теплообменники применяются для передачи тепла в фазах газ-жидкость. Аппараты могут работать под давлением с высокой теплопередачей.

Спиральный т/о

Спиральные теплообменники представляют бочку, в которой лентой-спиралью расположен плоский лабиринт с внутренней полостью. По спирали движется горячий агент, омываемый холодной водой. Конструкция сложная в изготовлении. Но это единственный вид аппаратов для теплообмена агента, содержащего взвеси, пульпу. Откидывающиеся с обеих сторон крышки позволяют легко чистить зазоры.

Пластинчатый теплообменник представляет особую конструкцию греющих труб, собранных в виде плоского элемента их оребренных труб и многоходовым движением воды. Пластины напоминают гармошки. Их недостаток – забиваются накипью при плохой водоподготовке.

Зачем нужен теплообменник в системе отопления? Представьте, что в трубах вода 900. Это приведет к разрыву пластиковых труб, ожогам. В каждом тепловом узле имеется система т/о, позволяющая поддерживать температурные параметры.

От чего зависит эффективность теплообменника

Кожухотрубный т/о

Поверхностный теплообмен происходит всегда через стенку. При этом возникают потери тепла. Чем тоньше перегородка, тем меньше потери. Новый т/о кожухотрубный имеет кпд 75%, но с зарастанием внутренней и верхней поверхности осадком, эффективность аппарата снижается. Он не может удерживать температурный режим. Поэтому аппараты имеют съемный пучок, который прочищают под высоким давлением специальным пистолетом.

Пластинчатые аппараты имеют кпд 90%, но щели между пластинами забиваются, требуется чистка. Для чистки оборудование разбирают. Важно установить на место сетчато-магнитный фильтр, который препятствует образованию осадка. Пластинчатые теплообменники можно подключать к автоматизированному управлению.

Пластинчатый разборный т/о

Эффективность процесса зависит от схемы подключения. Полнее теплоотдача у противоточного аппарата, когда потоки движутся навстречу друг другу.

Чем тоньше перегородка, тем лучше идет процесс. Но для аппаратов, работающих под давлением, толщина стенок зависит от способности выдерживать нагрузки на стенки. Если нельзя утоньшить стенки трубок необходимо увеличить поверхность нагрева, сделать аппарат длиннее.

Каждый т/о изготовлен в соответствии с теплотехническим расчетом, имеет паспорт и рассчитан для работы с определенным теплоносителем.

Как правильно выбрать теплообменник

Зачем нужен теплообменник в системе отопления в быту, понятно. Какой аппарат подходит в конкретном контуре – зависит от условий монтажа. Можно поставить кожухотрубный т/о – он неприхотлив, может простоять без чистки 10 лет, только счета за использование теплоносителя будут все больше – нарушается теплопроводность. Можно поставить пластинчатый, но чистить его придется через 3 года.

Вас может заинтересовать:

Теплообменное оборудование
Кожухотрубные теплообменники
Горизонтальные теплообменники с U-образным трубным пучком

Рекомендуемые статьи

  • Как правильно заправить газгольдер

    Современные газгольдеры заправляют 1-3 раза в год. Количество заправок определяется номинальной емкостью резервуара, предназначенного для хранения СУГ, и интенсивностью использования газа. Что же касается непосредственно самого процесса заправки, то специалисты рекомендуют разделять его на три основных этапа:
    1. Выбор сезона для заправки
    Лучшим временем года для заправки газгольдера считается период с февраля по июль. Именно в…

  • Объём свободных нефтехранилищ стремительно снижается

    Одной из основных причин значительного сокращения свободных хранилищ для «черного золота» является отсутствие желания у нефтяных магнатов ограничивать добычу, даже если это оказывает негативное влияние на ценообразование рынка нефтепродуктов. По мнению экспертов Citi, именно это обстоятельство является ключевым в проблеме сохранения доступных объемов хранилищ. Как добавляют другие эксперты энергетического рынка, нежелание…

  • Устройство пожарного резервуара

    Пожарный резервуар — это место для размещения запаса воды для тушения возможного возгорания. Она должна отвечать требованиям по проектированию, указанным в СНиП 2.04.01-85 Внутренний водопровод и канализация зданий П.6. Этот объект обязательно, согласно вышеуказанной норме, должен быть возведен на территории промышленного предприятия. Для создания пожарного запаса воды могут использоваться искусственные и естественные водоемы,…

  • Принцип работы и устройство кожухотрубных теплообменников

    Среди всех разновидностей теплообменников этот вид наиболее распространен. Его применяют при работе с любыми жидкостями, газовыми средами и парообразными, в том числе, если состояние среды меняется в процессе перегона.
    История появления и внедрения
    Изобрели кожухотрубные (или кожухотрубчатые) теплообменники в начале прошлого века, дабы активно использовать при работе ТЭС, где большое количество нагретой воды перегонялось при…

Зачем нужен пластинчатый теплообменник и какие они бывают?

Задачей этого узла является передача энергии от первоисточника к холодной рабочей жидкости: пластинчатый теплообменник распределяет тепло с помощью гофрированных пластин в качестве стенок, что защищает систему от смешивания сред.

Конструкционные характеристики теплообменника и пластин

При расчете пластинчатого теплообменника нужно принимать во внимание, что в основу аппарата закладываются:

  • неподвижные и прижимные плиты,
  • патрубки (входные и выходные) с разнообразными соединениями,
  • монтажная подставка,
  • направляющие,
  • метизы с резьбой.

Энергия передается между теплоносителями через пластины, выполненные из устойчивых к ржавчине инертных материалов. Последние обрабатываются методом штамповки, их толщина варьируется в пределах 0,4-1 мм. В собранном виде узел представляет собой плотно прилегающие тонкие панели, в которых предусмотрены щелевые каналы. У всех элементов с лицевой стороны есть контурное углубление, в которое закладывается резиновый уплотнитель (за счет него обеспечивается герметичное прилегание элементов).

Пластины единообразны по форме и материалу, они могут быть изготовлены из нержавеющей стали, титана, тугоплавких сплавов (выбирают в зависимости от сферы применения). Для производства уплотнителей используются сложные полимеры на базе синтетического каучука, их можно эксплуатировать с гликолем и неагрессивными средами, паром и высокотемпературными жидкостями, нефтесодержащими и масляными теплоносителями.

Принцип работы и схема агрегата

Устройство, расчет и промывка пластинчатых теплообменников для отопления основываются на том, что узел функционирует благодаря наличию 4 отверстий:

  • 2 отверстия для притока и отвода горячей рабочей среды,
  • 2 отверстия для обеспечения герметичной стыковки пластин и предотвращения смешивания теплоносителей – данную задачу выполняют уплотнители.

Движение жидкости в агрегате осуществляется по принципу завихрения потока. В результате из-за относительно небольшого сопротивления движению рабочей среды усиливается интенсивность передачи тепловой энергии. Также вследствие небольшого сопротивления при прохождении жидкости уменьшается количество накипи во внутренних полостях.

Как выглядит пластинчатый теплообменник

Принцип работы пластинчатого теплообменника, базирующийся на петлях и завихрениях, способствует многократному обмену энергией. В результате достигается максимальный КПД агрегата, на что оказывает положительное влияние и вывод патрубков в оба виды панелей – прижимные и неподвижные.

Устройство теплообменника идеально соответствует условиям эксплуатации: количество пластин увеличивается соразмерно потенциальным потребностям в мощности системы. Число рабочих элементов оказывает прямое влияние на КПД и производительность отопительного или охлаждающего оборудования.

Технические параметры моделей

При изучении ассортимента опираются на следующие технические характеристики:

  • материал, из которого изготовлены панели – это могут быть тугоплавкие соединения, тонкая листовая сталь, чистый титан,
  • максимально допустимое давление среды в агрегате обычно не превышает 25 кгс/см²,
  • в каждом узле число используемых пластин начинается от 7-10, их количество определяется будущей областью применения,
  • устройства способны выдержать температуру теплоносителя не выше 180°C.

Одна рабочая единица способна обеспечить площадь теплообмена в пределах 0,1-2100 кв. м.

Разновидности пластинчатых теплообменников

По специфике исполнения и возможностям применения устройства делятся на паяные, сварные и разборные.

Паяные модели

Представляют собой цельные устройства, в их конструкции не предусмотрены уплотнительные резинки. Пластины объединены друг с другом методом пайки. Достоинства решения:

  • бюджетная стоимость комплекта,
  • высокая эффективность и надежность,
  • компактные размеры,
  • легкость монтажа.

Паяные теплообменники распространены в системах вентиляции и кондиционирования, их применяют в турбинной и компрессорной технике, внедряют в холодильные установки.

Разборные

Образуются из комплекта панелей и полимерных уплотнителей. Причины широкого распространения разборных пластинчатых теплообменников:

  • низкая стоимость и простота монтажа,
  • возможность регулирования уровня производительности,
  • простота использования, отсутствие значительных эксплуатационных расходов,
  • минимальные периоды простоя,
  • невысокая энергоемкость,
  • возможность дальнейшей переработки при утилизации.

Разборные пластинчатые теплообменники

Узлы обрели широкое применение в системах отопления домов и обслуживания бассейнов, ГВС, климатической и холодильной технике, тепловых пунктах.

Полусварные и сварные

Здесь рабочие элементы соединяются посредством сварных швов, в конструкции отсутствуют герметизирующие прокладки. Характеристики моделей:

  • присутствуют условия для регулирования потока и промывки теплообменника,
  • высокая устойчивость к агрессивным средам,
  • возможность работы в условиях большого перепада рабочих температур,
  • максимальная температура носителя может достигать 300°С, допустимое давление – не выше 4.0 Мпа,
  • компактность узла, простота монтажа,
  • неподверженность воздействию агрессивных веществ и абразивов,
  • длительный эксплуатационный ресурс.

Сварные и полусварные модели распространены в пищевой, фармацевтической, химической промышленности, системах вентиляции, кондиционирования, рекуперации, тепловых насосах. Устройства обеспечивают охлаждение техники, позволяют координировать температуру воды в ГВС бань и аналогичных общественных объектов.

Преимущества и недостатки

Плюсы применения агрегатов:

  • высокая эффективность при небольших габаритах. Средний КПД устройств, применяемых в горячем водоснабжении и отоплении, достигает 80-85%. Соединительные порты расположены с одной стороны, что облегчает монтаж,
  • низкие показатели потери давления. Конструкция предусматривает возможность плавной регулировки ширины каналов, увеличение количества последних ведет к снижению гидравлических потерь. Уменьшение сопротивления среды позволяет снизить потребление электроэнергии насосами,
  • ремонтопригодность, экономичность и легкость монтажа. Разбор и промывку оборудования можно осуществить за несколько часов, небольшие загрязнения удаляются безразборным методом. Средний срок службы теплообменника составляет 10 лет, притом пластины обладают эксплуатационным ресурсом в 15-20 лет,
  • гибкость. Для увеличения мощности аппарата практикуется изменение поверхности его теплообмена. С ростом потребностей не обязательно заменять агрегат новым, достаточно добавить пластины,
  • низкая загрязняемость. Профили каналов обеспечивают самоочищение благодаря высокой турбулентности потока. Так снижается частота сервисного обслуживания,
  • индивидуальность. Специалисты рассчитывают и подбирают конфигурацию исходя из необходимых температурных графиков,
  • вибрационная устойчивость. Изделия не подвержены типичной двухплоскостной вибрации, из-за которой обычно повреждаются трубчатые теплообменники,
  • бесклеевые уплотнители легко заменить новыми, при этом они жестко фиксируются в каналах. Низкая вероятность появления протечек после механической очистки, они обнаруживаются сразу же (без разборки),
  • комплект не нуждается в специальном укрепленном основании и дополнительной теплоизоляции
  • средний срок окупаемости в зависимости от модели составляет 3-5 лет.

Слабой стороной агрегатов признаются высокие требования к качеству очистки рабочей среды. Так как между панелями остается небольшое расстояние, загрязнение каналов происходит быстрее по сравнению с полостями ближайшего конкурента – кожухотрубного теплообменника. Засорение ведет к понижению эффективности теплопередачи, уменьшению КПД устройства.

Критерии выбора

При определении оптимальной модели аппарата следует опираться на технические характеристики изделия:

  • схема подключения ГВС,
  • уровень тепловой нагрузки,
  • параметры греющей и нагреваемой среды.

В последнем пункте принимается во внимание такая информация, как входная и выходная температура в зимние и летние периоды, потенциальный расход среды и допустимые потери давления, процентное соотношение запаса мощности. Эти сведения берутся за основу при расчете производительности пластинчатого теплообменника.

Нюансы монтажа и подключения

Теплообменник применяется только в связке и не подразумевает самостоятельного использования. Агрегат во время установки окружают вспомогательным оборудованием, таким как обратные клапаны, контрольно-измерительные устройства в виде термометров и манометров, запорная арматура (ручные заслонки и задвижки), циркуляционные насосы.

Подключение производится по одной из следующих схем:

  • одноступенчатый параллельный (независимый) метод,
  • двухступенчатый смешанный,
  • двухступенчатый последовательный.

Монтаж пластинчатого теплообменника

В первом случае образуется изрядная экономия полезной площади в зоне монтажа. Ключевое преимущество этого способа – простота исполнения (что важно в условиях ремонта, обслуживания, замены узла). Недостаток методики – отсутствие возможности подогрева холодной рабочей среды.

При двухступенчатом смешанном методе температура входящего теплоносителя повышается за счет обратного потока, в результате эффективность связки увеличивается на 35-40%. Но в этом случае для обеспечения горячего водоснабжения придется предусмотреть в системе два теплообменника, что увеличивает расходы на закупку и монтаж оборудования.

Последовательный двухступенчатый способ позволяет увеличить эффективность использования рабочей среды и стабилизировать нагрузку в сети. По сравнению с параллельной схемой здесь затраты на теплоноситель уменьшаются на 50%, на фоне смешанной методики – на 25%. Единственный недостаток решения – невозможность полной автоматизации теплового узла.

Сферы использования оборудования

Рассматриваемые модели применяются в коммунальном хозяйстве для достижения следующих целей:

  • дополнительное прогревание среды в горячем водоснабжении,
  • нагрев воды в бассейнах и бойлерах,
  • обеспечение независимого контура отопления от ЦТП или ТЭЦ,
  • вентиляция помещений,
  • прокладка теплых полов.

В таких условиях максимальная температура воды может составлять 180°C на фоне давления в пределах 10-16 кПа. Пластины изготавливаются из нержавейки толщиной 0,4 мм, для уплотнителей используется этиленпропилен.

В пищевой отрасли теплообменники задействованы при производстве растительных масел, молочных продуктов, спирта, сахара, пива. Они применяются в качестве элементов испарительных, охладительных, пастеризующих линий. Здесь актуальны паяные и разборные модели.

В металлургии пластинчатые компоненты включены в оборудование для охлаждения рабочих жидкостей. В данной отрасли в интенсивном охлаждении нуждаются плавильные печи, прокатные и разливочные механизмы, травильные растворы, гидравлические смазки.

Теплообменники в нефтегазовой сфере помогают подогревать и охлаждать жидкости, вещества, задействованные в крекинге и технологической подготовке сырья. Агрегаты применяют в качестве составных частей сетевых систем, оборудования для химобработки воды, обеспечения низкого давления. Пластины для газовой и нефтяной промышленности изготавливают на базе чистого титана в виде листов толщиной не более 0,7 мм. К маркам полимера, применяемым для производства уплотнительных прокладок, предъявляются высокие требования по устойчивости к химическому и термическому воздействию.

Пластинчатые теплообменники, востребованные в судостроении, служат охладителями для всей системы и главного двигателя. Носителями в подобных условиях являются моторные масла, отличающиеся по вязкости, морская вода, СОЖ. Агрегаты также актуальны в составе отопительных контуров и ГВС на крупных морских судах.

Теплообменник в системе отопления, независимая схема отопления



Теплообменник передает тепло от одного теплового источника другому. Здесь исключается физический контакт между носителями тепла. Особенность подобной конструкции позволяет применять такое устройство практически в любой отопительной системе. Однако расходы на оборудование будут несколько выше и возрастать пропорционально мощности. Регулирующее оборудование здесь будет тоже немного сложнее и дороже. Теплообменники применяются в независимых системах теплоснабжения.
Давайте сначала разберемся в том, как устроены наши теплосети.

В основном в России применяются системы теплоснабжения, которые называются независимыми и работают без теплообменника.
Тем не менее, у нас используют и независимую схему. Однако самой распространенной все еще остается зависимая система теплоснабжения. В этом случае котел греет воду, которая, минуя теплообменник, поступает непосредственно в батареи отопления в помещениях.

Схема нагрева состоит из нагревающего устройства, регулирующего оборудования и теплосети.

Температура регулируется в зависимости от погоды или при необходимости увеличить или уменьшить подачу тепла в помещения. В этом случае теплообменник не применяется, а значит регулировать температуру непосредственно в квартирах можно только в сторону её уменьшения. Котельная в этом случае требует дополнительного громоздкого оборудования, а тепловые сети постоянно то нагреваются, то остывают, что отрицательно сказывается на состоянии теплосетей и батарей отопления. В этой схеме большие утечки тепла. При относительной дешевизне эффективность такой отопительной системы немного ниже. Непосредственно в котельной невозможно точно рассчитать необходимое количество тепла для обогрева всех помещений. Поэтому эффективность теплоотдачи весьма низка при высоком уровне перерасхода тепловой энергии, что характерно для отопительных систем без разделенных контуров теплообмена.

Независимая система эффективного теплоснабжения с применением современных теплообменников

Заказать расчет теплообменника

Теплообменник позволяет значительно снизить потери тепловой энергии. На это влияет не только более эффективная двухконтурная схема теплоснабжения, но и дополнительная автоматика, которую можно применять только в подобных конструкциях. Независимая система теплового снабжения состоит из теплового распределительного пункта и дополнительных индивидуальных теплообменников, находящихся в инженерных помещениях непосредственно в каждом доме. Это позволяет регулировать подачу тепла в любой квартире более эффективно.

Как это устроено


От котельной тепло с фиксированной температурой порядка 95 градусов подается к основному распределительному пункту, на главный теплообменник. В обратном контуре тоже фиксированная температура 70 градусов. Такой становится температура после нагрева отопительных батарей. Теперь в котельной не нужно держать операторов, устанавливать дорогостоящую автоматику, мощные насосы и трубы отопления большого диаметра и, что немаловажно, можно использовать трубы меньшего диаметра. Потери тепла в этой схеме минимальны.

Блочный тепловой пункт

Довольно часто теплообменник повышенной производительности устанавливают непосредственно в котельной и применяют двойной тепловой контур, позволяющий продлить срок службы отопительного котла. Здесь внутренний тепловой контур котла использует меньшее количество теплообменного вещества, поэтому отсутствует накипь и котлы служат гораздо дольше.

При использовании теплообменника потребитель имеет возможность регулировать подачу тепла индивидуально, то есть в каждой квартире в отдельности. Нужны лишь индивидуальные регулирующие приборы непосредственно на батареях. Преимущество налицо.

Через теплообменник можно подключить теплый пол к системе отопления.

Как это правильно сделать: Здесь нужен дополнительный теплообменник для теплого пола. Но если подключить теплый пол к системе отопления без теплообменника, вы оставите соседей без тепла. Не столько важны потери тепла на обогрев вашего пола. Нужно учитывать, что вода в зависимой системе циркулирует иным образом и идет по пути наименьшего сопротивления, то есть по самому короткому пути и попросту не будет поступать к соседям.
У теплообменников лишь один недостаток. Это дополнительные затраты во время монтажа, но они с лихвой окупятся во время эксплуатации.

Стоит также подчеркнуть, что любую систему отопления как бытовую, так и промышленную, можно усовершенствовать. А из зависимой отопительной системы достаточно легко сделать независимую схему теплоснабжения. Для этого отопительную систему нужно дополнить теплообменником и установить специальную регулирующую автоматику. Но это придется делать во всех домах, которые обслуживает ваша котельная. В этом случае можно получить экономию на расход тепла до 40-ка процентов.

Следующая статья: Теплообменники в металлургической промышленности




Для чего нужен теплообменник в системе отопления

Изготовленный своими руками теплообменник будет служить «сердцем» системы отопления дома

Теплообменник из медной трубы с припаянными пластинами — важнейший элемент современных отопительных котлов

Главным элементом любой из систем отопления служит особое устройство — теплообменник для отопления дома, в котором происходит передача тепла от генератора тепла к теплоносителю. На современном рынке представлено большое количество различных отопительных котлов, но все их разнообразие не ограничивает фантазию домашних умельцев по части самостоятельного изготовления подобных устройств. В нашей статье читателям будет предложено узнать, для чего нужен теплообменник в системе отопления, как его сделать своими руками и каким способом подключить.

Функция теплообменника в системе отопления

В домашних отопительных системах воздух наиболее часто используются поверхностные теплообменники системы отопления, где тепловая энергия передается через поверхности металлических стенок данного устройства.

Принцип отопления через теплообменник наиболее полно реализован в конструкции газовых, твердотопливных или электрических котлов. Вода циркулирует по изогнутым в виде змеевика трубам, установленным внутри отопительного агрегата, и нагревается от температуры горящего топлива. Нагревшийся теплоноситель уходит в трубопровод отопительной системы, а ему на смену в теплообменник поступает остывшая вода из радиаторов.

До сих пор во многих индивидуальных домах традиционным источником тепла остается печь. Она хороша для обогрева небольшой избы, однако в условиях многокомнатного коттеджа ее тепловая мощность недостаточна. Поэтому в частном доме теплообменник в системе отопления нужен для того, чтобы превратить печку в полноценный водонагревательный котел. Размер и форма самодельного теплообменника для отопления должна вписываться в габариты топливной камеры печи. К этому устройству можно подключить трубопроводы и радиаторы, и тогда отопление дома станет более эффективным.

Виды теплообменников

Если вмонтировать в печь водяной теплообменник для отопления, во всем доме станет гораздо теплее

Более практичны водяные теплообменники для отопления. Это обусловлено тем, что вода намного лучше передает тепловую энергию, чем воздух. Вместе с тем, воздушный теплообменник для отопления также находит применение. Кроме водяного и воздушного, применяется также и теплообменник на дымоход для отопления, который устанавливают не внутрь, а снаружи.

Все выпускаемые промышленностью отопительные устройства оснащены теплообменниками, конструкция которых максимально приспособлена для эффективного нагрева воды.

В заводских условиях теплообменные устройства изготавливают из меди.  Труба представляет собой змеевик, поперек изгибов которого расположено множество пластин, обеспечивающих большую площадь теплообмена.

Соорудить у себя дома самодельный теплообменник для отопления, чтобы он был точно как заводской, практически нереально. Поэтому придется выбрать вариант попроще.

Устройство системы

Несложный по конструкции самодельный теплообменник послужит для отопления дома

Принцип действия самодельного теплообменника состоит в том, что печь передает ему энергию от сгорания дров или угля, а нагревшаяся вода расходится по трубам во все комнаты. Такой способ отопления позволяет обитателям дома наслаждаться равномерным распределением тепла. Кроме того, все помещения прогреваются гораздо быстрее, а расходы на приобретение топлива снижаются.

Усовершенствовать печное отопление частного дома можно двумя способами:

  • построить печь «с нуля» под конкретный размер теплообменника;
  • установить в существующую печь самодельный теплообменник, изготовленный по размерам топки.

Схема кирпичной печи с теплообменником

Изготовив теплообменник для отопления своими руками, домовладелец может быть уверенным, что его печь с водяным контуром станет действовать не хуже настоящего твердотопливного котла. Отличие будет только в том, что у печки расположение входного отверстия теплообменника получится немного выше над полом, чем у заводских котлов. Это довольно существенная разница, которая может влиять на скорость естественной циркуляции теплоносителя.

Подключение теплообменника к системе отопления нужно сделать таким образом, чтобы труба поступления холодной воды (обратка) была расположена как можно ниже.

Так же, как в обычной системе отопления, в верхней точке трубопроводов нужно вмонтировать расширительный бачок. Он будет компенсировать изменение объема нагретой воды и выпускать из системы пузырьки воздуха. Если отопление через теплообменник с естественной циркуляцией окажется недостаточным для обогрева большого коттеджа, придется установить в систему циркуляционный насос.

Для присоединения самодельного теплообменника для отопления используют 2 штуцера: один снизу (вход холодной воды), другой сверху (выход горячей). При монтаже теплообменника нужно обеспечить необходимый уклон труб, как требуется по схеме.

Преимущества отопления с теплообменником

Принцип подключения теплообменника к системе отопления

Если разбираться, для чего нужен теплообменник в системе отопления, можно заметить несколько явных преимуществ:

  1. Простота изготовления. Если в доме уже существует печь, то придется потратиться только на изготовление самодельного теплообменника и монтаж системы отопления.
  2. Комбинированное отопление. Дополнительно к обогреву дома от поверхности печки прибавится водяная система отопления.
  3. Разнообразие видов топлива. Можно топить печь любыми твердыми энергоносителями, в отличие от котлов, ориентированных только на определенный вид топлива.
  4. Красивый внешний вид. Сохранить традиционный вид русской печи бывает полезно при создании интерьера в национальном стиле.

Среди недостатков отопления через теплообменник можно назвать: менее высокий КПД по сравнению с заводскими котлами и отсутствие автоматического контроля за интенсивностью нагрева теплоносителя.

Как изготовить самодельный теплообменник

Регистр из нескольких труб

Форма теплообменника для отопления, сделанного своими руками, может быть разной. Наиболее распространенный вариант — регистр из нескольких стальных или медных труб, но также используются и образцы пластинчатого типа.

Температура в зоне горения очень высока, особенно, когда горит уголь. Поэтому повышенные требования предъявляются к металлу, из которого будут изготовлены элементы теплообменника, рациональности его конструкции и качеству сварных швов.

Материалы для изготовления

Пример использования чугунных радиаторов в качестве теплообменника в кирпичной печи

Задача водяных теплообменников для отопления — обеспечивать оптимальную передачу тепла, и в этом процессе важна степень теплопроводности металла. Например, стальная труба проводит тепло в 7 раз слабее, чем медная. Поэтому при одинаковом диаметре трубы для передачи одного и того же количества тепла понадобится 25 метров стальной трубы взамен 3,5 метров медной.

Медные теплообменники самые экономичные в работе, но и дорогие. Более доступными для самостоятельного изготовления считаются теплообменники из стальной трубы диаметром не менее 32 мм.

Если предполагается топить печь углём, лучше установить теплообменник из чугуна. Этот металл более крепкий, и стенки устройства долго не будут прогорать.

Расчет мощности теплообменника

Вычислить заранее мощность теплообменника для системы отопления довольно трудно. Для этого нужно учитывать слишком много факторов: диаметр труб, длину змеевика, теплопроводность металла, температуру сгорания топлива, скорость циркуляции теплоносителя и др. Реальная способность теплообменника справляться со своими функциями выяснится только после начала эксплуатации отопительной системы.

При расчетах можно ориентироваться, что 1 метр трубы диаметром 50мм, служащей теплообменником, даст 1 кВт тепловой мощности.

Можно взять для примера какую-либо известную модель котла и в соответствии с его параметрами изготовить свой самодельный теплообменник.

Особенности конструкции


Теплообменник для водяного отопления дома, сваренный из гладкостенных труб, называют регистром. Он выглядит как своеобразная «решетка», и это наиболее популярная форма самодельного теплообменника. Кроме такой конструкции, делают и более простые устройства в виде прямоугольного или цилиндрического бака. Главное, чтобы площадь поверхности для теплового обмена была максимально большой.

При изготовлении теплообменника своими руками нужно соблюдать несколько условий:

  • ширина внутренних пустот в теплообменнике должна быть не меньше 5 мм, иначе вода в нем может закипеть;
  • толщина стенок труб должна быть не меньше 3 мм, чтобы металл не прогорал;
  • зазор величиной 10–15 мм между теплообменником и стенками топки должен компенсировать расширение металла при нагреве.
Особенности монтажа

Теплообменник устанавливают внутрь печи в процессе ее кладки

Проще всего монтировать теплообменник одновременно с сооружением печи. Если устанавливать его в старую печь, придется разобрать часть ее кирпичной кладки.

Порядок действий:

  1. На подготовленный фундамент печи прямо в полость топки устанавливают трубчатый теплообменник.
  2. При дальнейшем укладывании рядов кирпичей оставляют места для входной и выходной труб устройства.
  3. После завершения кладки печи подключают теплообменник к системе отопления, заполняют систему водой и производят пробную топку печи.

Видео материал предлагает ознакомиться с полезными советами по самостоятельному изготовлению теплообменника:

До сих пор мы говорили только о теплообменниках в системе водяного отопления. Обратим внимание и на другие сферы их применения.

Воздушное отопление

Если охарактеризовать воздушную систему отопления, можно сказать, что у нее больше минусов, чем плюсов. Воздушные теплообменники для отопления мало распространены в частном жилом секторе, они пока еще не стали привычными.

Преимуществом этой системы называют возможность совмещать обогрев с принудительной вентиляцией. Однако возможные ошибки при ее проектировании и монтаже могут свести преимущества к минимуму. В воздуховодах бывает слышен шум вентилятора, а в помещениях ощущается температурный дисбаланс.

Теплообменники для воздушного отопления существуют прямого нагрева, а также косвенного. В первых из них газовое или дизельное топливо сгорает непосредственно в самом теплообменнике. В других моделях используется промежуточный теплоноситель.

Теплообменник на дымоход

Смонтированный на дымоход теплообменник использует вылетающую в трубу тепловую энергию

На дачах и в банях у «народных умельцев» можно увидеть самодельный водяной или воздушный теплообменник, установленный на дымоход небольшой печи. Получается очень выгодно: тепло не уходит вместе с дымом, а часть его служит для нагрева воды.

Установив теплообменник на дымоход для отопления, можно получать довольно большое количество горячей воды. Конечно, этого не хватит, чтобы обогреть весь дом, но достаточно, чтобы поставить в предбаннике один-два радиатора. Использовать теплообменник на дымоход можно как для отопления, так и для быстрого нагрева воды в бане.

Подобное устройство может быть очень простым в изготовлении. За основу можно взять отрезок большой трубы диаметром 500–700 мм, или сварить бак из нержавейки. В центре конструкции будет проходить вертикальная труба, соответствующая диаметру дымохода, а сверху и снизу должны быть приварены два патрубка.

Отдавая свою температуру теплообменнику, выходящие из печи продукты сгорания быстро остывают. Из-за этого уменьшается тяга в дымоходе и несколько замедляется горение топлива.

Изготовление теплообменника для отопления своими руками может стать способом устроить в доме полноценное водяное отопление без приобретения дорогостоящего оборудования.

strojdvor.ru

Теплообменник для горячей воды от отопления позволяет регулировать температуру тепла и экономить

Чтобы в доме обеспечить уютные условия на зимний период, понадобится его оборудовать хорошим котлом и качественными теплообменниками. Что это такое? Теплообменник для горячей воды от отопления – это неотъемлемый элемент почти, что любой отопительной системы. Благодаря им обогревается внешнее пространство. Комфортные условия обеспечиваются за счет определенной температуры воздуха.

Данное устройство не обладает собственным источником тепла, его работа напрямую зависит от поступления тепловой энергии от централизованной обогревательной системы. Исходя из этих данных, можно определить, что печка или котел не относятся к таким устройствам. А вот щит или лежанка, которые отражают тепло дымовых газов, исходящее от печи, являются яркими примерами теплообменника. Благодаря их наличию в помещении нагревается воздух.

В сущности, теплообменник для горячей воды от отопления может быть обычной трубой, использующейся для передачи определенной температуры теплоносителя, которая значительно отличается от температуры воздуха обогреваемого помещения.

Зачем нужен теплообменник?

Есть достаточно много видов отопительных систем. Но в конструкции большинства из них есть водяной теплообменник. Для чего нужен этот агрегат? Он является одним из популярных, недорогих и одновременно качественных решений дающих возможность поддерживать регулярную температуру в помещении. Устройство подобного типа довольно актуально для частного дома или квартиры.

Но в том случае, когда идет речь о других типах помещений, нужно рассмотреть другие виды теплообменников. Допустим в бане, наиболее нужен теплообменник кирпичный. С его помощью можно по настоящему открыть все прелести парной. Водная система не будет настолько же хороша в помещении данного типа.

Если рассматривать вопрос о том какую роль играет теплообменник в системе отопления, можно увидеть некоторые яркие преимущества:

  1. Простота исполнения. Если в доме уже есть в наличии печь, деньги придется тратить только на то, чтобы самостоятельно сделать теплообменник и установку отопительной системы.
  2. Комбинированное отопление. Помимо обогрева дома печью, появится еще и водяная отопительная система.
  3. Разнообразие горючих материалов. В отличие от котлов, которые сделаны непосредственно под определенный вид топлива, печь можно топить любым твердым топливом.
  4. Внешняя эстетика. Во время создания интерьера в национальном стиле, традиционный вид русской печи его прекрасно дополнит.
  5. К недостаткам обогрева с помощью теплообменника можно причислить: более низкий КПД в отличие от котлов заводского исполнения и отсутствие автоматического контроля за уровнем нагрева теплоносителя.

В специализированных магазинах достаточно много такого товара. Здесь вам предложат товар самого разного качества, уровня обмена температур и цены от самых разных производителей. Цена на данный товар бывает самая разная, и зависящая от множества факторов. Но в том случае если приобрести готовое устройство вам не позволяет бюджет, его можно сделать самостоятельно.

Принцип действия и виды теплообменника

Теплообменник для отопления частного дома имеет конструкцию, которая обладает поверхностным контактом. В целом это работает следующим образом, теплообменник, подогреваясь изнутри, выдает тепловую энергию через собственную поверхность. Зачастую он делается из металла, который осуществляет нагрев окружающего воздуха.

В полной мере весь принцип работы показывается в системе отопления при наличии газового, электрического либо твердотопливного котла. От устройства нагрева по всей отопительной системе идет горячая вода. Она циркулирует по трубам и теплоносителями имеющих изогнутую форму. Данная конфигурация позволяет задерживать воду, хорошо ее прогревая. В конечной точке холодная вода заново поступает в котел, где ее нагрев осуществляется заново.

Как вариант можно использовать обычную классическую печь. Она достаточно хорошо выполняет свою задачу, но ее спектр действия ограничен только маленькими помещениями. В том случае если подразумевается отопление коттеджа, такого теплообменника будет маловато. Данная конструкция наиболее подходит для бани либо маленького домика.

Для превращения печи в настоящий отопительный котел, нужно подобрать для нее водяной теплообменник. При таком раскладе с помощью каменной печи можно отапливать даже двух этажный коттедж. Если же коснуться вопроса о размере теплообменников, можно сказать что они напрямую зависят от размеров топливной камеры отопительного устройства.

Водяной является наиболее удачным вариантом среди теплообменников. Это связано с тем, что теплопроводность воды значительно выше, чем у воздуха. Теплообменник данного типа справляется со своей задачей намного эффективней, чем воздушный.

Все заводские системы отопления оснащены теплообменниками. Устройство такой конструкции довольно сложное и самостоятельно их собрать практически нереально. Именно по этой причине приходится использовать более простые варианты. Теплообменник делается в виде змеевика, внутри которого есть большое количество поперечных пластин, что позволяет увеличить обогреваемую площадь. Конструкции такого типа наиболее популярны для отопления частных домов.

Как сделать теплообменник своими руками?

Для того самостоятельно сделать теплообменник нужно учесть множество нюансов. Только после тщательного анализа всех этапов работы, можно создать конструкцию позволяющую обеспечивать комфортную окружающую температуру. Главным преимуществом такого устройства является его цена, ведь она зависит только от цены материалов, которые потребуется купить для ее изготовления.

От того какой выбран материал, из которого будет изготовлен теплообменник зависит уровень обогрева помещения. У каждого металла есть свой уровень теплопроводности. Медь в 7 раз опережает по этому показателю сталь. Исходя из этого, можно сказать, что две трубы одного диаметра, но изготовленные из разных материалов будут иметь разный уровень обогрева. Таким образом, медь является наиболее удачным вариантом для изготовления такого устройства. Тем более что цена у данного материала довольно приемлемая.

Больше трудностей можно испытать в момент определения мощности теплообменника. Это все из-за того что довольно много факторов влияет на данный показатель. Но в среднем можно сказать что, 1 метр змеевика диаметром около 50-60 мм выдает около 1 кВт тепловой энергии. Во время расчета можно использовать эти данные.

Конструкция при самостоятельном изготовлении может быть самой разной. Можно сделать из трубы обычный прямоугольник, либо сварить ее в виде змеевика, но тут есть достаточно список правил, которых нужно строго придерживаться:

  1. Внутренний диаметр трубы не должен быть менее 5 мм, иначе вода внутри может запросто закипеть.
  2. Для предотвращения перегрева металла, стенки должны быть не тоньше 3 мм.
  3. Между теплообменником и стенками топки должен быть зазор, который должен составлять около 10-15 мм. Это связано со свойством металла расширяться во время нагревания.

Самостоятельно сделав теплообменник для отопления, домовладелец может быть уверен, что его печь с водяным контурам ни чем не будет уступать заводскому твердотопливному котлу по параметрам обогрева помещения. Отличие состоит только в том, что входное отверстие теплообменника у печки несколько выше над уровнем пола, чем у заводского котла. Данный нюанс может существенно повлиять на скорость циркуляции теплоносителя.

Теплообменник нужно подключить к системе таким образом, чтобы обратка (труба с холодной водой) располагалась как можно ниже.

Как и в обычной отопительной системе, на верхнюю точку трубопровода необходимо установить расширительный бачок. Он будет служить для компенсации изменения объема нагретой воды и выпускать из системы воздух. Если же система с естественной циркуляцией не будет справляться с обогревом большого коттеджа, тогда в конструкцию устройства необходимо включить циркуляционный насос.

Вот в принципе так выглядят основные правила водяного теплообменника. При наличии навыков ведения сварочных работ, самостоятельное изготовление данной конструкции не составит большого труда. Основательный подход к изготовлению отопительной системы, позволит обеспечить уют и комфорт в холодное время года. Теплообменники для обмена горячего водоснабжения можно изготовить своими руками.

santehnikportal.ru

Теплообменники для отопления: принцип работы и тонкости эксплуатации

Теплообменник – это неотъемлемая часть системы отопления, наряду с такими приборами как бойлер или водонагреватель.

Бойлер – это большая емкость для воды. Как правило, источник тепла находится под ним или непосредственно в нем. Для нагревания воды могут использоваться водяные или паровые теплообменники.

Принцип работы водонагревателей косвенного нагрева состоит в нагреве воды, который происходит в отопительном котле, и ее циркуляции в замкнутом пространстве.

Типы теплообменников для отопления

Значение теплообменника для котла неоценимо. Именно от этого устройства зависит прямое назначение и конструкция применяемого котла.

По типу передачи энергии жидкостям различают такие разновидности теплообменников:

  • Первичный. Для этого типа характерна передача тепла от газа.
  • Вторичный. Передача тепла производится от жидкости к теплоносителю.
  • Битермический. Их отличие заключается в двойном обмене тепла от теплоносителя к воде и от газа к теплоносителю.
Первичный

Первичный теплообменник — это медная труба, выполненная в форме змеевика. В ее плоскости устанавливаются медные пластины.

Поверхность устройства покрывается краской, защищающей от ржавчины и повреждений. Мощность такого оборудования зависит от размера трубы и количества ребер.

Первичные теплообменники в своем большинстве не имеют значительных конструктивных отличий. Отличия приборов состоят только в вариантах подключения, габаритах трубы и мощности агрегата.

В ходе эксплуатации прибора могут возникнуть такие затруднения, как отложение солей на стенках устройства, что значительно снижает его эффективность. Для профилактики необходимо своевременно производить очистку, промывку и техническое обслуживание прибора.

Предупредить отложения внутри труб и увеличить срок эксплуатации можно, используя специальные фильтры.

Вторичный

Вторичные теплообменники, которые также называют теплообменниками горячего водоснабжения (ГВС), оснащены специальными, соединенными между собой пластинами из нержавеющей стали.

Вторичные теплообменники отличаются хорошей степенью теплопроводности и достаточно большой площадью теплообмена. Кроме того большая скорость потока исключает возможность отложения солей на внутренних стенках прибора.

Мощность и площадь теплообмена во многом зависит от количества установленных пластин.

Битермический

Главным отличием этого типа является наличие одновременно двух контуров: ГВС и отопления. Конструкция агрегата — это труба внутри другой трубы. Также имеются пластины из меди, установленные на поверхности.

Наружная труба устройства обеспечивает движение жидкости в системе отопления. Внутренняя труба выполняет функцию циркуляции санитарной воды.

В режиме отопления газы, сгорая, отдают тепло, которое доставляется сразу к теплоносителю. В случае, работы от ГВС, тепло направляется сначала к теплоносителю, а уже потом к контуру.

Внимание! При использовании битермического теплообменника для жилого помещения, необходимость установки вторичного теплообменника и трехкодового клапана полностью отпадает. За счет этого значительно снижается стоимость котла и возрастает его надежность.

Из недостатков битермического теплообменника можно выделить следующее:

  • Ограничение передачи тепла в режиме ГВС, за счет чего снижается объем нагретой воды, по сравнению с другими типами теплообменников.
  • Не рекомендуется использовать этот тип оборудования в тех областях, где вода насыщена солями. Главная причина – очень быстрое отложение солей за счет значительного перепада температур.

Заключение

Теплообменник – это один из ключевых элементов системы отопления. Главная функция теплообменника – это передача тепла от нагревателя к холодному теплоносителю.

Теплообменники могут быть водяным или паровыми. Область их применения не ограничивается какой-то определенной сферой. Они активно используются в энергетике, металлургии, пищевой и других промышленностях, в системах отопления, вентилирования и в бытовых условиях.

Принцип работы теплообменника заключается в циркуляции жидкости в закрытом пространстве, которая и является теплоносителем. Выбирать теплообменник необходимо с учетом его предназначения, условий эксплуатации и необходимой площади теплообмена.

Чтобы обеспечить бесперебойную работу устройства и увеличить срок его эксплуатации необходимо своевременно производить техническое обслуживание, прочистку и промывку агрегата.

Бойлер косвенного нагрева – что это такое, принцип работы и схемы подключения узнайте из видео:

Обзор теплообменника отопления для котла Daewoo MSC ICH 100 посмотрите на видео:

Поделиться:

Нет комментариев

holodine.net

Теплообменник отопления: пластинчатые, подключение для системы частного дома

К числу основных элементов системы отопления можно отнести теплообменники. Функции такого отопительного агрегата многочисленны и очень важны, ведь именно от этого прибора напрямую зависит назначение и конструкция используемого котла.

Через теплообменник непосредственно осуществляется передача выработанной энергии от сгораемого к самому теплообменнику.

Теплообменник современного типа состоит из нескольких частей, каждая из которых играет свою важную роль:

  • неподвижной плиты, к которой присоединяются все подводимые патрубки;
  • прижимной плиты;
  • теплообменных пластин со вставленными прокладками уплотнительного типа;
  • верхней и нижней направляющих;
  • задней стойки;
  • шпилек с резьбой.

На данном изображении представлен кожухотрубный теплообменник.

Благодаря такой уникальной конструкции теплообменник способен обеспечивать наиболее эффективную компоновку всей поверхности используемого теплообменника, что дает возможность создавать небольшой по габаритам аппарат отопления. Абсолютно все пластины в собранном пакете одинаковы, только часть из них развернута к другой под углом в 180 градусов. Именно поэтому во время необходимого стягивания всего пакета должны образовываться каналы. Именно через них во время процесса нагрева и протекает рабочая жидкость, принимающая участие в теплообмене. Благодаря такой компоновке элементов системы достигается правильное чередование каналов.

На сегодняшний день можно смело утверждать, что теплообменники пластинчатого типа из-за своих технических характеристик являются более популярными. Ключевой элемент любого современного теплообменника — это теплопередающие пластины, которые изготавливаются из стали, не подверженной коррозии, толщина пластин находится в диапазоне от 0,4 до 1 мм. Для изготовления используется высокотехнологичный метод штамповки.

Во время работы пластины прижимаются друг к другу, образуя тем самым щелевые каналы. Лицевая сторона каждой из таких пластин имеет специальные канавки, куда специально устанавливается резиновая контурная прокладка, которая обеспечивает полную герметичность каналов. Всего имеется четыре отверстия, два из них необходимы для обеспечения подвода и отвода нагреваемой среды к каналу, а два другие отвечают за предотвращение случаев перемешивания греющей и нагреваемой сред. На случай прорыва одного из малых контуров пластинчатые теплообменники защищены дренажными пазами.

Если имеет место большая разница в расходе сред и совсем небольшое отличие в конечных температурах, то есть возможность многократно использовать теплообменный процесс, который будет происходить через петлеобразное направление потоков.

Схема устройства теплового агрегата пластинчатого типа.

Пластинчатые теплообменники обеспечивают такую схему теплообмена, при которой жидкости двигаются навстречу, то есть в постоянном противотоке. В тех местах, где они перетекают, как правило, устанавливают стальную пластину или специальное двойное резиновое уплотнение. Так можно добиться полного исключения смешения жидкостей.

Используемый вид гофрирования пластин, а также их необходимое количество, которое устанавливается в раму, зависит от эксплуатационных требований, предъявляемых к пластинчатому теплообменнику. Материал, который используется для изготовления уплотнительных прокладок, может быть разным. Это зависит от условий применения самих теплообменников. Обычно при изготовлении используют различные полимеры, за основу которых берутся синтетические или натуральные каучуки.

Пластинчатые теплообменники: области применения

Пластинчатые теплообменники применяются в системе отопления дома, горячего водоснабжения, в системах кондиционирования в больших коттеджах, школах, садах, бассейнах, в целых микрорайонах, а также в системе отопления домов сельской местности. Широкое применение пластинчатые теплообменники нашли в пищевой промышленности.

Теплообменники для отопления имеют ряд неоспоримых преимуществ по сравнению с остальными устройствами, используемыми для создания подходящего микроклимата.

Подобные отопительные приборы обладают рядом преимуществ над другими видами.

Положительные качества

Среди основных положительных качеств устройства, обеспечивающего отопление, можно отметить следующие:

  • высокий уровень компактности;
  • пластинчатые теплообменники имеют высокий коэффициент теплопередачи;
  • коэффициент тепловых потерь максимально низкий;
  • потери давления находятся на минимальном уровне;
  • выполнение монтажно-наладочных, ремонтных и изоляционных работ требует низких финансовых затрат;
  • при возможном засорении это устройство может быть разобрано, очищено и собрано обратно всего двумя рабочими уже через 4-6 часов;
  • имеется возможность добавить мощность пластинам.

Кроме того, благодаря своей простоте подключение теплообменника к системе отопления может быть осуществлено просто на полу в тепловом пункте или на обычной несущей конструкции блочного теплового пункта. Отдельно стоит отметить низкий уровень загрязняемости поверхности теплообменника, что вызвано высокой турбулентностью потока жидкости, а также благодаря качественной полировке используемых теплообменных пластин. На сегодняшний срок эксплуатации уплотнительной прокладки у ведущих европейских производителей составляет не менее 10 лет. Срок же службы пластин составляет 20-25 лет. Стоимость замены уплотнительной прокладки может составлять 15-25% от общей стоимости всего агрегата.

Очень важно, что после проведения детального расчета конструкцию современного пластинчатого теплообменника можно изменить под необходимые и указанные в техническом задании характеристики (вариативность конструкции и изменяемость задачи). Абсолютно все пластинчатые теплообменники устойчивы к высокому уровню вибрации. У современных аппаратов системы отопления последствия возможных гидроударов сведены практически к нулю.

ultra-term.ru

Пластинчатые теплообменники. Работа и принцип действия. Технические характеристики и применение

Пластинчатый теплообменник предназначен для переноса тепла между различными средами, причем парами рабочих сред могут служить как пар-жидкость, так и жидкость-жидкость.

Теплопередающей поверхностью служат тонкие штампованные гофрированные пластины.

Теплоносители движутся в теплообменнике между соседними пластинами по щелевым каналам сложной формы. Каналы для теплоносителя, отдающего и принимающего тепло, следуют друг за другом, чередуясь.

Тонкие гофрированные пластины имеют небольшое термическое сопротивление и, кроме того, обеспечивают турбулентность потока теплоносителя, в связи с чем теплообменники такого типа обладают высокой эффективностью теплопередачи.

Герметичность каналов, по которым движутся теплоносители, и их распределение по каналам обеспечивается резиновыми уплотнителями, расположенными по периметру пластины.

Одно из этих уплотнений охватывает два отверстия по углам пластины, через которые теплоноситель входит в канал между пластинами и выходит из него. Поток встречного теплоносителя проходит транзитом через другие два отверстия, которые дополнительно изолированы кольцевыми уплотнениями. Герметичность каналов обеспечивается двойным уплотнением вокруг входных и выходных отверстий. В случае повреждения уплотнения теплоноситель вытекает наружу через специальные канавки (на рисунке показаны стрелками). Это помогает определить нарушение герметичности визуально и быстро заменить уплотнение.

Схема движения и распределения потока теплоносителей по каналу

В теплообменнике после сборки пластины стягиваются болтами до требуемого размера, при этом уплотнительные резиновые прокладки образуют системы изолированных друг от друга герметичных каналов — для греющего и нагреваемого теплоносителя. Каждая последующая пластина развернута относительно предыдущей на 180 градусов, что, создавая условия для турбулентного движения жидкости, повышает эффективность теплообмена, и одновременно служит для обеспечения жесткости пакета пластин.

Системы каналов между пластинами соединены каждая со своим коллектором и имеют каждая свои точки входа и выхода теплоносителя на неподвижной плите.

На раме теплообменника укрепляется пакет пластин.

Принцип работы пластинчатого теплообменника

Конструктивная схема пластинчатого теплообменника. Основные узлы и детали

Устройство рамы теплообменника: неподвижная плита, подвижная плита, штатив, верхняя и нижняя направляющие, и стяжные болты.

При сборке направляющие — верхняя и нижняя — сначала закрепляются на штативе и неподвижной плите. Далее, на направляющие надевается сначала пакет пластин, а затем подвижная плита. Подвижную и неподвижную плиты стягивают болтами.

Одноходовые теплообменники сконструированы таким образом, что присоединительные патрубки расположены на неподвижной плите. Для того, чтобы крепить теплообменник к строительным или технологическим конструкциям, на штативе и неподвижной плите имеются монтажные пятки.

Виды и типы пластинчатых теплообменников

Пластинчатые теплообменники делятся по конструкции и по размеру теплообменной пластины на нескольких видов.

По конструкции теплообменники делят на:

  • одноходовые;
  • двухходовые с циркуляционной линией и без нее;
  • двухходовые, выпускающиеся в виде моноблока. Используются для систем горячего водоснабжения;
  • трехходовые.

Преимущества пластинчатых теплообменников

Пластинчатые теплообменники имеют следующие преимущества по сравнению с другими видами:

Уменьшение площади, которое занимает теплообменное оборудование.

Способность к самоочищению теплообменника.

Высокий коэффициент теплопередачи.

Маленькие потери давления.

Уменьшение расхода электроэнергии.

Простота ремонта оборудования.

Небольшое время, необходимое для ремонта оборудования.

Небольшая величина недогрева.

Компактность

Основной фактор, играющий большую роль при компоновке и размещении оборудования — его компактность. Размеры пластинчатого теплообменника меньше, чем, например, кожухотрубного. Более высокое значение коэффициента теплопередачи позволяет достичь и более компактных размеров. Так, теплопередающая поверхность составляет 99,0 — 99,8% от общей площади пластины.

Далее, все подсоединительные порты находятся на его неподвижной плите, что делает монтаж и подключение теплообменника значительно более простым. Кроме того, для ремонтных работ требуется значительно меньше площади, чем при ремонте теплообменников другого типа.

Небольшая величина недогрева

Движение теплоносителя по каналам тонким слоем, высокая турбулентность его потока обеспечивает высокий коэффициент теплоотдачи. При этом гофрированная поверхность пластины дает возможность получить турбулентный поток уже при относительно небольших скоростях движения потока теплоносителя. Поэтому величина недогрева в этом случае при расчетных режимах работы достигает 1-2 оС, в то время как для кожухотрубных теплообменников в лучшем случае эта величина составляет 5-10 оС.

Низкие потери давления

Конструктивная особенность пластинчатых теплообменников позволяет уменьшать гидравлическое сопротивление, например, за счет плавного изменения общей ширины канала. Кроме этого, максимальная величина допустимых гидравлических потерь может быть уменьшена увеличением количества каналов в теплообменнике. В свою очередь, уменьшение гидравлического сопротивления снижает расход электроэнергии на насосах.

Небольшие трудозатраты при ремонте теплообменника

Периодические ремонты оборудования всегда связаны со сборно- разборочными работами. Демонтаж кожухотрубного теплообменника — это весьма сложное инженерное мероприятие. Для демонтировки и извлечения пучка труб необходимо использование подъемных механизмов и весь процесс разборки занимает достаточно много времени. При ремонте пластинчатого теплообменника применение подъемных механизмов не требуется. С ремонтом свободно и достаточно быстро справится бригада в 2-3 человека.

Кроме того, мощность теплообменника может быть плавно изменена увеличением поверхности теплообмена. Это его особенность важна, когда, например, при расширении производства, возникает необходимость увеличения мощности теплообменного оборудования. В этом случае достаточно, не заменяя всего теплообменника, прибавить нужное количество пластин.

Область применения

  • Охлаждение воды на промышленных ТЭС
  • В сталелитейном производстве
  • Автомобильная промышленность
  • В системах отопления, водоснабжения и вентиляции в любых зданиях применяются пластинчатые теплообменники разборного типа;
  • Пластинчатые теплообменники используются на производстве в системе душевых сеток;
  • Воду в бассейнах подогревают часто именно пластинчатыми теплообменниками;
  • Пластинчатые теплообменники служат для охлаждения жидких пищевых продуктов, гидравлического, трансформаторного и моторного масел;
  • Для систем напольного отопления используют пластинчатые теплообменники разборные;
  • Теплоснабжение небольших районов или высотных зданий обеспечивается зачастую пластинчатыми теплообменниками.

ООО «Теплообмен»

ПАО «Газпром»

ГК «Росатом»

ПАО «Лукойл»

ПАО АК «Алроса»

ПАО «Татнефть»

Министерство обороны РФ

ОАО «Гомсельмаш»

ПАО «Массандра»

ОАО «АвтоВАЗ»

ПАО «КамАЗ»

ОАО «Мозырьсоль»

ОАО «МАЗ»

Отель «Ореанда»

Винзавод «Коктебель»

ПАО «Сбербанк»

ОАО «Гродно Азот»

ОАО «Гомельдрев»

АО «Татэнерго»

«КДВ групп»

ПАО «Интер РАО»

АО «Сахаэнерго»

Особенности работы и применение теплообменников

По типу функционирования все существующие на данный момент теплообменники делятся на рекуперативные, регенеративные и смесительные разновидности.

В регенераторах теплоносители с прямо противоположными температурными значениями поочередно омывают поверхность теплообменника, то нагревая, то остужая ее. В промышленном производстве распространены массивные регенераторы, сперва забирающие тепло у разогретой жидкой субстанции, а затем выпускающие его в воздушное пространство.

В теплообменных смесителях теплоноситель и теплоприемник, напротив, соприкасаются. Такие устройства нужны, когда вещества требуется разделить после процесса смешения либо смешать друг с другом.

По принципу устройства теплообменные объекты делятся на:

  • аппараты с поверхностью трубчатого нагрева (змеевиков) — погружные теплообменники,
  • с плоскими нагревателями — пластинчатые и спиральные разновидности,
  • с нагревом на стенках аппарата — это реакторы, нагревающие змеевики, что расположены на корпусе.

Области применения

Теплообменники устанавливаются в газовых котлах, в холодильниках, в кондиционерах и рекуператорах. Теплообмен, производимый регенеративным способом, повышает отдачу от работы климатической системы, что помогает сэкономить на отоплении.

Кроме всего прочего теплообменники востребованы:

  1. В нефтедобывающей отрасли, где их задействуют в процессе крекинга (переработки) сырья.
  2. В энергетике — им находят хорошее применение в качестве подогревателей и аппаратов по химической обработке воды. Вдобавок они выполняют работу по охлаждению масла и выпара деаэратора.
  3. В химической промышленности, где с их помощью подогревают и охлаждают различные кислоты и щелочи.
  4. В машиностроительной промышленности  — теплообменные устройства чаще нужны для охладительных целей, отвода тепла от станочного или насосного оборудования, прессов, охлаждению трансмиссионных масел, шлифовальных жидкостей и прочего.

В металлургическом производстве теплообменники задействуют тоже, как правило, для охлаждения: плавильных печей, установок по разливке горячего металла, гидравлических смазок и травильных растворов.

Сейчас все чаще повсеместно в промышленности внедряются пластинчатые теплообменники ввиду их компактности, солидной площади теплоотдачи и практичности.

Как заявляют эксперты по теплообменникам, замена кожухотрубных на пластинчатые повысит эффективность теплообмена на 25-30 процентов. Увеличение продолжительности срока службы пластинчатых теплообменных изделий и снижение затрат на обслуживание стало возможным только после использования для их создания высококачественных материалов с антикоррозийными свойствами.

За счет высокой сопротивляемости материала образованию накипи и различных наростов на пластинах и стенках корпуса пластинчатых теплообменников уменьшаются расходы на профилактику и ремонтные работы. А учетом простоты их сборки и разборки затрат на установку и дальнейшую эксплуатацию получается гораздо меньше, чем при обслуживании кожухотрубных теплообменников.

Развитию и росту промышленного производства в немалой степени послужило появление огромного числа теплообменных аппаратов всевозможных типов и конструкций, изготовленных из разных материалов. Выбирать теплообменник следует, руководствуясь конкретными требованиями к условиям эксплуатации.

Как работают теплообменники

Для жидкостей, содержащих частицы, доступны два решения:

  • Пластина с низкой точкой контакта, широкая струя, которая может работать с продуктом с большим количеством частиц.
  • Пластины с широким зазором, которые могут перемещать все более и более крупные частицы.

Оба позволяют частицам проходить сквозь них, сводя к минимуму засорение.

Принцип работы кожухотрубных теплообменников

Вместо передачи тепла через параллельные пластины, кожухотрубные теплообменники передают тепло между пучком трубок, окруженным большим корпусом корпуса. Жидкости, проходящие по трубкам, обмениваются теплом с текучими средами, которые текут по трубкам, заключенным в оболочку.

Поскольку диаметр трубок обычно больше, чем зазор между пластинами в пластинчатых теплообменниках, кожухотрубные теплообменники подходят для приложений, в которых продукт более вязкий (устойчивый к течению) или содержит твердые частицы высокой плотности. Максимальный размер частиц зависит от диаметра трубки. Трубчатые теплообменники обычно могут работать дольше между очистками, чем пластинчатые теплообменники в условиях сверхвысоких температур.

Основной принцип кожухотрубок перемещает продукт через пучок параллельных трубок с нагревательной жидкостью между трубками и вокруг них.

Концентрический трубчатый теплообменник состоит из трубок разного диаметра, расположенных концентрически внутри друг друга, что особенно эффективно при нагревании или охлаждении, поскольку нагревающие / охлаждающие жидкости текут по обеим сторонам трубок с продуктом. Трубки с продуктом могут иметь размер, соответствующий требованиям по вязкости и содержанию твердых частиц. Концентрическая трубка особенно подходит для высоковязких неньютоновских жидкостей, вязкость которых изменяется под давлением (шампунь, лак для ногтей, кетчуп).

Как и другие конструкции теплообменников, кожухотрубные теплообменники сконструированы таким образом, чтобы продукт и теплоносители / охлаждающие жидкости текли в противоположных направлениях. Например, холодный жидкий продукт перемещается в теплообменнике справа налево, в то время как теплый жидкий продукт перемещается слева направо по трубкам продукта. Противоточная конфигурация использует преимущества максимальной разницы температур для более эффективной теплопередачи.

Фармацевтическая линия кожухотрубных теплообменников одного производителя работает при давлении до 10 бар и рабочей температуре 150 ° C.Типичные области применения кожухотрубных теплообменников включают системы обработки воды (например, для впрыска или очистки) и системы CIP.

теплообменников | IPIECA

Последнее рассмотрение темы: 1 февраля 2014 г.

секторов: нисходящий, средний, восходящий

Теплообменники используются для передачи тепла от одной среды к другой. Эти среды могут быть газом, жидкостью или их комбинацией. Среда может быть разделена сплошной стенкой для предотвращения смешивания или может находиться в прямом контакте.Теплообменники могут повысить энергоэффективность системы за счет передачи тепла от систем, где оно не нужно, другим системам, где оно может быть использовано с пользой.

Например, отработанное тепло в выхлопе газовой турбины, вырабатывающей электричество, можно передать через теплообменник для кипячения воды для приведения в действие паровой турбины для выработки большего количества электроэнергии (это основа для технологии газовых турбин с комбинированным циклом).

Другое распространенное использование теплообменников — предварительный нагрев холодной жидкости, поступающей в нагретую технологическую систему, с использованием тепла от горячей жидкости, выходящей из системы.Это снижает энергозатраты, необходимые для нагрева поступающей жидкости до рабочей температуры.

  • Особые области применения теплообменников:
  • Нагревание более холодной жидкости за счет тепла более горячей жидкости
  • Охлаждение горячей жидкости путем передачи тепла более холодной жидкости
  • Кипячение жидкости с использованием тепла более горячей жидкости
  • Кипение жидкости при конденсации более горячего газообразного флюида
  • Конденсация газообразной жидкости с помощью более холодной жидкости [Ссылка 1]

Жидкости в теплообменниках обычно текут быстро, что способствует передаче тепла посредством принудительной конвекции.Этот быстрый поток приводит к потерям давления в жидкостях. Под эффективностью теплообменников понимается то, насколько хорошо они передают тепло относительно потерь давления, которые они несут. Современная технология теплообменников сводит к минимуму потери давления, одновременно увеличивая теплопередачу и достигая других целей проектирования, таких как выдерживание высокого давления жидкости, сопротивление загрязнению и коррозии, а также возможность очистки и ремонта.

Для эффективного использования теплообменников в многопроцессном предприятии тепловые потоки следует учитывать на системном уровне, например, с помощью «пинч-анализа» [вставьте ссылку на страницу пинч-анализа].Существует специальное программное обеспечение для облегчения этого типа анализа, а также для выявления и предотвращения ситуаций, которые могут усугубить засорение теплообменника (см. Пример 1 ).

Применение технологий

Теплообменники

доступны во многих типах конструкций, каждый со своими преимуществами и ограничениями. Основные типы теплообменников:

Кожух и трубка — Наиболее распространенный тип конструкции теплообменника состоит из параллельного расположения трубок в кожухе [Рис. 1]. Одна жидкость течет по трубкам, а другая жидкость течет через кожух по трубкам. Трубки могут быть расположены в оболочке для обеспечения параллельного потока, противотока, поперечного потока или того и другого. Теплообменники также могут быть описаны как имеющие расположение труб в однопроходном, многопроходном или U-образном исполнении. Благодаря своей трубчатой ​​конструкции теплообменник этого типа может выдерживать большие давления. Теплообменник может иметь одну или две головки на кожухе и несколько впускных, выпускных, выпускных и сливных патрубков [Ссылка 2].

Рисунок 1 : Поперечное сечение кожухотрубного теплообменника с одинарным проходом с, конфигурацией противотока , большими сегментными перегородками и двумя кожухами [Ref 3].

Элементы отклонения потока часто устанавливаются в кожухотрубных теплообменниках для улучшения теплообмена между жидкостями за счет создания более турбулентного потока жидкости на стороне кожуха и более перпендикулярного потока по трубам. Такие элементы должны быть тщательно спроектированы, чтобы минимизировать потери давления и образование «мертвых зон».Мертвые зоны — это области медленного или остановленного потока жидкости, которые могут привести к засорению (отложению твердых частиц) в теплообменнике.

Общие функции отклонения потока включают:

  • Сегментные перегородки (расположенные в шахматном порядке перпендикулярные перегородки, каждая из которых блокирует часть стороны оболочки; см. Рисунок 1),
  • Дисковые и кольцевые перегородки — расположенные в шахматном порядке круглые и кольцевые барьеры поочередно отталкивают поток со стороны оболочки поочередно в сторону и в сторону оси оболочки
  • Спиральные перегородки, расположенные под углом для обеспечения спиралевидного обтекания стороны кожуха
  • Стержневые перегородки — решетки стержней, обычно перпендикулярные оси оболочки.Трубки проходят в осевом направлении через промежутки между стержнями
  • .

  • Вставки для трубок — вставки, такие как катушки из длинной проволоки, помещаются внутри трубок для обеспечения турбулентного потока и минимизации засорения

Рисунок 2 — Расположение спиральных перегородок Обратите внимание, что перегородки действительно имеют много отверстий, позволяющих проходить трубам по всей длине кожуха. [Ссылка 4]

Другой подход к отклонению потока — это конструкция «витой трубы» от Koch Heat Transfer Company.В этой конструкции трубки сплющиваются в овалы и скручиваются в длинные спирали, а затем складываются вместе. Спиральный поток жидкостей как со стороны кожуха, так и со стороны трубы обеспечивает хорошую теплопередачу при относительно низких перепадах давления.

Рисунок 3 — Трубные вставки, выступающие из трубок кожухотрубного теплообменника 5

Рисунок 4 — Трубки теплообменника с витыми трубками и схема потока 6

Пластина и рама — тонкие параллельные пластины сложены вместе, образуя широкие параллельные каналы.Горячие и холодные жидкости проходят через чередующиеся каналы. Пластины разделены прокладкой или сваркой и могут иметь рисунок, способствующий турбулентному потоку. Пластины штабелируются вместе, и дополнительные пластины могут быть добавлены к конструкциям прокладок для увеличения теплопроизводительности. Поток может быть как параллельным, так и противотоком. Большая площадь поверхности пластин означает, что пластинчатые и рамные теплообменники могут обеспечивать больший теплообмен между двумя жидкостями для данного объема по сравнению с кожухотрубными теплообменниками.

Рисунок 5: Схема пластинчато-рамного теплообменника

Другие типы — вариации предыдущих типов теплообменников включают пластинчатый и ребристый, пластинчатый и кожух, спиральный, воздухоохладитель с мокрой поверхностью и двухтрубный.

Все теплообменники, которые обсуждались до сих пор, удерживают обе жидкости по отдельности. Однако существуют две другие категории теплообменников:

  • Открытый поток — одна жидкость содержится, а другая нет.Примеры включают автомобильный радиатор, погружной нагреватель бака, охладители с ребрами / вентилятором или воздуховоды
  • .

  • Прямой контакт — несмешивающиеся среды вступают в прямой контакт. Градирня используется для охлаждения воды, когда она распыляется в поток охлаждающего воздуха. Воздух и вода не смешиваются, но тепло передается в процессе испарения. Затем охлажденная вода собирается и возвращается на завод8. Другие теплообменники этого типа включают регенеративные колонны с вращающимся колесом и распылительные колонны. Обратите внимание, что если две жидкости не разделяются, устройство называется нагревателем или охладителем.Например, в распределителе резервуара для воды пар поглощается водой, когда она охлаждается и конденсируется.

Рисунок 6: Градирня с поперечным потоком, тип теплообменника с прямым контактом

Краткое описание преимуществ и ограничений этих типов теплообменников показано в таблице ниже:

Таблица 1: Сравнение различных типов теплообменников

  • Тип Преимущества Ограничения
  • Кожухотрубный с высоким КПД
  • Высокое рабочее давление Большой размер
  • Двойное пространство, необходимое для очистки
  • Трудно очистить кожух
  • Пластина и рама Максимальный коэффициент теплопередачи
  • Низкий перепад давления
  • Легче чистить, чем кожух и трубка
  • Малый размер
  • Расширяемая емкость
  • Более близкие температуры Низкое рабочее давление
  • Более подвержен обрастанию более крупными частицами, чем кожухотрубный
  • Прямой контакт Большой расход
  • Низкий перепад давления
  • Высокая эффективность
  • Меньше обрастания
  • Большой
  • Требуется подпиточная вода
  • Потребности в химической обработке
  • Ограниченные заявки

Конфигурации потока теплообменника

Теплообменники имеют три (3) конфигурации первичного потока:

Параллельный поток — две жидкости входят в один конец теплообменника и текут в одном направлении, параллельно друг другу.В этой конструкции разница температур на входе велика, но температура жидкости на выходе будет приближаться к аналогичному значению.

Противоток — две жидкости входят на противоположных концах теплообменника и протекают навстречу друг другу. В этой конструкции разница температур меньше, но более постоянна по длине теплообменника. Возможно, что нагретая текучая среда может покидать теплообменник при более высокой температуре, чем температура на выходе нагревающей текучей среды.Это наиболее эффективная конструкция из-за более высокого перепада температур по длине теплообменника.

Поперечный поток — две жидкости текут перпендикулярно друг другу.

В теплообменнике может быть несколько методов передачи тепла. Передача тепла будет происходить с использованием одного или нескольких режимов передачи, теплопроводности, конвекции или излучения.

Реализация

Правильная реализация теплообменников в многопроцессорных системах, таких как нефтеперерабатывающие заводы, требует учета сети тепловых потоков на системном уровне.Это часто выполняется с помощью «пинч-анализа», который сопоставляет доступные источники тепла в системе с потребностями в тепле с точки зрения как количества, так и температуры тепла. В помощь дизайнеру в этом процессе доступно сложное программное обеспечение. Снижение загрязнения также является соображением проектирования и может включать рассмотрение различных технологий, скоростей, байпасов для очистки отдельных HX во время работы, а также включение запасных теплообменников.

Аналогичным образом доступно программное обеспечение для управления загрязнением теплообменника.На основании условий процесса и выбора компонентов некоторые программные пакеты могут прогнозировать скорость, с которой теплообменники могут подвергаться загрязнению. Также доступны пакеты программного обеспечения для мониторинга загрязнения путем изучения характеристик теплообменника с течением времени. Также рассчитываются оценки затрат на очистку теплообменников по сравнению с экономической выгодой (с точки зрения снижения энергопотребления).

Технологическая зрелость

Имеется в продаже ?: Есть
Жизнеспособность на шельфе: Есть
Модернизация Brownfield ?: Есть
Многолетний опыт работы в отрасли: 21+

Ключевые показатели

.

Область применения:

Добывающие скважины, установки FPSO, рекуперация тепла из воды или нефти, нагрев, охлаждение и конденсация воды, продуктовых сред, углеводородов и газов, нагрев или охлаждение воздуха для горения, производство пара из выхлопных газов.
Эффективность: 2. 80% до почти 100%
Ориентировочные капитальные затраты: Общие «практические правила» для расчета стоимости недоступны из-за большого количества доступных обменников. Затраты, которые следует учитывать, включают теплообменник, платформу или фундамент, средства управления, соединительные входные и выходные трубопроводы, входные фильтры, приборы, клапаны, вентиляторы, насосы, резервуары, химикаты, резервирование, а также расходы на установку, запуск и ввод в эксплуатацию.
Ориентировочные эксплуатационные расходы: Включает текущее обслуживание, такое как очистка трубок и пластин, устранение утечек, восстановление насосов, замена наполнителя градирни. Дополнительные затраты или упущенная выгода связаны с простоями завода, когда оборудование отключено. Эксплуатационные расходы включают электроэнергию для насосов, вентиляторов и средств управления, а также химикаты для очистки воды.

Потенциал сокращения выбросов парниковых газов:

Теплообменники могут значительно снизить потребность процесса в энергии, уменьшая связанные с этим выбросы парниковых газов.
Время на проектирование и монтаж: 1 неделя — 6 месяцев
Описание типового объема работ: Теплообменники используются в самых разных отраслях промышленности. Типичный проект будет рассматривать использование теплообменников во время первоначального планирования проекта, определять условия эксплуатации и составлять спецификации оборудования. Теплообменник обычно изготавливается специализированным производителем, тестируется и доставляется на объект готовым к установке.Теплообменники большего размера могут быть отправлены по частям или даже собраны или построены на объекте

Решение драйверов

Технический: Диапазоны давления рабочих жидкостей и разность давлений между ними
Допустимый перепад давления жидкостей в теплообменнике
Температурные диапазоны рабочих жидкостей и требуемая температура приближения
Свойства рабочих жидкостей (физические свойства, таких как плотность, вязкость, удельная теплоемкость, теплопроводность, температура)
Тенденция рабочих жидкостей к засорению
Доступность воды для охлаждения
Доступное пространство
Основные коды проектирования
Избыточность
Оперативный: Сложность системы
Уровень автоматизации
Потребности в обслуживании
Коммерческий: Срок поставки
Стоимость оборудования
Паразитная потребность в электроэнергии
Выбор материала
Окружающая среда: Водные ресурсы и доступность
Температура сброса
Снижение выбросов парниковых газов
Разрешительные требования
Требования к шуму

Альтернативные технологии

Существуют технологии, которые можно рассматривать как альтернативу использованию теплообменников.

Пруды-охладители могут использоваться для естественного охлаждения теплой воды за счет испарения в атмосферу. Затем воду из пруда можно рециркулировать в растение в качестве охлаждающей воды. Эти пруды могут использоваться для вторичных рекреационных целей, таких как рыбалка, катание на лодках или плавание. Подпиточная вода необходима для учета потерь на испарение. Для этого варианта требуется большой участок земли.

Прямой отвод пара может снизить потребность в охлаждении технологической воды, но этот вариант игнорирует основные причины охлаждения, которые заключаются в повышении эффективности системы и сохранении воды технологического качества, а также в дополнительных количествах добавочной воды и химикатов для обработки воды.Эта опция обычно не используется, за исключением операций запуска, аварийного сброса воздуха и останова.

Модификации технологического процесса и управления могут избежать или уменьшить потребность в теплообменниках.

Операционные проблемы / риски

Теплообменники

требуют регулярного технического обслуживания для работы с высокой эффективностью и обычно требуют строгого графика капитального ремонта. Большая часть этих усилий направлена ​​на противодействие эффектам загрязнения, когда твердые частицы (например, посторонние частицы или осадки) накапливаются на поверхностях теплообменника, препятствуя передаче тепла и ограничивая поток жидкости.Химические добавки также могут предотвращать осаждение частиц и могут быть экономически эффективным средством предотвращения загрязнения.

Капитальные ремонты могут варьироваться от простых профилактических работ по техническому обслуживанию (например, промывка) до ремонтов, требующих снятия пучка труб с кожуха теплообменника для очистки. Это время простоя также следует учитывать при определении размеров теплообменников и проектировании технологической сети.

Многие теплообменники работают при высоких давлениях и температурах или с опасными жидкостями, поэтому необходимо соблюдать соответствующие рабочие процедуры, чтобы избежать рисков для персонала и сбоев системы.

Теплообменники обычно регулируются отраслевыми нормами, такими как ANSI и TEMA. Конструкции нового оборудования и любой ремонт должны соответствовать применимым нормам.

Возможности / бизнес-пример

Многие конструкции теплообменников доступны в различных материалах и могут быть адаптированы для конкретных применений, а также в стандартных конструкциях, которые доступны с минимальным временем выполнения заказа и меньшими затратами. Несколько преимуществ использования теплообменников перечислены ниже:

  • Повышение энергоэффективности производственных систем
  • Снижение расхода топлива, парниковых газов и выбросов
  • Заменить существующее оборудование из-за износа
  • Модернизация существующего оборудования до более новых, более эффективных конструкций
  • Дополнительная мощность обогрева или охлаждения в связи с увеличением производительности установки

Примеры из практики

1.Воздухо-воздушный теплообменник для рекуперации отработанного тепла
В этом исследовании рассматривается, как предприятие пищевой промышленности использовало теплообменник для рекуперации отработанного тепла технологического процесса и использовало его для нагрева рабочего воздуха.

Стремясь контролировать запах от процесса обжарки, предприятие установило новый эффективный регенеративный термический окислитель (RTO). Для экономии топлива в этот агрегат включен дополнительный впрыск топлива (SFI) в периоды низкого содержания летучих органических соединений. Чтобы еще больше снизить эксплуатационные расходы, компания стремилась утилизировать отходящее тепло от RTO для предварительного нагрева входящего воздуха.Для этого они наняли консультанта по проектированию для анализа и разработки решения HX.

Критическими расчетными факторами для этого проекта были расход воздуха, температура воздушного потока, допустимый перепад давления в системе и желаемое тепло, передаваемое в теплообменник. Вторичный пластинчатый теплообменник был выбран из-за его универсальности и прочных, но поддающихся очистке пластин. Он имеет относительно низкий перепад давления, небольшую занимаемую площадь и низкие капитальные затраты, что делает его наиболее экономичным вариантом для этого применения.

Консультационная компания проанализировала данные приложения с помощью программного обеспечения для моделирования производительности теплообменника. С помощью этого программного обеспечения они выполнили анализ пограничного слоя и отрегулировали толщину пластин и расстояние между пластинами теплообменника, чтобы максимизировать производительность.

Тепло выхлопных газов RTO использовалось для предварительного нагрева 3,3 м3 / с воздуха примерно до 88 ° C. Этот горячий воздух смешивается без бокового воздуха, чтобы обеспечить 15,6 м3 / с нагретого воздуха для блока подпиточного воздуха. Вторичный теплообменник передает примерно 1.5 млн БТЕ / ч тепла от выхлопа RTO в воздух, возвращающийся в блок подпиточного воздуха, и расчетная годовая экономия по проекту составила около 45 000 долларов США.

Источник: http://www.anguil.com/case-studies/energy-recovery/air-to-air-heat-exchanger-provides-plant-heat-and-big-savings.aspx?alttemplate=PDFCaseStudy&

2. Прогнозирование загрязнения теплообменника

Скопление отложений или загрязнений на металлических поверхностях теплообменников нефтехимических заводов является серьезной экономической и экологической проблемой во всем мире.Были сделаны оценки затрат на загрязнение, в основном из-за потерь энергии из-за избыточного сжигания топлива, которые достигают 0,25% валового национального продукта (ВНП) промышленно развитых стран. Многие миллионы тонн выбросов углерода являются результатом этой неэффективности. Затраты, связанные, в частности, с загрязнением сырой нефтью в линиях предварительного нагрева нефтеперерабатывающих заводов по всему миру, по оценкам в 1995 г., составили порядка 4,5 млрд долларов.

В данном тематическом исследовании рассматривается использование программного обеспечения для прогнозирования обрастания французской нефтяной компанией Total.Это программное обеспечение, разработанное консалтинговой компанией по промышленному дизайну совместно с крупными нефтяными компаниями, направлено на уменьшение или даже устранение загрязнения сырой нефтью в теплообменниках предварительного нагрева. В 2002 году компания Total столкнулась с сильным обрастанием линии предварительного нагрева вскоре после реконструкции НПЗ для повышения эффективности. Это привело к значительному снижению производительности, так как печь стала узким местом. Компания Total применила программное обеспечение консалтинговой компании, которое успешно идентифицировало засоряющиеся теплообменники и указывало на варианты модернизации.Они были реализованы, что позволило решить проблему и восстановить нормальную работу системы.

Источник: http://www.ihs.com/news/overcoming-effect-oil-fouling.htm


Ссылки:

  1. Справочник по основам энергетики Департамента энергетики, Механика, Модуль 2, Теплообменники, DOE-HDBK-1018 / 1-93.
  2. Институт теплообмена, Основы кожухотрубных теплообменников.
  3. -удалено-
  4. http://ru.hx-hr.com
  5. http: //www.stamixco-usa.ru / products / теплообменники / default.html
  6. http://www.oxide.co.il/en/twisted-tube.html
  7. http://www.spiraxsarco.com/resources/steam-engineering-tutorials/steam-engineering-principles-and-heat-transfer/steam-consuming-of-heat-exchangers.asp
  8. www.spxcooling.com/brands/cooling-towers/marley-cooling-tower/

Теплообменник — обзор

9.3.1.1 Введение

Теплообменник — это устройство, передающее тепло от одной среды к другой; среда может быть твердой, жидкой или газовой.Некоторые из наиболее сложных проблем инженерного проектирования связаны с теплообменниками.

Теплообменники делятся на следующие типы.

1.

Рекуператор: стенка, разделяющая текущие жидкости, является наиболее часто встречающейся проблемой.

2.

Регенератор: горячие и холодные жидкости попеременно проходят через пространство, содержащее твердые участки / частицы, которые поочередно обеспечивают теплоотвод и источник тепла. Примером матрицы вращающегося типа является градирня.

Направление потока важно, так как оно оказывает заметное влияние на эффективность теплообменника. Потоки могут быть в одном направлении (параллельный поток, прямоток), в противоположном направлении (противоток) или под прямым углом друг к другу (поперечный поток). Поток может быть как однопроходным, так и многопроходным; последний метод сокращает длину прохода.

Принципиальная схема параллельного (прямоточного) теплообменника показана на рис. 9.4.

РИСУНОК 9.4. Теплообменник с обозначениями расхода.

Горячая жидкость: Thi> Thocold жидкость: Tci

Горячие и холодные жидкости обозначены индексами h и c, а вход и выход жидкости — i и o соответственно.

В случае рис. 9.4, T hi = T h2 . Относительные разности температур определяются как

(9,1) δTh = Thi − ThoThi − Tco,

(9,2) δTc = Tco − TciThi − Tci.

Относительную разность температур можно рассчитать, разделив разность температур горячей или холодной стороны на максимальную разность температур, T hi T ci , которая возникает в теплообменнике.

Существует два относительных изменения температуры теплообменника. Наибольшая из них — эффективность теплообменника , ∈:

(9.3) ∈ = max {δTc’δTh}

Максимальный перепад температур, который имеет место в теплообменнике, составляет T hi T ci . Более высокая разница температур не может возникнуть из-за второго закона термодинамики. Максимальная теоретическая скорость теплопередачи в теплообменнике составляет

ϕmax = Ċ2 (Thi-Tci) или ϕmax = Ċ1 (Thi-Tci),

, где

(9.4) Ċ˙ = qmcp

— удельная теплоемкость, q м — массовый расход через теплообменник и c p — удельная теплоемкость.

Предполагая, что максимально возможный перепад температур находится на стороне жидкости с более высоким показателем теплоемкости, тогда

ϕmax = Ċ2 (Thi-Tci).

Баланс теплообменника составляет

Ċ˙2 (Thi-Tci) = 1 ΔT1,

, где Δ T 1 — разница температур жидкости с наименьшим коэффициентом теплоемкости в теплообменнике.Тогда

ΔT1 = Ċ2Ċ1 (Thi-Tci)> Thi-Tci.

Это уравнение, которое дает более высокую разность температур, чем T hi T ci , не может выполняться. Тогда

ϕmax = Ċ1 (Thi − Tci),

, где C l — меньшая величина теплоемкости. Фактическая мощность составляет

ϕ = Ċ˙1ΔT1 = Ċ˙2ΔT2,

, откуда

ϕϕmax = Ċ1ΔT1Ċ1 (Thi − Tci) 1 = ΔT1 (Thi − Tci) = Ċ2ΔT2Ċ1 (Thi − Tci)> ΔT2 TCI).

Отсюда следует, что

(9.5) ∈ = ϕϕmax = разность температур начальной разности температур жидкости с меньшей теплоемкостью.

Эффективность теплообменника показывает, насколько теплообменник работает до максимальной производительности теплопередачи. Уравнение (9.5) справедливо для любого типа теплообменника.

9.3.1.2 Противоточный теплообменник и эффективность теплообменника

В противоточном или противоточном теплообменнике горячие и холодные жидкости входят в теплообменник с противоположных сторон. Противоточный теплообменник на рис.9.5 служит эталоном для всех других конфигураций теплообменников. Поэтому необходим подробный анализ этого типа теплообменника.

РИСУНОК 9.5. Противоточный теплообменник.

Тепло передается конвекцией и теплопроводностью от горячей к более холодной жидкости через бесконечно малую площадь поверхности dA . Температура горячей жидкости снижается на величину dT h , а температура холодной жидкости увеличивается на величину dT c .

Тепловой баланс дает

(9,6) G » dA (Th − Tc) = ĊhdTh = ĊcdTc,

, где G ″ — проводимость на единицу площади поверхности разделительной стенки, которая для плоской стенки может быть записывается как

(9.7) 1G » = 1αc + 1αh + δλ,

, где α c и α h — коэффициенты конвективной теплопередачи на холодной и горячей сторонах соответственно, δ — стенка толщина, Λ — теплопроводность стенки.

Для толстой круглой трубки проводимость на единицу длины трубки составляет

(9.8) 1G ‘= 1πdoα0 + 1πdiαi + In (do / di) 2πλ,

, где α o — коэффициент внешней конвективной теплопередачи, α i — коэффициент внутренней конвективной теплопередачи, d i — диаметр внутренней трубы, а d o — внешний диаметр трубы.

Уравнение (9.6) дает

(9.9) dTh − dTc = d (Th − Tc) = (1Ċh − 1Ċc) G » dA (Th − Tc).

Уравнение (9.9), после интегрирования

(9.10) ∫12d (Th − Tc) Th − Tc = (1Ċh − 1Ċc) G » ∫0AdA,

дает

(9.11) InΔT2ΔT1 = (1Ċh − 1Ċc) G » A = G (1Ċh − 1Ċc)

или

(9,12) ΔT2ΔT1 = exp G » (1Ċh − 1Ċc).

Используя рис. 9.5 и уравнение. (9.12) дает

(9.13) Thi − Tci + Tci − TcoThi − Tci + Tho − Thi = exp (G (1Ċh − 1Ċc)).

Для случая Ċ h < Ċ c , эффективность теплообменника составляет

(9,14) ∈ = Thi − ThoThi − Tci,

, а тепловой баланс составляет

(9,15) Ċ˙h (Thi-Tho) = Ċ˙c (Tco-Tci).

Тогда это записывается как

(9.16) Tco-Tci = Ċ˙hĊ˙c (Thi-Tho) = R (Thi-Tho),

, где R = Ch / Ċ c <1.

Используя уравнения. (9.13) и (9.16),

(9.17) 1 − R∈1 − ∈ = exp (GĊh (1 − R))

, откуда

(9.18) 1 − ∈1 − R∈ = exp (- z (1 − R)),

, где z = G / Ċ c — безразмерная проводимость.

Если взять случай Ċ c < Ċ h , то можно показать, что мы также получаем

(9.19) ∈ = 1 − exp (−z (1 − R)) 1 − R exp (−z (1 − R)),

, что совпадает с уравнением. (9.18).

Эффективность теплообменника является одним из важных параметров, характеризующих производительность противоточного теплообменника.

В уравнении. (9.19) R = Ċ мин. / Ċ макс. <1 находится между минимальным и максимальным значениями теплоемкости. z = G / C мин. — это теплопроводность, деленная на минимальный коэффициент теплоемкости.В литературе по теплопередаче он также обозначается как z = NTU (количество единиц теплопередачи).

Решение уравнения. (9.19) для безразмерной проводимости z дает

(9.20) z = 11 − RIn (1 − R∈1 − ∈).

Если показатели теплоемкости холодной и горячей жидкости равны, то R = 1. Уравнение (9.22) дает неопределенное значение, и это уравнение нельзя использовать напрямую.

Использование правила Лопиталя в качестве R → 1 дает

(9.21) lim∈ = limddR (1 − exp (−z (1 − R))) limddR (1 − exp (−z (1 − R) )) = lim (−zexp (−z (1 − R))) lim (−Rzexp (−z (1 − R)) — exp (−z (1 − R))) = z1 + z,

из который

(9.22) z = ∈1 − ∈.

На рис. 9.6 показаны профили температуры в противоточном теплообменнике, когда Ċ h > Ċ c .

РИСУНОК 9.6. Профили температуры противоточного теплообменника, когда Ċ˙h & gt; Ċ˙cċθ = Thi-Tci.

9.3.1.3 Разница средней логарифмической температуры

Скорость падения температуры жидкости при ее протекании по длине теплообменника непостоянна. Чтобы учесть эту нелинейную зависимость, используется средний логарифмический перепад температур (LMTD).Если температуры на входе и выходе не сильно различаются, можно использовать среднее арифметическое, поскольку зависимость считается линейной.

Чтобы рассчитать теплопередачу от горячей к холодной жидкости, необходимо знать проводимость теплообменника и температуру жидкостей с обеих сторон теплообменника. Измерение массового расхода часто бывает трудно определить; однако температуру легко измерить.

Определяется разница температур, которая удовлетворяет следующему уравнению:

(9.23) ϕ = GΔT¯,

где φ — скорость теплопередачи в теплообменнике, а G — проводимость. Для противотока уравнения. (9.12) дает

(9.24) InΔT2ΔT1 = G (1Ċh − 1Ċc) = ϕΔT¯ (1Ċh − 1Ċc).

С другой стороны, уравнение. (9,15) дает

(9,25) ϕ = Ċh (Thi-Tho) = Ċc (Tco-Tci),

дает

(9,26) InΔT2ΔT1 = 1ΔT¯ (Thi − Tho (Tco-Tci)) = 1ΔT¯ (Thi-Tho (Tco-Tci)) = 1ΔT¯ (ΔT2-ΔT1).

Уравнение (9.26) дает разницу температур, определенную в уравнении. (9.23) как

(9.27) ΔT¯ = ΔT2 − ΔT1InΔT2ΔT1 = ΔTIn.

Из рис. 9.6 для противоточного теплообменника

ΔT1 = Tho-Tci

и

ΔT2 = Thi-Tco.

Для противоточного теплообменника логарифмическая разница температур составляет

(9,28) ΔTIn = (Thi-Tco) — (Tho-Tci) InThi-TcoTho-Tci.

Это логарифмическая разность температур для противоточного теплообменника.

Средняя логарифмическая разница температур определяется как Δ T 2 ≠ Δ T 1 .

Рассмотрим случай, когда Δ T 2 ≠ Δ T 1 Логарифмическая разница температур получается путем применения правила Л’Опиталя как Δ T 2 → Δ T 1 1 1 давая

(9,29) lim ΔTIn = lim ΔT2 − ΔT1InΔT2ΔT1 = lim ddΔT2 (ΔT2-ΔT1) ddΔT1 (InΔT2ΔT1) ΔT2.

Средняя логарифмическая разница температур равна разнице температур на входе и выходе теплообменника, т.е. Δ T 1 = Δ T 2 = Δ T 1 n

Для противоточного теплообменника, когда Δ T 2 = Δ T 1 ,

(9.30) Thi-Tco = Tho-Tci

или

(9,31) Thi-Tco = Tco-Tci.

Тогда из уравнения. (9.15), Ċ h = Ċ c , когда Δ T 1 = Δ T 2 = Δ T In .

Пример 1

Солевой раствор поступает в противоточный теплообменник при T li , = 31,7 ΔC, а воздух поступает при T ai = 24,4 ΔC. Измеренные температуры рассола и воздуха на выходе составляют T lo = 27.2 ΔC и T ao = 30 ΔC соответственно.

Массовый расход горячей жидкости составляет q мл = 0,382 кг с -1 и холодной жидкости q ма = 0,9 кг с -1 . Удельная теплоемкость для рассола составляет c пл = 3,12 кДж кг-I K -1 , а для воздуха c Па = 1,007 кДж кг -1 K -1.

а.

Рассчитайте общую проводимость теплообменника.

б.

Если массовый расход жидкости уменьшается до q мл = 0,3 кг с-1 , рассчитайте новые температуры рассола и воздуха на выходе.

Решение

а.

Общая теплопроводность может быть рассчитана по формулам. (9.23) и (9.28) как T hi = T li , T ho = T lo , T ci = T ai 905 и co = T ao .

Gtot = ϕ (Tli − Tao) — (Tlo − Tai) InTli − TaoTlo − Tai,

где ϕ = qmacpa (Tao − Tai) = 5,1 кВт — тепловой поток в воздух, что дает G tot = 2310 WK −1 , ϕ = qmlcpl (Tli − Tlo) = 5,36 кВт — тепловой поток от жидкости, что дает G tot = 2430 WK −1 . Разница связана с ошибками в измерениях расхода и температуры. Разница теплового потока в двух случаях 5% удовлетворительна. Тогда средняя оценка может быть получена как G до = 2370 Вт K -1

b.

Показатели теплоемкости жидкости и воздуха рассчитываются соответственно по формуле

C˙l = qmlcpl = 0,3 × 3120 = 936WK − 1,

и

C˙a = qmacpa = 0,9 × 1007 = 906WK − 1.

Следовательно,

Ċ˙a <Ċ˙l.

Максимальная теплопередача в теплообменнике составляет

ϕmax = Ċmin (Tli − Tai) = 906 × (31,7−24,4) = 6,61 кВт.

Общая теплопроводность считается постоянной и не зависит от массового расхода жидкости.

Тогда количество теплообменников будет

z = GtotĊmin2370906 = 2.62.

Расчет коэффициента теплоемкости дает

R = ĊminĊmax

6 = 0,968.

Из уравнения. (9.19),

∈ = 1 − exp (−z (1 − R)) 1 − Rexp (−z (1 − R)) = 1 − exp (-. 2.62 (1−0.968)) 1−0.968 exp (−2,62 (1−0,968)) = 0,73.

Фактическая теплопередача рассчитывается из

ϕ = ∈ϕmax = 0,73 × 6,61 = 4,84 кВт.

Температура жидкости на выходе рассчитывается из

ϕ = Ċl (Tli − Tlo),

, что дает

Tlo = Tli − ϕĊl = 31,7−4840936 = 26,5oĊ.

Аналогично, температура воздуха на выходе рассчитывается из

ϕ = Ċa (Tao-Tai),

, что дает

Tao = Tai + ϕĊa = 24.4 + 4840906 = 29,7oĊ.

Уменьшение расхода жидкости снижает температуру жидкости и воздуха на выходе.

Объяснение теплообменников HVAC — Инженерное мышление

Описание теплообменников

HVAC. В этой статье мы собираемся обсудить различные типы теплообменников, используемых в системах отопления, вентиляции и кондиционирования воздуха и в системах обслуживания зданий как для жилой, так и для коммерческой недвижимости. Мы также рассмотрим, как они применяются к компонентам системы для кондиционирования построенной среды, охватывая принцип работы обычных теплообменников HVAC с анимацией.
Прокрутите вниз, чтобы просмотреть видеоинструкцию с подробными анимациями для каждого теплообменника!

🏆 Ознакомьтесь с широким спектром реальных теплообменников Danfoss щелкните здесь

Теплообменники Danfoss повышают эффективность, уменьшают заправку хладагента и экономят место в вашей системе отопления, вентиляции и кондиционирования воздуха. Вы можете найти весь ассортимент и узнать больше о каждом на веб-сайте Данфосс. Узнайте больше о теплообменниках Danfoss: ссылка здесь

Что такое теплообменник?

Теплообменник — это именно то, что следует из названия, устройство, используемое для передачи (обмена) тепла или тепловой энергии.В теплообменники подается либо горячая жидкость для нагрева, либо холодная жидкость для охлаждения.

  • Жидкость может быть жидкостью или газом
  • Тепло всегда течет от горячего к холодному
  • Для того, чтобы тепло текло, должна быть разница температур

Как происходит теплообмен?

Тепловая энергия передается тремя способами.

  • Проводимость
  • Конвекция
  • Излучение

В большинстве теплообменников для систем отопления, вентиляции и кондиционирования воздуха используются конвекция и теплопроводность.Радиационная теплопередача действительно происходит, но составляет лишь небольшой процент.

Кондуктивная теплопередача

Тепловое изображение теплопроводностью

Проводимость возникает, когда два материала с разной температурой физически соприкасаются. Например, мы ставим чашку горячего кофе на стол на несколько минут, а затем снимаем чашку, так как стол проводит часть этой тепловой энергии.

Конвекционная теплопередача

Конвекционная теплопередача

Конвекция возникает, когда жидкости движутся и уносят тепловую энергию.Это может произойти естественным путем или под действием механической силы, например, при использовании вентилятора. Например, вы подуете на горячую ложку супа. Вы дуйте ложкой, чтобы остудить суп, и воздух уносит это тепло.

Радиационная теплопередача

Радиационная теплопередача

Излучение возникает, когда поверхность излучает электромагнитные волны. Все, включая вас, излучает некоторое тепловое излучение. Чем горячее поверхность, тем больше теплового излучения она излучает. Примером этого может быть солнце.Тепло от солнца распространяется в виде электромагнитных волн через пространство и достигает нас, не имея ничего промежуточного.

Используемые жидкости

Жидкости, используемые в системе HVAC, обычно включают воду, пар, воздух, хладагент или масло в качестве среды передачи. Теплообменники HVAC обычно делают одно из двух: они либо нагревают, либо охлаждают воздух или воду. Некоторые из них используются для охлаждения или нагрева оборудования по соображениям производительности, но большинство используются для кондиционирования воздуха или воды.

Виды теплообменников.

Большинство теплообменников имеют одну из двух конструкций. Либо катушечный, либо пластинчатый. Давайте взглянем на основы того, как работают оба эти средства, а затем посмотрим, как они применяются к обычным теплообменникам в системах.

Змеевиковый теплообменник — упрощенный

Базовый змеевиковый теплообменник
Змеевиковые теплообменники

в своей простейшей форме используют одну или несколько труб, которые проходят несколько раз вперед и назад. Трубка разделяет две жидкости. Одна жидкость течет внутри трубки, а другая — снаружи.Давайте посмотрим на пример отопления. Тепло передается от горячей внутренней жидкости к стенке трубы посредством конвекции, затем оно проходит через стенку трубы на другую сторону, а внешняя жидкость уносит его также посредством конвекции.

Пластинчатые теплообменники — упрощенные

Базовый пластинчатый теплообменник
В пластинчатых теплообменниках

используются тонкие металлические пластины для разделения двух жидкостей. Жидкости обычно текут в противоположных направлениях для улучшения теплопередачи. Тепло самой горячей жидкости передается на стенку пластины и затем передается на другую сторону.Другая жидкость, которая поступает с более низкой температурой, уносит ее за счет конвекции.

Давайте более подробно рассмотрим, как эти типы теплообменников применяются в системах отопления, вентиляции и кондиционирования воздуха.

Змеевик из оребренных труб (жидкость)

Теплообменник с ребристыми трубками

Ребристые трубы часто называют просто змеевиком, например, нагревательным или охлаждающим змеевиком. Это очень часто. Вы найдете их в установках кондиционирования воздуха, фанкойлах, системах воздуховодов, испарителях и конденсаторах систем кондиционирования воздуха, на задней стенке холодильников, в внутрипольных обогревателях, список можно продолжить.

В этих теплообменниках вода, хладагент или пар обычно проходят внутри, а воздух — снаружи.

Например, при использовании для нагрева воздуха с использованием нагретой воды горячая вода течет внутри трубы и передает свою тепловую энергию посредством конвекции стенке трубы, существует разница температур между горячей водой и воздухом, поэтому тепло передается. через стенку трубы. Воздух, проходящий снаружи, уносит это за счет конвекции.

Ребра обычно соединяются между всеми трубами, они находятся прямо на пути потока воздуха и помогают отводить тепло из трубы и переносить его в воздух, поскольку это действует как расширение поверхности трубы.Большая площадь поверхности = больше места для передачи тепла.

Канальный пластинчатый теплообменник

Канальный пластинчатый теплообменник

Канальные пластинчатые теплообменники используются в приточно-вытяжных установках для обмена тепловой энергией между потоками всасываемого и вытяжного воздуха без передачи влаги и смешивания потоков воздуха. Теплообменник изготовлен из тонких листов металла, обычно алюминия, с двумя жидкостями разной температуры, текущими в противоположных диагональных направлениях. Обычно в обоих используется воздух, но также могут использоваться выхлопные газы от чего-то вроде двигателя ТЭЦ.

Тепло от одного потока передается на тонкие листы металла, которые разделяют потоки, затем проходит через металл и уносится принудительной конвекцией в другой поток.

Внутрипольный конвектор

Внутрипольный обогреватель

Внутрипольные обогреватели устанавливаются по периметру здания, как правило, под окном или стеклянной стеной и очень распространены в новых коммерческих зданиях. Канальные обогреватели устанавливаются в пол и предназначены для уменьшения потерь тепла через стекло, а также предотвращения образования конденсата.

Они делают это, создавая стену конвективных воздушных потоков. В канальных обогревателях обычно используется горячая вода или электрические нагревательные элементы для нагрева воздуха. Их расположение на уровне пола означает, что у них есть доступ к самому холодному воздуху в комнате. Теплообменник передает тепло через ребристую трубу, в результате чего холодный воздух нагревается и поднимается к потолку. По мере того, как теплый воздух поднимается вверх, на его место устремляется более холодный воздух в комнате. Это создает конвективный поток и тепловую границу между стеклом и комнатой.

Канальный электронагреватель — открытый змеевик

Канальный электронагреватель

Нагревательные элементы с открытым змеевиком используются в основном в воздуховодах, печах и иногда в фанкойлах. Они работают с использованием открытых катушек под напряжением из металла с высоким сопротивлением для генерации тепла. Эти теплообменники помещаются непосредственно в поток воздуха, и когда воздух проходит через змеевики, тепловая энергия передается посредством конвекции. Они обеспечивают равномерное нагревание воздушного потока, хотя используются только там, где это безопасно, и к ним нелегко получить доступ.

Теплообменники MicroChannel

Микроканальный теплообменник

Микроканальные теплообменники — это усовершенствование змеевика из оребренных труб, обеспечивающее превосходный теплообмен, хотя они используются только в системах охлаждения и кондиционирования воздуха. Вы можете найти этот тип теплообменников в чиллерах с воздушным охлаждением, конденсаторных агрегатах, бытовых кондиционерах, осушителях воздуха, холодильных шкафах, крышных агрегатах и ​​т. Д.

Теплообменники этого типа также работают с конвекцией в качестве основного метода передачи тепла.Микроканальный теплообменник имеет простую конструкцию. По бокам расположены коллекторы, между которыми проходят несколько плоских труб с ребрами между ними. Воздух проходит через щели в ребрах и уносит тепловую энергию.

Хладагент входит через коллектор, а затем проходит по плоским трубкам, пока не достигнет другого коллектора. Коллекторы содержат перегородки, которые контролируют направление потока хладагента и используются для многократного прохождения хладагента по трубкам, чтобы увеличить время, проведенное внутри, и, таким образом, увеличить возможность передачи тепловой энергии.

Внутри каждой плоской трубки есть несколько небольших отверстий, известных как микроканалы, которые проходят по всей длине каждой плоской трубки. Эти микроканалы значительно увеличивают площадь поверхности теплообменника, что позволяет большему количеству тепловой энергии уходить из хладагента в металлический корпус теплообменника. Разница температур между хладагентом и воздухом заставляет тепло проходить через кожух плоской трубы к ребрам. Когда воздух проходит через зазоры, он уносит эту тепловую энергию за счет конвекции.

Змеевик испарителя печи

Змеевик испарителя печи

Печные испарители обычно используются в больших домах и небольших коммерческих помещениях с небольшими системами воздуховодов. Вы можете приобрести змеевики большего размера, которые работают по аналогичным принципам, но для более крупных систем, в основном, для кондиционеров в средних и крупных коммерческих зданиях. Змеевик внутри испарителя печи работает так же, как теплообменник с ребристыми трубами, и использует хладагент внутри и воздуховод снаружи. Воздух, проходящий через трубы, передает свое тепло посредством принудительной конвекции, затем оно передается через стенку трубы посредством теплопроводности, хладагент внутри уносит это тепло посредством принудительной конвекции, хладагент кипит и испаряется в компрессор.

Радиаторы

Радиаторы

Они очень распространены, особенно в Европе и Северной Америке, в домах и старых коммерческих зданиях. Они крепятся к стенам, как правило, под окном, для обогрева помещения. Их функция очень проста, они обычно подключаются к трубопроводу горячей воды, по которому подается горячая вода от бойлера.

Вода поступает через трубу небольшого диаметра и попадает внутрь радиатора. Внутренняя поверхность радиатора больше, чем труба, что снижает скорость воды, чтобы дать больше времени для передачи тепла.

Тепло воды передается металлическим стенкам радиатора посредством теплопроводности. С внешней стороны радиатора находится воздух помещения. Когда этот воздух соприкасается с горячей поверхностью радиатора, тепло переходит в воздух, и это заставляет воздух расширяться и подниматься. Затем более холодный воздух поступает, чтобы заменить этот воздух, вызывая непрерывный цикл движущегося воздуха, который нагревает комнату, поэтому этот движущийся воздух является конвекционным теплопереносом. Радиатор обычно имеет несколько ребер, соединенных сзади или между панелями, особенно на новых, они предназначены только для увеличения площади поверхности радиатора, чтобы предоставить больше возможностей для передачи тепла в воздух.Радиаторы названы неправильно, так как они передаются в основном за счет конвекции.

Иногда вы встретите специально разработанные радиаторы, подключенные к паровым системам, но это становится все реже, раньше тоже использовалось масло, но сейчас это довольно редко.

Водяной нагревательный элемент

Водяной нагревательный элемент

Водонагревательный элемент обычно используется в калориферах и водонагревателях, а также иногда используется в бассейнах открытых градирен для предотвращения замерзания воды зимой.Они используют металлическую катушку вдоль трубки, которая имеет высокое значение сопротивления. Это сопротивление генерирует тепло. Катушка изолирована, чтобы сдерживать ток, но пропускать тепловую энергию. Нагревательный элемент погружен в резервуар с водой, и тепло отводится от элемента в воду. Вода, которая контактирует с нагревательным элементом, поэтому нагревается, и это заставляет ее подниматься в резервуаре, затем течет более холодная вода, чтобы заменить эту нагретую воду, где этот цикл будет продолжаться.

Поворотное колесо

Роторный теплообменник

Теплообменники этого типа обычно находятся в блоке обработки воздуха между приточным и вытяжным воздуховодами. Они работают с помощью небольшого электрического двигателя, подключенного к шкивному ремню, чтобы медленно вращать диск теплообменника, который находится непосредственно в воздушном потоке между выпускным и приточным воздухозаборником. Воздух проходит прямо через диск, но при этом контактирует с материалом колеса.Материал диска теплообменника поглощает тепловую энергию от одного потока воздуха и, когда он вращается, входит во второй поток воздуха, где он выделяет эту поглощенную тепловую энергию. Этот тип теплообменника приводит к небольшому смешиванию жидкости между потоком всасываемого и отработанного воздуха из-за небольших зазоров в местах вращения колеса, поэтому его нельзя использовать там, где используются сильные запахи или токсичные пары.

Эти теплообменники могут использоваться в зимние месяцы для рекуперации тепла из выхлопного потока здания. Это тепло улавливается тепловым колесом и передается в поток забираемого свежего воздуха, который будет намного холоднее, чем воздух внутри здания.
Эти теплообменники также можно использовать в летние месяцы для рекуперации холодного воздуха из выхлопных газов зданий и охлаждения поступающего свежего воздуха.

Водогрейный котел

Как работает котел

Такие большие котлы можно встретить в основном в средних и крупных коммерческих зданиях с более прохладным климатом. Дома и небольшие здания будут использовать гораздо меньшие версии, обычно настенные. У обоих есть много вариаций, но этот тип очень распространен.

Топливо сгорает в камере сгорания (обычно газ или масло), а горячие выхлопные газы проходят через ряд труб, пока не достигнут дымохода и не выбрасываются в атмосферу.Трубки и камера сгорания окружены водой. Тепло передается к стенкам трубы и затем проходит в воду, которая затем уносится конвекцией. В зависимости от конструкции системы вода выходит в виде нагретой воды или пара. Эта вода нагнетается насосом, скорость насоса, а также количество сжигаемого топлива можно изменять, чтобы изменять температуру и скорость потока.

Тепловая трубка

Тепловая труба

Вы найдете их в солнечных водонагревателях и некоторых теплообменниках AHU с рекуперацией тепла.Если мы посмотрим на применение солнечного тепла, у нас есть трубка, сделанная из специального стекла, из которого откачивается весь воздух для создания вакуума, а затем герметизируется. Внутренний слой трубки имеет специальное покрытие. Покрытие и вакуум работают вместе, чтобы тепло не могло уйти, когда оно попадает в трубку, а затем помогает переместить его к тепловой трубке в центре.

Тепловая трубка имеет ребра с каждой стороны, соединенные с покрытием трубки для улавливания тепловой энергии.

Тепловая трубка представляет собой герметичную длинную полую медную трубку, которая проходит по всей длине стеклянной трубки и имеет выступающую втулку наверху.Колба соединяется с коллектором, и холодная вода проходит через коллектор и проходит через головку колбы.

Внутри тепловой трубки находится водная смесь, находящаяся под очень низким давлением. Это низкое давление позволяет воде испаряться в пар с небольшим добавлением тепла. Затем пар поднимается в колбу, где отдает тепло воде, протекающей через коллектор. Когда пар отдает свое тепло, он конденсируется и снова падает, чтобы повторить цикл. Трубка поглощает тепловое излучение, которое затем направляется в трубку.Вода внутри конвектирует его до колбы, тепло проходит через стенку трубы и уносится конвекцией в поток воды.

Балка охлаждающая

Теплообменники ОВКВ с охлаждающими балками

Используются два типа охлаждающих балок: пассивные и активные. Оба используются в основном в коммерческих зданиях.

Активная охлаждающая балка работает за счет пропускания холодной жидкости, обычно воды, через оребренный теплообменник. Затем воздух направляется в охлаждающую балку и выходит через специально расположенные сопла.Этот воздух движется по ребристой трубе и вдувает холодный воздух в комнату. Поэтому используется принудительная конвекция.

В пассивных охлаждающих балках также будет использоваться теплообменник из оребренных труб, но к ним не будет подключен воздуховод. Вместо этого они создают поток естественной конвекции, охлаждая теплый воздух на уровне потолка. Затем охлажденный воздух опускается и заменяется более теплым воздухом, где цикл повторяется.

Печной обогреватель

Печные обогреватели распространены в домах с системой кондиционирования воздуха.Они очень распространены в Северной Америке. В печных обогревателях используется теплообменник, помещенный непосредственно в проходящий воздух пар. Топливо сгорает, и горячий газ направляется через теплообменник, тепло от него передается в стенки теплообменника, более холодный воздуховод проходит через другую сторону, вызывая разницу температур, поэтому тепло газа проходит через стена и будет унесена конвекцией.

Пластинчатый теплообменник

Существует два основных типа пластинчатых теплообменников: с прокладкой и с паяной пластиной.Оба они очень эффективны при передаче тепловой энергии, а для еще большей эффективности и компактной конструкции вы можете использовать микропластинчатые теплообменники для многих приложений. Ранее мы подробно рассмотрели все эти теплообменники.

Основное, что нужно знать об этих двух типах теплообменников, — это то, что тип прокладки может быть демонтирован, его нагревательная или охлаждающая способность может быть увеличена или уменьшена простым добавлением или удалением теплообменных пластин. Вы обнаружите, что они используются, в частности, в высотных коммерческих зданиях для косвенного подключения чиллеров, котлов и градирен к контурам отопления и охлаждения, а также для подключения зданий к сетям централизованного энергоснабжения.

Паяный пластинчатый теплообменник

Паяные пластинчатые теплообменники — это герметичные агрегаты, которые нельзя демонтировать, их мощность нагрева или охлаждения является фиксированной. Они используются в таких приложениях, как тепловые насосы, комбинированные котлы, блоки интерфейса тепла, косвенное подключение калориферов и т. Д.

Оба работают, пропуская жидкости, обычно в противоположных направлениях, в соседних каналах. Жидкости обычно представляют собой воду или хладагент. Тепловая энергия передается на пластину, затем проходит через пластину, а жидкость на другой стороне уносит ее за счет конвекции.

Тепловые насосы

Тепловые насосы используются в основном в домах, но иногда и в коммерческой недвижимости. Существует два основных типа тепловых насосов с воздушным источником и наземным источником. Источник воздуха обычно используется для нагрева воздуха в помещении, тогда как наземный источник чаще используется для нагрева воды.

Источник воздуха работает как система переменного тока, но наоборот, вместо того, чтобы отводить тепло из комнаты, он добавляет его. Хладагент проходит от компрессора к внутреннему блоку, который содержит теплообменник из оребренных труб.Хладагент посредством конвекции передает тепло стенкам трубы, а затем отводится на другую сторону. С другой стороны, холодный воздух помещения, который проходит через теплообменник небольшим вентилятором, затем уносит тепло за счет конвекции. Затем хладагент течет к расширительному клапану, а затем к наружному блоку, который также является теплообменником из оребренных труб или микроканальным теплообменником.

Когда воздух проходит через этот теплообменник, окружающий воздух вызывает кипение хладагента и забирает тепло.Затем это тепло проходит через компрессор во внутренний блок, чтобы повторить цикл.

Наземный источник работает немного иначе. Смесь воды и незамерзающей жидкости прокачивается по трубам в земле для сбора тепла. Затем он передается в небольшой цикл охлаждения через паяный пластинчатый теплообменник. Хладагент переносит его во второй паяный пластинчатый теплообменник, который подключен к другому водяному контуру, на этот раз передавая тепло в резервуар с горячей водой, обычно через спиральную трубу без ребер.

Кожух и труба

Кожухотрубный теплообменник

Кожухотрубные теплообменники обычно используются в чиллерах на испарителе и / или конденсаторе, иногда также в качестве охладителя смазочного масла.
Возможно, это упрощенная конструкция теплообменника. У них есть внешний контейнер, известный как оболочка. Внутри оболочки находится ряд труб, известных как трубки. Трубки содержат одну жидкость, а оболочка — другую жидкость. Две жидкости всегда разделены стенками трубки, они никогда не встречаются и не смешиваются.Жидкости будут иметь разные температуры, что приведет к передаче тепловой энергии между жидкостями, и эта тепловая энергия будет проходить через стенки трубы. При использовании в испарителе или конденсаторе двумя жидкостями будут вода и хладагент. В зависимости от конструкции вода может находиться в кожухе или трубке, а хладагент — в другом.

Чиллер

Теплообменники чиллера

В чиллере используется кожухотрубный теплообменник, пластинчатый теплообменник или теплообменник с оребрением.Многие чиллеры фактически используют комбинацию всего вышеперечисленного. Например, чиллер с воздушным охлаждением может использовать кожухотрубный теплообменник для испарителя, ребристый трубчатый или микроканальный теплообменник для конденсатора, паяный пластинчатый теплообменник для охлаждения масляной смазки компрессора и пластинчатый теплообменник с прокладкой для косвенного соединения. чиллер к центральному контуру охлаждения.

Как они работают и зачем они нужны

Теплообменники — одно из самых важных и широко используемых элементов технологического оборудования на промышленных объектах.Независимо от конкретной отрасли, вероятно, потребуется какой-то тип регулирования температуры, и для этого, скорее всего, пригодятся теплообменники. Теплообменники могут использоваться либо для нагрева, либо для охлаждения, однако в промышленном секторе, особенно на заводах и нефтеперерабатывающих заводах, они в подавляющем большинстве используются для охлаждения. Давайте углубимся в то, что они из себя представляют, зачем они нужны, как они работают и как классифицируются.

Что такое промышленные теплообменники?

Как следует из их названия, промышленные теплообменники — это части промышленного оборудования, которые предназначены для обмена или передачи тепла от одной среды к другой.Теплообмен может быть в первую очередь для нагрева элементов или их охлаждения. В промышленном секторе охлаждение, как правило, является более распространенной функцией для предотвращения перегрева оборудования или летучих веществ. Существует множество различных типов теплообменников, каждый со своими преимуществами и недостатками, но адаптированных для различных целей и отраслей.

Зачем нужны теплообменники?

Теплообменники имеют очень широкий спектр промышленного применения.Они используются в качестве компонентов систем кондиционирования и охлаждения или систем отопления. Для работы многих промышленных процессов требуется определенная степень тепла; однако, как правило, необходимо проявлять большую осторожность, чтобы эти процессы не стали слишком горячими. На промышленных предприятиях и фабриках теплообменники необходимы для поддержания безопасной рабочей температуры оборудования, химикатов, воды, газа и других веществ. Теплообменники также могут использоваться для улавливания и передачи пара или тепла, выделяемого в качестве побочного продукта процесса или операции, чтобы пар или тепло можно было лучше использовать где-либо еще, тем самым повышая эффективность и экономя деньги завода.

Как работают теплообменники?

Различные типы теплообменников работают по-разному, используют разные схемы потока, оборудование и конструктивные особенности. Все теплообменники объединяет то, что все они работают, чтобы прямо или косвенно подвергать более теплую среду более холодной среде, следовательно, обмениваться теплом. Обычно это достигается с помощью набора трубок, помещенных в кожух определенного типа. Вентиляторы теплообменника, конденсаторы, ремни, охлаждающие жидкости, дополнительные трубы и трубопроводы, а также другие компоненты и оборудование работают над повышением эффективности нагрева и охлаждения или улучшением потока.

Классификация теплообменников

Теплообменники обычно классифицируются по одному из следующих четырех показателей:

  • Сущность процесса теплообмена
  • Физическое состояние жидкостей
  • Проточная часть теплообменника
  • Устройство теплообменника

Природа процесса теплообмена

Этот первый метод классификации теплообменников относится к тому, вступают ли вещества, между которыми происходит обмен теплом, в прямой контакт друг с другом или нет, или разделены ли они физическим барьером, например стенками их труб.

Теплообменники с прямым контактом — Теплообменники с прямым контактом обеспечивают прямой контакт горячих и холодных жидкостей друг с другом внутри трубок, вместо того, чтобы полагаться на лучистое тепло или конвекцию. Прямой контакт является чрезвычайно эффективным средством передачи тепла, поскольку контакт прямой, но, естественно, для использования прямого контакта он должен быть безопасным или даже желательным, чтобы жидкости контактировали друг с другом. Теплообменники с прямым контактом могут быть хорошим выбором, если горячая и холодная текучие среды представляют собой просто разные вариации температуры одной и той же текучей среды, или если смесь текучих сред является желательной или несущественной частью промышленного процесса.

Косвенно-контактные теплообменники — Непрямые контактные теплообменники обеспечивают физическое разделение горячих и холодных жидкостей друг от друга. Обычно теплообменники с непрямым контактом удерживают горячие и холодные жидкости в разных наборах труб и вместо этого полагаются на лучистую энергию и конвекцию для обмена тепла. Обычно это делается для предотвращения загрязнения одной жидкости другой.

Физическое состояние жидкостей

Теплообменники также можно классифицировать по физическому состоянию горячих и холодных жидкостей.Например:

  • Жидкость — газ
  • Жидкость — Твердое вещество
  • Газ — твердое вещество

Если в теплообменнике используется прямой контакт, то классификация «несмешивающаяся жидкость — жидкость» также может существовать для обозначения жидкостей, которые не будут смешиваться друг с другом. Например, масло и вода не смешиваются.

Схема потока теплообменника

Расположение потоков горячей и холодной жидкости внутри теплообменника — еще один важный способ их классификации.Три основные категории, основанные на расположении потока: параллельный поток, противоток и перекрестный поток.

Parallel-Flow — В теплообменниках с параллельным потоком горячие и холодные жидкости входят в теплообменник с одного конца и текут параллельно друг другу.

Противоток — В противоточных теплообменниках горячие и холодные жидкости входят в теплообменник с противоположных сторон и текут навстречу друг другу.

Cross-Flow — В теплообменниках с перекрестным потоком горячие и холодные жидкости входят в теплообменник в разных точках и, проходя через теплообменник, пересекаются друг с другом, часто под прямым углом.

Важно помнить о техническом обслуживании и обслуживании теплообменников. Техническое и сервисное обслуживание будет зависеть от конкретного типа рассматриваемых теплообменников, а также их конструкции и конструкции. Поддержание теплообменников в хорошем состоянии имеет решающее значение для оптимальной производительности.

:

ТЕПЛООБМЕННИКИ

Теплообменник — это устройство, используемое для передачи тепла между двумя или более жидкостями. Жидкости могут быть одно- или двухфазными и, в зависимости от типа теплообменника, могут быть разделены или находиться в прямом контакте.Устройства, включающие источники энергии, такие как стержни ядерного топлива или огневые нагреватели, обычно не считаются теплообменниками, хотя многие принципы, заложенные в их конструкции, одинаковы.

Чтобы обсудить теплообменники, необходимо дать некоторую форму категоризации. Обычно используются два подхода. Первый рассматривает конфигурацию потока в теплообменнике, а второй основан на классификации типа оборудования, прежде всего, по конструкции.Оба рассмотрены здесь.

Классификация теплообменников по конфигурации потока

Существует четыре основных конфигурации потока:

На рисунке 1 показан идеализированный противоточный теплообменник, в котором две жидкости текут параллельно друг другу, но в противоположных направлениях. Этот тип устройства потока позволяет максимально изменить температуру обеих жидкостей и, следовательно, является наиболее эффективным (где эффективность — это количество фактически переданного тепла по сравнению с теоретическим максимальным количеством тепла, которое может быть передано).

Рисунок 1. Противоток.

В прямоточных теплообменниках потоки текут параллельно друг другу и в том же направлении, как показано на рисунке 2. Это менее эффективно, чем противоточный поток, но обеспечивает более равномерную температуру стенок.

Рисунок 2. Попутный поток.

По эффективности теплообменники с перекрестным потоком занимают промежуточное положение между противоточными и параллельными теплообменниками. В этих установках потоки текут под прямым углом друг к другу, как показано на рисунке 3.

Рисунок 3. Поперечный поток.

В промышленных теплообменниках часто встречаются гибриды вышеуказанных проточных типов. Примерами являются комбинированные теплообменники с поперечным / противотоком и многопроходные теплообменники. (См., Например, рисунок 4.)

Рис. 4. Поперечный / противоточный поток.

Классификация теплообменников по конструкции

В этом разделе теплообменники классифицируются в основном по их конструкции, Garland (1990) (см. Рисунок 5).Первый уровень классификации состоит в том, чтобы разделить типы теплообменников на рекуперативные и регенеративные. Рекуперативный теплообменник имеет отдельные пути потока для каждой жидкости, и жидкости протекают одновременно через теплообменник, обмениваясь теплом через стенку, разделяющую пути потока. Регенеративный теплообменник имеет единственный путь потока, по которому попеременно проходят горячие и холодные жидкости.

Рисунок 5. Классификация теплообменников.

Регенеративные теплообменники

В регенеративном теплообменнике путь потока обычно состоит из матрицы, которая нагревается, когда горячая жидкость проходит через нее (это известно как «горячий обдув»).Это тепло затем передается холодной жидкости, когда она протекает через матрицу («холодный удар»). Регенеративные теплообменники иногда называют емкостными теплообменниками . Хороший обзор регенераторов дает Walker (1982).

Регенераторы в основном используются для рекуперации тепла газа / газа на электростанциях и других энергоемких отраслях. Два основных типа регенераторов — статические и динамические. Оба типа регенераторов являются кратковременными в эксплуатации, и, если при их проектировании не уделить должного внимания, обычно происходит перекрестное загрязнение горячего и холодного потоков.Однако использование регенераторов, вероятно, расширится в будущем, поскольку предпринимаются попытки повысить энергоэффективность и утилизировать больше низкопотенциального тепла. Однако, поскольку регенеративные теплообменники, как правило, используются для специальных применений, рекуперативные теплообменники более распространены.

Рекуперативные теплообменники

Существует много типов рекуперативных теплообменников, которые в широком смысле можно сгруппировать на непрямой контакт, прямой контакт и специальные. В теплообменниках с косвенным контактом теплоносители разделяются за счет использования трубок, пластин и т. Д.. Теплообменники с прямым контактом не разделяют жидкости, обмениваясь теплом, и фактически полагаются на то, что жидкости находятся в тесном контакте.

В этом разделе кратко описаны некоторые из наиболее распространенных типов теплообменников, которые организованы в соответствии с классификацией, приведенной на рисунке 5.

В этом типе пары разделены стенкой, обычно металлической. Примерами являются трубчатые теплообменники, см. Рисунок 6, и пластинчатые теплообменники, см. Рисунок 7.

Трубчатые теплообменники очень популярны из-за гибкости, которую проектировщик должен учитывать в широком диапазоне давлений и температур.Трубчатые теплообменники можно разделить на несколько категорий, из которых кожухотрубные теплообменники являются наиболее распространенными.

Кожухотрубный теплообменник состоит из ряда трубок, установленных внутри цилиндрической оболочки. На рисунке 8 показан типичный блок, который можно найти на нефтехимическом заводе. Две жидкости могут обмениваться теплом, одна жидкость течет по внешней стороне труб, а вторая жидкость течет по трубкам. Жидкости могут быть одно- или двухфазными и могут течь в параллельном или перекрестном / противотоке.Кожухотрубный теплообменник состоит из четырех основных частей:

  • Передняя часть — это место, где жидкость входит в трубную часть теплообменника.

  • Задний конец — это то место, где жидкость со стороны трубы выходит из теплообменника или где она возвращается в передний коллектор в теплообменниках с несколькими проходами со стороны трубы.

  • Пучок труб — состоит из трубок, трубных решеток, перегородок, стяжек и т. Д. Для удержания пучка вместе.

  • Кожух — содержит пучок труб.

Популярность кожухотрубных теплообменников привела к разработке стандарта для их обозначения и использования. Это стандарт ассоциации производителей трубчатых теплообменников (TEMA). Обычно кожухотрубные теплообменники изготавливаются из металла, но для специальных применений (например, с использованием сильных кислот в фармацевтических препаратах) могут использоваться другие материалы, такие как графит, пластик и стекло. Также нормально, чтобы трубки были прямыми, но в некоторых криогенных применениях используются спиральные катушки или катушки Хэмпсона .Простая форма кожухотрубного теплообменника — это двухтрубный теплообменник. Этот теплообменник состоит из одной или нескольких трубок, находящихся внутри трубы большего размера. В самой сложной форме нет большой разницы между многотрубным двухтрубным теплообменником и кожухотрубным теплообменником. Однако двухтрубные теплообменники, как правило, имеют модульную конструкцию, поэтому несколько блоков могут быть соединены болтами для достижения требуемой нагрузки. Книга Э.А.Д. Сондерс [Saunders (1988)] дает хороший обзор трубчатых теплообменников.

К другим типам трубчатых теплообменников относятся:

  • Печи — технологическая жидкость проходит через печь в прямых или спирально намотанных трубах, а нагрев осуществляется горелками или электрическими нагревателями.

  • Пластинчатые трубы — в основном используются в системах рекуперации тепла и кондиционирования воздуха. Трубки обычно монтируются в какой-либо форме воздуховода, а пластины действуют как опоры и обеспечивают дополнительную площадь поверхности в виде ребер.

  • С электрическим нагревом — в этом случае жидкость обычно течет по внешней стороне электрически нагреваемых трубок (см. Джоулев нагрев).

  • Теплообменники с воздушным охлаждением состоят из пучка труб, вентиляторной системы и несущей конструкции. Трубки могут иметь ребра различного типа для обеспечения дополнительной площади поверхности со стороны воздуха. Воздух либо всасывается через трубы вентилятором, установленным над пучком (принудительная тяга), либо продувается через трубы вентилятором, установленным под пучком (принудительная тяга). Они, как правило, используются в местах, где есть проблемы с получением достаточного количества охлаждающей воды.

  • Тепловые трубы, сосуды с мешалкой и теплообменники из графитовых блоков можно рассматривать как трубчатые или отнести к Рекуперативным «специальным предложениям». Тепловая труба состоит из трубы, материала фитиля и рабочей жидкости. Рабочая жидкость поглощает тепло, испаряется и переходит на другой конец тепловой трубы, где конденсируется и выделяет тепло. Затем жидкость под действием капилляров возвращается к горячему концу тепловой трубы для повторного испарения. Сосуды с мешалкой в ​​основном используются для нагрева вязких жидкостей.Они состоят из емкости с трубками внутри и мешалки, например пропеллера или ленточного винтового импеллера. Трубки несут горячую жидкость, а мешалка вводится для обеспечения равномерного нагрева холодной жидкости. Теплообменники с угольным блоком обычно используются, когда необходимо нагреть или охладить агрессивные жидкости. Они состоят из твердых блоков углерода, в которых просверлены отверстия для прохождения жидкости. Затем блоки скрепляются болтами вместе с коллекторами, образуя теплообменник.

Пластинчатые теплообменники разделяют жидкости, обменивающиеся теплом, с помощью пластин.У них обычно есть улучшенные поверхности, такие как ребра или тиснение, и они скреплены болтами, припаяны или сварены. Пластинчатые теплообменники в основном используются в криогенной и пищевой промышленности. Однако из-за высокого отношения площади поверхности к объему, малого количества жидкостей и способности обрабатывать более двух паров они также начинают использоваться в химической промышленности.

Пластинчатые и рамные теплообменники состоят из двух прямоугольных концевых элементов, которые удерживают вместе несколько рельефных прямоугольных пластин с отверстиями на углу для прохождения жидкостей.Каждая из пластин разделена прокладкой, которая герметизирует пластины и обеспечивает поток жидкости между пластинами, см. Рис. 9. Этот тип теплообменника широко используется в пищевой промышленности, поскольку его можно легко разобрать для очистки. Если утечка в окружающую среду вызывает беспокойство, можно сварить две пластины вместе, чтобы гарантировать, что жидкость, протекающая между сваренными пластинами, не сможет протекать. Однако, поскольку некоторые прокладки все еще присутствуют, утечка все еще возможна. Паяные пластинчатые теплообменники предотвращают возможность утечки за счет пайки всех пластин вместе, а затем приваривания входных и выходных отверстий.

Рисунок 6. Классификация трубчатых теплообменников.

Рисунок 7. Классификация пластинчатых теплообменников.

Рисунок 8. Кожухотрубный теплообменник.

Рисунок 9. Пластинчато-рамный теплообменник.

Пластинчато-ребристые теплообменники состоят из ребер или прокладок, зажатых между параллельными пластинами. Ребра могут быть расположены так, чтобы допускать любую комбинацию поперечного или параллельного потока между соседними пластинами. Также возможно пропустить до 12 потоков жидкости через один теплообменник за счет тщательного расположения коллекторов.Обычно они изготавливаются из алюминия или нержавеющей стали и спаяны друг с другом. Их основное применение — сжижение газа из-за их способности работать с близкими температурами.

Пластинчатые теплообменники в некоторых отношениях аналогичны кожухотрубным. Прямоугольные трубы со скругленными углами уложены друг на друга, образуя пучок, который помещается внутри оболочки. Одна жидкость проходит через трубки, тогда как жидкость течет параллельно через зазоры между трубками.Они, как правило, используются в целлюлозно-бумажной промышленности, где требуются проточные каналы большего размера.

Спиральные пластинчатые теплообменники образуются путем наматывания двух плоских параллельных пластин вместе в змеевик. Затем концы уплотняются прокладками или свариваются. Они в основном используются с вязкими, сильно загрязняющими жидкостями или жидкостями, содержащими частицы или волокна.

В данной категории теплообменников не используется поверхность теплопередачи, из-за чего она зачастую дешевле, чем косвенные теплообменники.Однако, чтобы использовать теплообменник прямого контакта с двумя жидкостями, они должны быть несмешиваемыми, или, если будет использоваться одна жидкость, она должна претерпеть фазовый переход. (См. Прямая контактная теплопередача.)

Наиболее легко узнаваемая форма теплообменника с прямым контактом — градирня с естественной тягой, которая используется на многих электростанциях. Эти агрегаты состоят из большой приблизительно цилиндрической оболочки (обычно более 100 м в высоту) и насадки внизу для увеличения площади поверхности. Охлаждаемая вода распыляется на набивку сверху, в то время как воздух проходит через дно набивки и поднимается вверх через башню за счет естественной плавучести.Основная проблема, связанная с этим и другими типами градирен с прямым контактом, заключается в постоянной необходимости восполнять подачу охлаждающей воды за счет испарения.

Конденсаторы с прямым контактом иногда используются вместо трубчатых конденсаторов из-за их низких капитальных затрат и затрат на обслуживание. Есть много вариантов конденсатора прямого контакта. В простейшей форме охлаждающая жидкость распыляется сверху емкости над паром, поступающим сбоку емкости. Затем конденсат и охлаждающая жидкость собираются внизу.Большая площадь поверхности распылителя гарантирует, что они являются достаточно эффективными теплообменниками.

Впрыск пара используется для нагрева жидкости в резервуарах или в трубопроводах. Пар способствует передаче тепла за счет турбулентности, создаваемой впрыском, и передает тепло путем конденсации. Обычно конденсат не собирается.

Прямой нагрев в основном используется в сушилках, где влажное твердое вещество сушится путем пропускания его через поток горячего воздуха. Другой вид прямого нагрева — это горение под водой.Он был разработан в основном для концентрирования и кристаллизации коррозионных растворов. Жидкость испаряется пламенем, а выхлопные газы направляются вниз в жидкость, которая находится в резервуаре.

Воздухоохладитель с мокрой поверхностью в некоторых отношениях похож на теплообменник с воздушным охлаждением. Однако в этом типе устройства вода распыляется по трубкам, а вентилятор всасывает воздух и воду по пучку труб. Вся система закрыта, и теплый влажный воздух обычно выбрасывается в атмосферу.

Скребковые теплообменники состоят из емкости с рубашкой, через которую проходит жидкость, и вращающегося скребка, который непрерывно удаляет отложения с внутренних стенок емкости. Эти агрегаты используются в пищевой и фармацевтической промышленности в тех случаях, когда отложения образуются на нагретых стенках сосуда с рубашкой.

Статические регенераторы или регенераторы с неподвижным слоем не имеют движущихся частей, кроме клапанов. В этом случае горячий газ проходит через матрицу в течение фиксированного периода времени, в конце которого происходит реверсирование, горячий газ отключается, а холодный газ проходит через матрицу.Основная проблема с этим типом агрегатов заключается в том, что и горячий, и холодный поток прерывистый. Чтобы преодолеть это и обеспечить непрерывную работу, требуются по крайней мере два статических регенератора или можно использовать роторный регенератор.

В роторном регенераторе насадка цилиндрической формы вращается вокруг оси цилиндра между парой газовых уплотнений. Горячий и холодный газ протекает одновременно по каналам с обеих сторон газовых уплотнений и через вращающуюся насадку. (См. Рекуперативные теплообменники.)

Термический анализ любого теплообменника включает решение основного уравнения теплопередачи.

(1)

Это уравнение рассчитывает количество тепла, передаваемого через область dA, где T h и T c — местные температуры горячей и холодной жидкости, α — местный коэффициент теплопередачи, а dA — местная дополнительная площадь, на которой α основано. Для плоской стены

(2)

где δ w — толщина стенки, а λ w — ее теплопроводность.

Для однофазного обтекания стенки α для каждого из потоков является функцией Re и Pr. Когда происходит конденсация или кипение, α также может зависеть от разницы температур. Как только коэффициент теплопередачи для каждого потока и стены известен, общий коэффициент теплопередачи U определяется как

(3)

где сопротивление стенки r w равно 1 / α w . Общая скорость теплопередачи между горячей и холодной текучими средами тогда определяется выражением

(4)

Это уравнение предназначено для постоянных температур и коэффициентов теплопередачи.В большинстве теплообменников это не так, поэтому используется другая форма уравнения

(5)

где — общая тепловая нагрузка, U — средний общий коэффициент теплопередачи, а ΔT M — средняя разница температур. Расчет ΔT M и отказ от предположения о постоянном коэффициенте теплопередачи описаны в разделе «Средняя разница температур».

Расчет U и ΔT M требует информации о типе теплообменника, геометрии (например,g., размер проходов в пластине или диаметр трубы), ориентация потока, чистый противоток или поперечный поток и т. д. Затем можно рассчитать общую нагрузку с использованием предполагаемого значения AT и сравнить с требуемой нагрузкой. Затем можно внести изменения в предполагаемую геометрию и U, ΔT M и пересчитать, чтобы в конечном итоге перейти к решению, где равно требуемой нагрузке. Однако при выполнении термического анализа на каждой итерации также следует проверять, не превышен ли допустимый перепад давления.Компьютерные программы, такие как TASC от HTFS (Heat Transfer and Fluid Flow Service), автоматически выполняют эти расчеты и оптимизируют конструкцию.

Механические аспекты

Все типы теплообменников должны подвергаться механической конструкции в той или иной форме. Любой теплообменник, работающий при давлении выше атмосферного, должен быть спроектирован в соответствии с местным кодом конструкции сосуда под давлением , например ASME VIII (Американское общество инженеров-механиков) или BS 5500 (Британский стандарт).Эти нормы определяют требования к резервуару высокого давления, но не касаются каких-либо специфических особенностей конкретного типа теплообменника. В некоторых случаях для определенных типов теплообменников существуют специальные стандарты. Два из них перечислены ниже, но, как правило, отдельные производители устанавливают свои собственные стандарты.

ССЫЛКИ

Гарланд, У. Дж. (1990) Частное сообщение.

Уокер, Г. (1982) Industrial Heat Exchangers-A Basic Guide , Hemisphere Publishing Corporation.

Rohsenow, W. M. и Hartnett, J. P. (1973) Handbook of Heat Transfer , New York: McGraw-Hill Book Company. DOI: 10.1016 / 0017-9310 (75)

-9

Сондерс, Э. А. Д. (1988) Теплообменники — выбор, проектирование и строительство, Longman Scientific and Technical. DOI: 10.1016 / 0378-3820 (89)

-5

Ассоциация производителей трубчатых теплообменников, (1988) (ТЕМА), седьмое издание. Кожухотрубные теплообменники .

Американский институт нефти (API) 661: Теплообменники с воздушным охлаждением для нефтяной промышленности .

Как теплообменник используется в жидкостном охлаждении

Теплообменник — это устройство, которое передает тепло от текучей среды (жидкости или газа) для перехода ко второй текучей среде без смешивания этих двух текучих сред или их непосредственного контакта. Теплообменники обычно используются в системах жидкостного охлаждения для отвода тепла от жидкости, которая прошла через холодную пластину, прикрепленную к тепловыделяющему компоненту. Холодная жидкость прокачивается через систему и обратно через пластину охлаждения.

Пример стандартного контура жидкостного охлаждения, использующего теплообменник для передачи тепла от жидкости к окружающей среде.(Advanced Thermal Solutions, Inc.)

Теплообменники предназначены для увеличения площади поверхности стенки между двумя жидкостями при минимальном сопротивлении потоку жидкости через теплообменник. Добавление ребер или гофров в одном или обоих направлениях увеличивает площадь поверхности и увеличивает теплопередающую способность теплообменника.

Существует несколько типов теплообменников жидкость-воздух.

В кожухотрубном теплообменнике одна жидкость протекает через серию металлических трубок, а вторая жидкость прокачивается через оболочку, которая их окружает.Поток жидкости может быть параллельным (течет в одном направлении), противотоком (течет в противоположных направлениях) или поперечным потоком (потоки перпендикулярны друг другу).

В теплообменниках типа «труба-ребра» (как показано на GIF-изображении выше) используются ребра, окружающие две трубы, по которым проходят жидкости. Ребра увеличивают площадь поверхности и увеличивают теплопередачу в окружающую среду. Некоторые теплообменники с оребренными трубами используют естественную конвекцию, а другие могут включать вентиляторы для увеличения воздушного потока и теплопередачи.

Пластинчатые и рамные теплообменники имеют два прямоугольных концевых элемента, удерживающих вместе ряд металлических пластин с отверстиями в каждом углу для прохождения жидкостей. Каждая из пластин имеет прокладку для уплотнения пластин и организации потока жидкости между пластинами. Паяные пластинчатые теплообменники предотвращают возможность утечки за счет пайки пластин вместе. Пластинчатые и рамные теплообменники обычно используются в пищевой промышленности.

Общие области применения теплообменников включают телекоммуникации, технологическое охлаждение, силовую электронику, медицинское оборудование и медицинскую визуализацию, автомобилестроение, промышленность и HVAC.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *