Тепловая схема котельной с водогрейными котлами: Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения

Тепловая схема котельной с водогрейными котлами: Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения

Содержание

Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения

Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения

Выбор системы теплоснабжения (открытая или закрытая) производится на основе технико-экономических расчетов. Пользуясь данными, полученными от заказчика, и методикой, изложенной в § 5.1, приступают к составлению, затем и расчету схем, которые называются тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, поскольку максимальная теплопроизводительность чугунных котлов не превышает 1,0 — 1,5 Гкал/ч.

Так как рассмотрение тепловых схем удобнее вести на практических примерах, ниже приведены принципиальные и развернутые схемы котельных с водогрейными котлами. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, работающей на закрытую систему теплоснабжения, показана на рис. 5.7.

Рис. 5.7. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 — котел водогрейный; 2 — насос сетевой; 3 — насос рециркуляционный; 4 — насос сырой воды; 5 — насос подпиточной воды; 6 — бак подпиточной воды; 7 — подогреватель сырой воды; 8 — подогреватель химии чески очищенной воды; 9 — охладитель подпиточной воды; 10 — деаэратор; 11 — охладитель выпара.

Вода из обратной линии тепловых сетей с небольшим напором (20 — 40 м вод. ст.) поступает к сетевым насосам 2. Туда же подводится вода от подпиточных насосов 5, компенсирующая утечки воды в тепловых сетях. К насосам 1 и 2 подается и горячая сетевая вода, теплота которой частично использована в теплообменниках для подогрева химически очищенной 8 и сырой воды 7.

Для обеспечения температуры воды перед котлами, заданной по условиям предупреждения коррозии, в трубопровод за сетевым насосом 2 подают необходимое количество горячей воды, вышедшей из водогрейных котлов 1. Линию, по которой подают горячую воду, называют рециркуляционной. Вода подается рециркуляционным насосом 3, перекачивающим нагретую воду. При всех режимах работы тепловой сети, кроме максимально зимнего, часть воды из обратной линии после сетевых насосов 2, минуя котлы, подают по линии перепуска в количестве G пер в подающую магистраль, где вода, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей. Добавка химически очищенной воды подогревается в теплообменниках 9, 8 11 деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из баков 6 забирает подпиточный насос 5 и подает в обратную линию.

Даже в мощных водогрейных котельных, работающих на закрытые системы теплоснабжения, можно обойтись одним деаэратором подпиточной воды с невысокой производительностью. Уменьшается также мощность подпиточных насосов, оборудование водоподготовительной установки и снижаются требования к качеству подпиточной воды по сравнению с котельными для открытых систем. Недостатком закрытых систем является некоторое удорожание оборудования абонентских узлов горячего водоснабжения.

Для сокращения расхода воды на рециркуляцию ее температура на выходе из котлов поддерживается, как правило, выше температуры воды в подающей линии тепловых сетей. Только при расчетном максимально зимнем режиме температуры воды на выходе из котлов и в подающей линии тепловых сетей будут одинаковы. Для обеспечения расчетной температуры воды на входе в тепловые сети к выходящей из котлов воде подмешивается сетевая вода из обратного трубопровода. Для этого между трубопроводами обратной и подающей линии, после сетевых насосов, монтируют линию перепуска.

Наличие подмешивания и рециркуляции воды приводит к режимам работы стальных водогрейных котлов, отличающимся от режима тепловых сетей. Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества воды, проходящей через них. Расход воды должен поддерживаться в заданных пределах независимо от колебаний тепловых нагрузок. Поэтому регулирование отпуска тепловой энергии в сеть необходимо осуществлять путем изменения температуры воды на выходе из котлов.

Для уменьшения интенсивности наружной коррозии труб поверхностей стальных водогрейных котлов необходимо, поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов. Минимально допустимая температура воды на входе в котлы рекомендуется следующая:

  • при работе на природном газе — не ниже 60°С;
  • при работе на малосернистом мазуте — не ниже 70°С;
  • при работе на высокосернистом мазуте — не ниже 110°С.

В связи с тем, что температура воды в обратных линиях тепловых сетей почти всегда ниже 60°С, тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения предусматривают, как отмечено ранее, рециркуляцинонные насосы и соответствующие трубопроводы. Для определения необходимой температуры воды за стальными водогрейными котлами должны быть известны режимы работы тепловых сетей, которые отличаются от графиков или режимных котлоагрегатов.

Во многих случаях водяные тепловые сети рассчитываются для работы по так называемому отопительному температурному графику типа, показанного на рис. 2.9. Расчет показывает, что максимальный часовой расход воды, поступающей в тепловые сети от котлов, получается при режиме, соответствующем точке излома графика температур воды в сетях, т. е. при температуре наружного воздуха, которой соответствует на низшей температура воды в подающей линии. Эту температуру поддерживают постоянной даже при дальнейшем повышении температуры наружного воздуха.

Исходя из изложенного, в расчет тепловой схемы котельной вводят пятый характерный режим, отвечающий точке излома графика температур воды в сетях. Такие графики строятся для каждого района с соответствующей последнему расчетной температурой наружного воздуха по типу показанного на рис. 2.9. С помощью подобного графика легко находятся необходимые температуры в подающей и обратной магистралях тепловых сетей и необходимые температуры воды на выходе из котлов. Подобные графики для определения температур воды в тепловых сетях для различных расчетных температур наружного воздуха — от -13°С до — 40°С разработаны Теплоэлектропроектом.

Температуры воды в подающей и в обратной магистралях,°С, тепловой сети могут быть определены по формулам:

где tвн — температура воздуха внутри отапливаемых помещений,°С; tH — расчетная температура наружного воздуха для отопления,°С; t′H — изменяющаяся во времени температура наружного воздуха,°С;π′i — температура воды в подающем трубопроводе при tн°С; π2 — температура воды в обратном трубопроводе при tн°С;tн — температура воды в подающем трубопроводе при t′н,°С; ∆т — расчетный перепад температур, ∆t = π1 — π2,°С; θ =πз 2 — расчетный перепад температур в местной системе,°С; π3 = π1+ aπ2 / 1+ a — расчетная температура воды, поступающей в отопительный прибор, °С; π′2 — температура воды, идущей в обратный трубопровод от прибора при t’H,°С; а — коэффициент смещения, равный отношению количества обратной воды, подсасываемой элеватором, к количеству сетевой воды.

Сложность расчетных формул (5.40) и (5.41) для определения температуры воды в тепловых сетях подтверждает целесообразность использования графиков типа показанного на рис. 2.9, построенного для района с расчетной температурой наружного воздуха — 26 °С. Из графика видно, что при температурах наружного воздуха 3°C и выше вплоть до конца отопительного сезона температура воды в подающем трубопроводе тепловых сетей постоянна и равна 70 °С.

Исходными данными для расчетов тепловых схем котельных со стальными водогрейными котлами для закрытых систем теплоснабжения, как указывалось выше, служат расходы теплоты на отопление, вентиляцию и горячее водоснабжение с учетом тепловых потерь в котельной, сетях и расхода теплоты на собственные нужды котельной.

Соотношение отопительно-вентиляционных нагрузок и нагрузок горячего водоснабжения уточняется в зависимости от местных условий работы потребителей. Практика эксплуатации отопительных котельных показывает, что среднечасовой за сутки расход теплоты на горячее водоснабжение составляет около 20 % полной теплопроизводительности котельной. Тепловые потери в наружных тепловых сетях рекомендуется принимать в размере до 3 % общего расхода теплоты. Максимальные часовые расчетные расходы тепловой энергии на собственные нужды котельной с водогрейными котлами при закрытой системе теплоснабжения можно принять по рекомендации [9] в размере до 3 % установленной теплопроизводительности всех котлов.

Суммарный часовой расход воды в подающей линии тепловых сетей на выходе из котельной определяется, исходя из температурного режима работы тепловых сетей, и, кроме того, зависит от утечки воды через не плотности. Утечка из тепловых сетей для закрытых систем теплоснабжения не должна превышать 0,25 % объема воды в трубах тепловых сетей.

Допускается ориентировочно принимать удельный объем воды в местных системах отопления зданий на 1 Гкал/ч суммарного расчетного расхода теплоты для жилых районов 30 м3 и для промышленных предприятий — 15 м3.

С учетом удельного объема воды в трубопроводах тепловых сетей и подогревательных установках общий объем воды в закрытой системе ориентировочно можно принимать равным для жилых районов 45 — 50 м3, для промышленных предприятий — 25 — 35 MS на 1 Гкал/ч суммарного расчетного расхода теплоты.

Рис. 5.8. Развернутаые тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 — котел водогрейный; 2 — насос рециркуляционный; 3 — насос сетевой; 4 — насос сетевой летний; 5 — насос сырой воды; 6 — насос конденсатный; 7 — бак конденсатный; 8 — подогреватель сырой воды; 9 — подогреватель химически очищенной воды; 10 — деаэратор; 11 — охладитель выпара.

Иногда для предварительного определения количества утекающей из закрытой системы сетевой воды эту величину принимают в пределах до 2 % расхода воды в подающей линии. На основе расчета принципиальной тепловой схемы и после выбора единичных производительностей основного и вспомогательного оборудования котельной составляется полная развернутая тепловая схема. Для каждой технологической части котельной обычно составляются раздельные развернутые схемы, т. е. для оборудования собственно котельной, химводоочистки и мазутного хозяйства. Развернутая тепловая схема котельной с тремя водогрейными котлами КВ -ТС — 20 для закрытой системы теплоснабжения показана на рис. 5.8.

В верхней правой части этой схемы размещены водогрейные котлы 1, а в левой — деаэраторы 10 ниже котлов размещены рециркуляцинонные ниже сетевые насосы, под деаэраторами — теплообменники (подогреватели) 9, бак деаэрированной воды 7, подпилочные насосы 6, насосы сырой воды 5, дренажные баки и продувочный колодец. При выполнении развернутых тепловых схем котельных с водогрейными котлами применяют обще станционную или агрегатную схему компоновки оборудования (рис. 5.9).

Общестанционные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения характеризуется присоединением сетевых 2 и рециркуляционных 3 насосов, при котором вода из обратной линии тепловых сетей может поступать к любому из сетевых насосов 2 и 4, подключенных к магистральному трубопроводу, питающему водой все котлы котельной. Рециркуляцинонные насосы 3 подают горячую воду из общей линии за котлами также в общую линию, питающую водой все водогрейные котлы.

При агрегатной схеме компоновки оборудования котельной, изображенной на рис. 5.10, для каждого котла 1 устанавливаются сетевые 2 и рециркулярные насосы 3.

Рис 5.9 Общестанционная компоновка котлов сетевых и рециркуляционных насосов.1 — котел водогрейный , 2 — рециркуляционный , 3 — насос сетевой, 4 — насос сетевой летний.

Рис. 5-10. Агрегатная компоновка котлов КВ — ГМ — 100, сетевых и рециркуляционных насосов. 1 — насос водогрейный; 2 — насос сетевой; 3 — насос рециркуляционный.

Вода из обратной магистрали поступает параллельно ко всем сетевым насосам, а нагнетательный трубопровод каждого насоса подключен только к одному из водонагревательных котлов. К рециркуляционному насосу горячая вода поступает из трубопроводом за каждым котлом до включения его в общую падающую магистраль и направляется в питательную линию того же котлоагрегата. При компоновке при агрегатной схеме предусматривается установка одного для всех водогрейных котлов. На рис.5.10 линии подпиточной и горячей воды к основным трубопроводам и теплообменником не показаны.

Агрегатный способ размещения оборудования особенно широко применяется в проектах водогрейных котельных с крупными котлами ПТВМ — 30М, КВ — ГМ 100. и др. Выбор обще станционного или агрегатного способа компоновки оборудования котельных с водогрейными котлами в каждом отдельном случае решается, исходя из эксплуатационных соображений. Важнейшими из них из компоновки при агрегатной схеме является облегчение учета и регулирования расхода и параметра теплоносителя от каждого агрегата магистральных теплопроводов большого диаметра и упрощение ввода в эксплуатацию каждого агрегата.

Котельный завод Энергия-СПБ производит различные модели водогрейных котлов. Транспортирование котлов и другого котельно-вспомогательного оборудования осуществляется автотранспортом, ж/д полувагонами и речным транспортом. Котельный завод поставляет продукцию во все регионы России и Казахстана.

Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения

Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения

Выбор системы теплоснабжения (открытая или закрытая) производится на основе технико-экономических расчетов. Пользуясь данными, полученными от заказчика, и методикой, изложенной в § 5.1, приступают к составлению, затем и расчету схем, которые называются тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, поскольку максимальная теплопроизводительность чугунных котлов не превышает 1,0 — 1,5 Гкал/ч.

Так как рассмотрение тепловых схем удобнее вести на практических примерах, ниже приведены принципиальные и развернутые схемы котельных с водогрейными котлами. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, работающей на закрытую систему теплоснабжения, показана на рис. 5.7.

Рис. 5.7. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 — котел водогрейный; 2 — насос сетевой; 3 — насос рециркуляционный; 4 — насос сырой воды; 5 — насос подпиточной воды; 6 — бак подпиточной воды; 7 — подогреватель сырой воды; 8 — подогреватель химии чески очищенной воды; 9 — охладитель подпиточной воды; 10 — деаэратор; 11 — охладитель выпара.

Вода из обратной линии тепловых сетей с небольшим напором (20 — 40 м вод. ст.) поступает к сетевым насосам 2. Туда же подводится вода от подпиточных насосов 5, компенсирующая утечки воды в тепловых сетях. К насосам 1 и 2 подается и горячая сетевая вода, теплота которой частично использована в теплообменниках для подогрева химически очищенной 8 и сырой воды 7.

Для обеспечения температуры воды перед котлами, заданной по условиям предупреждения коррозии, в трубопровод за сетевым насосом 2 подают необходимое количество горячей воды, вышедшей из водогрейных котлов 1. Линию, по которой подают горячую воду, называют рециркуляционной. Вода подается рециркуляционным насосом 3, перекачивающим нагретую воду. При всех режимах работы тепловой сети, кроме максимально зимнего, часть воды из обратной линии после сетевых насосов 2, минуя котлы, подают по линии перепуска в количестве G пер в подающую магистраль, где вода, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей. Добавка химически очищенной воды подогревается в теплообменниках 9, 8 11 деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из баков 6 забирает подпиточный насос 5 и подает в обратную линию.

Даже в мощных водогрейных котельных, работающих на закрытые системы теплоснабжения, можно обойтись одним деаэратором подпиточной воды с невысокой производительностью. Уменьшается также мощность подпиточных насосов, оборудование водоподготовительной установки и снижаются требования к качеству подпиточной воды по сравнению с котельными для открытых систем. Недостатком закрытых систем является некоторое удорожание оборудования абонентских узлов горячего водоснабжения.

Для сокращения расхода воды на рециркуляцию ее температура на выходе из котлов поддерживается, как правило, выше температуры воды в подающей линии тепловых сетей. Только при расчетном максимально зимнем режиме температуры воды на выходе из котлов и в подающей линии тепловых сетей будут одинаковы. Для обеспечения расчетной температуры воды на входе в тепловые сети к выходящей из котлов воде подмешивается сетевая вода из обратного трубопровода. Для этого между трубопроводами обратной и подающей линии, после сетевых насосов, монтируют линию перепуска.

Наличие подмешивания и рециркуляции воды приводит к режимам работы стальных водогрейных котлов, отличающимся от режима тепловых сетей. Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества воды, проходящей через них. Расход воды должен поддерживаться в заданных пределах независимо от колебаний тепловых нагрузок. Поэтому регулирование отпуска тепловой энергии в сеть необходимо осуществлять путем изменения температуры воды на выходе из котлов.

Для уменьшения интенсивности наружной коррозии труб поверхностей стальных водогрейных котлов необходимо, поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов. Минимально допустимая температура воды на входе в котлы рекомендуется следующая:

при работе на природном газе — не ниже 60°С; при работе на малосернистом мазуте — не ниже 70°С; при работе на высокосернистом мазуте — не ниже 110°С.

В связи с тем, что температура воды в обратных линиях тепловых сетей почти всегда ниже 60°С, тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения предусматривают, как отмечено ранее, рециркуляцинонные насосы и соответствующие трубопроводы. Для определения необходимой температуры воды за стальными водогрейными котлами  должны быть известны режимы работы тепловых сетей, которые отличаются от графиков или режимных котлоагрегатов.  

Во многих случаях водяные тепловые сети рассчитываются для работы по так называемому отопительному температурному графику типа, показанного на рис. 2.9. Расчет показывает, что максимальный часовой расход воды, поступающей в тепловые сети от котлов, получается при режиме, соответствующем точке излома графика температур воды в сетях, т. е. при температуре наружного воздуха, которой соответствует на низшей температура воды в подающей линии. Эту температуру поддерживают постоянной даже при дальнейшем повышении температуры наружного воздуха.

Исходя из изложенного, в расчет тепловой схемы котельной вводят пятый характерный режим, отвечающий точке излома графика температур воды в сетях. Такие графики строятся для каждого района с соответствующей последнему расчетной температурой наружного воздуха по типу показанного на рис. 2.9. С помощью подобного графика легко находятся необходимые температуры в подающей и обратной магистралях тепловых сетей и необходимые температуры воды на выходе из котлов. Подобные графики для определения температур воды в тепловых сетях для различных расчетных температур наружного воздуха — от -13°С до — 40°С разработаны Теплоэлектропроектом.

Температуры воды в подающей и в обратной магистралях,°С, тепловой сети могут быть определены по формулам:

где tвн — температура воздуха внутри отапливаемых помещений,°С; tH — расчетная температура наружного воздуха для отопления,°С; t′H — изменяющаяся во времени температура наружного воздуха,°С;π′i — температура воды в подающем трубопроводе при tн°С; π2 — температура воды в обратном трубопроводе при tн°С;tн — температура воды в подающем трубопроводе при t′н,°С; ∆т — расчетный перепад температур, ∆t = π1 — π2,°С;  θ =πз 2 — расчетный перепад температур в местной системе,°С; π3 = π1+ aπ2 / 1+ a — расчетная температура воды, поступающей в отопительный прибор, °С; π′2 — температура воды, идущей в обратный трубопровод от прибора при t’H,°С; а — коэффициент смещения, равный отношению количества обратной воды, подсасываемой элеватором, к количеству сетевой воды.

Сложность расчетных формул (5.40) и (5.41) для определения температуры воды в тепловых сетях подтверждает целесообразность использования графиков типа показанного на рис. 2.9, построенного для района с расчетной температурой наружного воздуха — 26 °С. Из графика видно, что при температурах наружного воздуха 3°C и выше вплоть до конца отопительного сезона температура воды в подающем трубопроводе тепловых сетей постоянна и равна 70 °С.

Исходными данными для расчетов тепловых схем котельных со стальными водогрейными котлами для закрытых систем теплоснабжения, как указывалось выше, служат расходы теплоты на отопление, вентиляцию и горячее водоснабжение с учетом тепловых потерь в котельной, сетях и расхода теплоты на собственные нужды котельной.

Соотношение отопительно-вентиляционных нагрузок и нагрузок горячего водоснабжения уточняется в зависимости от местных условий работы потребителей. Практика эксплуатации отопительных котельных показывает, что среднечасовой за сутки расход теплоты на горячее водоснабжение составляет около 20 % полной теплопроизводительности котельной. Тепловые потери в наружных тепловых сетях рекомендуется принимать в размере до 3 % общего расхода теплоты. Максимальные часовые расчетные расходы тепловой энергии на собственные нужды котельной с водогрейными котлами при закрытой системе теплоснабжения можно принять по рекомендации [9] в размере до 3 % установленной теплопроизводительности всех котлов.

Суммарный часовой расход воды в подающей линии тепловых сетей на выходе из котельной определяется, исходя из температурного режима работы тепловых сетей, и, кроме того, зависит от утечки воды через не плотности. Утечка из тепловых сетей для закрытых систем теплоснабжения не должна превышать 0,25 % объема воды в трубах тепловых сетей.

Допускается ориентировочно принимать удельный объем воды в местных системах отопления зданий на 1 Гкал/ч суммарного расчетного расхода теплоты для жилых районов 30 м3 и для промышленных предприятий — 15 м3.

С учетом удельного объема воды в трубопроводах тепловых сетей и подогревательных установках общий объем воды в закрытой системе ориентировочно можно принимать равным для жилых районов 45 — 50 м3, для промышленных предприятий — 25 — 35 MS на 1 Гкал/ч суммарного расчетного расхода теплоты.

Рис. 5.8. Развернутаые тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 — котел водогрейный; 2 — насос рециркуляционный; 3 — насос сетевой; 4 — насос сетевой летний; 5 — насос сырой воды; 6 — насос конденсатный; 7 — бак конденсатный; 8 — подогреватель сырой воды; 9 — подогреватель химически очищенной воды; 10 — деаэратор; 11 — охладитель выпара.

Иногда для предварительного определения количества утекающей из закрытой системы сетевой воды эту величину принимают в пределах до 2 % расхода воды в подающей линии. На основе расчета принципиальной тепловой схемы и после выбора единичных производительностей основного и вспомогательного оборудования котельной составляется полная развернутая тепловая схема. Для каждой технологической части котельной обычно составляются раздельные развернутые схемы, т. е. для оборудования собственно котельной, химводоочистки и мазутного хозяйства. Развернутая тепловая схема котельной с тремя водогрейными котлами КВ -ТС — 20 для закрытой системы теплоснабжения показана на рис. 5.8.

В верхней правой части этой схемы размещены водогрейные котлы 1, а в левой — деаэраторы 10 ниже котлов размещены рециркуляцинонные ниже сетевые насосы, под деаэраторами — теплообменники (подогреватели) 9, бак деаэрированной воды 7, подпилочные насосы 6, насосы сырой воды 5, дренажные баки и продувочный колодец. При выполнении развернутых тепловых схем котельных с водогрейными котлами применяют обще станционную или агрегатную схему компоновки оборудования (рис. 5.9).

Общестанционные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения характеризуется присоединением сетевых 2 и рециркуляционных 3 насосов, при котором вода из обратной линии тепловых сетей может поступать к любому из сетевых насосов 2 и 4, подключенных к магистральному трубопроводу, питающему водой все котлы котельной. Рециркуляцинонные насосы 3 подают горячую воду из общей линии за котлами также в общую линию, питающую водой все водогрейные котлы.

При агрегатной схеме компоновки оборудования котельной, изображенной на рис. 5.10, для каждого котла 1 устанавливаются сетевые 2 и рециркулярные насосы 3.

Рис 5.9 Общестанционная компоновка котлов сетевых и рециркуляционных насосов.1 — котел водогрейный , 2 — рециркуляционный , 3 — насос сетевой, 4 — насос сетевой летний.

Рис. 5-10. Агрегатная компоновка котлов КВ — ГМ — 100, сетевых и рециркуляционных насосов. 1 — насос водогрейный; 2 — насос сетевой; 3 — насос рециркуляционный.

Вода из обратной магистрали поступает параллельно ко всем сетевым насосам, а нагнетательный трубопровод каждого насоса подключен только к одному из водонагревательных котлов. К рециркуляционному насосу горячая вода поступает из трубопроводом за каждым котлом до включения его в общую падающую магистраль и направляется в питательную линию того же котлоагрегата. При компоновке при агрегатной схеме предусматривается установка одного для всех водогрейных котлов. На рис.5.10 линии подпиточной и горячей воды к основным трубопроводам и теплообменником не показаны.

Агрегатный способ размещения оборудования особенно широко применяется в проектах водогрейных котельных с крупными котлами ПТВМ — 30М, КВ — ГМ 100. и др. Выбор обще станционного или агрегатного способа компоновки оборудования котельных с водогрейными котлами в каждом отдельном случае решается, исходя из эксплуатационных соображений. Важнейшими из них из компоновки при агрегатной схеме является облегчение учета и регулирования расхода и параметра теплоносителя от каждого агрегата магистральных теплопроводов большого диаметра и упрощение ввода в эксплуатацию каждого агрегата.

Тепловые схемы котельных с водогрейными котлами для открытых систем теплоснабжения

Тепловые схемы котельных с водогрейными котлами для открытых систем теплоснабжения

В открытых системах теплоснабжения подготовленная в котельной вода не только служит теплоносителем, но и поступает на нужды горячего водоснабжения. Разбор воды производится непосредственно из трубопроводов тепловой сети без промежуточных подогревателей. Тепловые схемы котельных с водогрейными котлами для открытых систем теплоснабжения отличаются от таковой для закрытой в основном производительностью водоподготовки для подпитки тепловых сетей. Количество подпиточной воды в этом случае определяется потерями воды в сетях, в котельной и расходом воды для нужд горячего водоснабжения. Для представления о количестве воды для закрытых и открытых систем теплоснабжения ниже приведены расходы по данным типовых проектов котельных. Так, например, расчетный максимальный часовой расход воды для подпитки тепловых сетей в котельных теплопроизводительностью 150 Гкал/ч для закрытой системы теплоснабжения составляет 45 м3/ч, для открытой — 670 м3/ч.

Рис. 5.11. Принципиальные тепловые схемы котельных с водогрейными котлами для открытых систем теплоснабжения.

Вариант схемы без установки бака и насосов деаэрированной воды.1- котел водогрейный; 2 — насос сетевой; 3 — насос циркуляционный; 4 — насос летний сетевой; 5 — насос рециркуляционный; 6 — насос подпиточный; 7 — насос сырой воды; 8 — насос для подачи воды к эжектору; 9 — деаэратор; 10 — охладитель выпара; 11 — эжектор; 12 — бак рабочей воды; 13 — бак — аккумулятор; 14 — подогреватель сырой воды; 15 — подогреватель химически очищенной воды.

Так как расходы воды при открытой системе неравномерны по времени, то для выравнивания суточного графика нагрузок на горячее водоснабжение и уменьшения расчетной производительности оборудования водоподготовки предусматривают установку баков — аккумуляторов для деаэрированной сетевой воды. Из них в часы максимума потребления горячая вода подпиточными насосами подается к сетевым насосам. Кроме того, во избежание остывания воды в сетях в часы минимума потребления в летний период необходимо прокачивать около 10 % максимального расхода, что связано с увеличением расхода электроэнергии.

Качество подготовки воды для подпитки открытой системы теплоснабжения должно быть значительно выше качества воды для подпитки закрытой системы, так как к воде для горячего водоснабжения предъявляются такие же требования, как и к питьевой водопроводной воде. Появление крупных баков-аккумуляторов для деаэрированной воды усложняет тепловые схемы водогрейных котельных. Поскольку зарядка и разрядка этих баков может быть осуществлена различными путями, разработано несколько вариантов тепловых схем с включением в них деаэраторов и баков аккумуляторов.

На рис. 5.11 показаны принципиальные тепловые схемы котельных с водогрейными котлами для открытых систем теплоснабжения.

Система с водогрейными котлами 1, элементы которой не отличаются от изображенной на рис. 5.7, за исключением бака — аккумулятора 13 и системы, создающей вакуум в деаэраторе, состоит из водоструйного эжектора 11, бака «рабочей» воды 12 н насоса 8, подающего воду к эжектору. Из деаэратора 9 вода поступает самотеком в баки — аккумулятора 13, а оттуда откачивается подпиточными насосами 6 и подается во всасывающий коллектор сетевых насосов 2. Такая схема включения оборудования для котельных малой производительности, менее 20 Гкал/ч, в эксплуатации оказалась недостаточно надежной, так как затруднено поддержание заданного уровня воды в деаэраторе 9 и баках 13, без чего нормальная работа деаэраторов невозможна.

Трудность поддержания постоянного уровня в деаэраторе объясняется колебаниями уровня в баке — аккумуляторе 13 и различным гидравлическим сопротивлением трубопроводов. Возможен и другой вариант тепловой схемы, при котором вода из деаэраторных баков поступает самотеком в бак деаэрированной воды, далее к перекачивающим насосам, которые подают воду в баки — аккумуляторы. Из баков — аккумуляторов вода забирается подпиточными насосами и подается в тепловые сети. Такая схема обеспечивает надежную работу деаэраторов, но требует установки двух групп насосов — перекачивающих и подпиточных, что удорожает, котельную установку.

Гипрокоммунэнерго [26] разработаныа другие Тепловые схемы котельных с водогрейными котлами для открытых систем теплоснабжения. Тепловые схемы котельных с водогрейными котлами для открытых систем теплоснабжения, показанные на рис. 5.12, включают в себя группу из трех подпиточных насосов 6, которая используется одновременно как для подпитки тепловых сетей, так и для зарядки баков — аккумуляторов 13 подпиточной воды. В ночное время, когда разбор воды из сетей незначителен, подпиточный насос 6 падает воду из деаэраторных баков в баки — аккумуляторы 13 и на подпитку тепловых сетей, куда идет небольшая часть этой воды. При росте разбора воды из сетей включается в работу второй подпиточный насос 6, который забирает воду из баков — аккумуляторов и подает ее во всасывающую магистраль сетевых насосов 2; третий подпиточный насос в этой схеме является резервным.

Тепловые схемы котельных с водогрейными котлами для открытых систем теплоснабжения имеют и недостатки, касающиеся в основном производительности и напора подпиточных насосов. При прокачке воды из деаэраторного бака в бак — аккумулятор требуется почти постоянная производительность насоса 6 и сравнительно небольшой напор, лежащий в пределах 15 — 20 м вод. ст. В тепловых сетях с открытой системой горячего водоснабжения расход подпиточной воды изменяется в течение суток значительно, напор колеблется в пределах от 30 до 60 м вод. ст., вследствие этого мощность и расход энергии на насосы различны.

Рис. 5.12. Принципиальная тепловая схема котельной с водогрейными котлам для открытой системы теплоснабжения.

Вариант схемы без установки  насосов деаэрированной воды. Экспликация оборудования — см. рис. 5.11.

При выборе этой или иной схемы включения насосов для подпитки тепловых сетей необходимо сопоставить технико-экономические показатели нескольких схем, в которых должны быть учтены расходы электроэнергии на привод насосов при разных режимах работы.

Приведенные на рис. 5.11 и 5.12 принципиальные тепловые схемы котельных установок для открытых систем теплоснабжения показывают, что общий порядок включения оборудования и организации потоков теплоносителя изменяются незначительно по сравнению с рассмотренными схемами закрытых систем теплоснабжения.

Вода в подогревателе химически очищенной воды нагревается от 20 — 30° С до 55 — 70° С и подается в колонку вакуумного деаэратора. Вакуум (около 0,3 кгс/см2) в установке поддерживается за счет отсасывания из колонки паровоздушной смеси водоструйными эжекторами или водокольцевыми насосами типа РМК. Вода для эжекторов циркулирует по замкнутому контуру: бак «рабочей» воды 12, насос 8, эжектор 11 обратно в бак совместно с конденсатом паровоздушной смеси из деаэратора подпиточной воды. Напор воды, эжектирующей смесь, поддерживается в пределах 40 — 50 м вод. ст.

Паровоздушная смесь также охлаждается перед эжекторами в охладителе выпара 10. Бак деаэрированной воды, как правило, должен размещаться ка нулевой отметке котельной, а колонка вакуумного деаэратора устанавливается на отметке, обеспечивающей давление в баке деаэрированной воды, равное атмосферному. Практически установку колонки деаэратора обычно принимают на высоте 7,5 — 8,0 м от пола котельной.

Вода из обратной линии тепловых сетей с температурой в пределах от 35°С до 70°С поступает совместно с подпиточной водой во всасывающий коллектор сетевых насосов 2, нагнетается последними в водогрейные котлы 1 или через линию перепуска и регулятор расхода идет в подающую магистраль тепловых сетей.

Развернутая тепловая схема котельной с тремя водогрейными котлами КВ — ГМ — 10 для открытой системы теплоснабжения показана на рис. 5.13. Основные направления потоков теплоносителя рассмотрены выше при описании принципиальной тепловой схемы. Выбор оборудования для деаэрации и перекачки воды является главной задачей при разработке подобных развернутых тепловых схем котельных. Для открытых систем горячего водоснабжения вторым по значению элементом тепловой схемы, после водогрейного котла, является деаэрационная установка с баками-аккумуляторами. Из-за больших расходов воды применяют, как правило, вакуумный способ деаэрации.

Производительность деаэрационной установки выбирают так, чтобы обеспечить надежное удаление газов из подпиточной воды, как в зимние, так и в летние периоды работы установки.

Суммарная емкость баков — аккумуляторов для подпиточной воды принимается в 6 — 8 раз большей среднечасового за сутки расхода воды на бытовое  горячее водоснабжение. Принятая емкость баков — аккумуляторов должна обеспечить подпитку тепловых сетей водой в часы максимального водоразбора. Устанавливают обычно не менее двух металлических баков, внутренняя поверхность которых защищается антикоррозийным покрытием, а наружная — тепловой изоляцией. Количество, единичная производительность и развиваемые напоры насосов должны соответствовать требованиям регулирования работы тепловых сетей при экономном расходовании электроэнергии на их привод. Такие условия иногда диктуют необходимость использования в тепловых схемах котельных увеличенного количества насосов — сетевых (зимних и летних), перекачивающих, рециркуляционных и подпиточных (также зимних и летних).

В летнее время, когда отсутствуют тепловые нагрузки на отопление и вентиляцию, уменьшаются расходы воды и одновременно понижается температура и напор подаваемой воды.

Рис. 5.13. Развернутая тепловая схема котельной с тремя водогрейными котлами КВ — ГМ — 10.

1 — котел водогрейный; 2 — насос сырой воды; 3 — насос сетевой; 4 — насос летний сетевой;5 — насос рециркуляционный; 6 — насос подпиточный; 7 — насос летний подпиточный; 8 — насос циркуляционный; 9 — насос деаэрированной воды; 10 — насос рабочей воды; 11 — бак — аккумулятор; 12 — подогреватель сырой воды; 13 — подогреватель химически очищенной воды; 14 — бак деаэрированной воды; 15 — деаэратор; 16 — охладитель выпара; 17- эжектор; 18 — бак рабочей воды.

Чтобы обеспечить надежную работу водогрейных котлов и системы трубопроводов в котельной в расчетном температурном режиме (т. е. постоянство температуры воды на выходе из котла 150°С, особенно при работе на высокосернистом топливе), необходимо поддерживать в системе минимальный напор не ниже 80 м вод. ст.

В единичных случаях предлагается применять так называемую двухконтурную систему потока теплоносителя.

В приведенной на рис. 5.13 развернутой тепловой схеме котельной при работе по летнему режиму подогретая в котлах вода циркулирует по внутреннему контуру: котлы 1 — подогреватель химически очищенной воды 13 — подогреватель сырой воды 12 — циркуляционные насосы 8 — водогрейные котлы 1. При таком включении только незначительное количество горячей воды нужно подавать в колонку вакуумного деаэратора.

Второй контур циркуляционной сетевой воды на схеме может быть представлен следующим образом: вода из водопровода идет в насос сырой воды 2, в подогреватель сырой воды 12, затем на водоподготовительную установку, далее в подогреватель химически очищенной воды 13 и в колонку вакуумного деаэратора 15. Отсюда вода самотеком поступает в бак деаэрированной воды 14 и далее — к перекачивающему насосу 9, который воду с температурой 70°С подает в баки — аккумуляторы 11.

Летние сетевые насосы 4 из баков — аккумуляторов 11 нагнетают воду в подающую магистраль тепловых сетей и к потребителю горячей воды. Только небольшая часть воды из второго контура идет на подпитку внутреннего первого контура. Вода из тепловых сетей при отсутствии расхода теплоты на отопление и вентиляцию направляется в баки — аккумуляторы. Расход воды в таких случаях условно принимается равным 10% расхода воды на горячее водоснабжение.

Перевод котельной с лешего на отопительный режим работы производится путем соответствующих изменений направления потоков теплоносителя  с помощью запорной арматуры, установленной на трубопроводах. К основным преимуществам открытых систем теплоснабжения можно отнести удешевление водоподготовки горячего водоснабжения за счет централизации ее в котельных вместо многих тепловых пунктов по району, снижение стоимости тепловых сетей за счет уменьшения количества циркулирующей в них воды, удешевление абонентских вводов из-за отсутствия там водяных подогревателей и циркуляционных насосов.

Одновременно следует отметить и ряд недостатков открытых систем теплоснабжения: повышение требования к качеству сетевой воды, которое должно соответствовать качеству питьевой воды; при резком изменении расхода воды иногда наблюдаются гидравлические удары, особенно при подаче воды только на горячее водоснабжение.

При выборе системы теплоснабжения нужно учитывать, по меньшей мере, три особенности исходной воды, используемой для подпитки: склонность к низкотемпературному накипи образованию; коррозионную активность; склонность к сульфидному загрязнению.

При этом рекомендуется производить выбор систем теплоснабжения в два этапа:

  • предварительный выбор на основе классификации исходных вод;
  • окончательный выбор на основе анализа вод, проводимых в течение не менее чем годичного периода с учетом вероятных перспективных изменений показателей исходных вод [44].

По результатам анализа технико — экономических показателей в отношении надежности, преимуществ и недостатков той и другой системы в эксплуатации, а также исходя из реальной возможности получения качественной воды для подпитки тепловых сетей и сопоставления удельных капиталовложений на сооружение всего комплекса теплоснабжения — котельная и тепловые сети можно сделать выбор открытой или закрытой системы теплоснабжения.

Принципиальная Схема Водогрейной Котельной — tokzamer.ru

Конечно, существуют тепловые схемы, в которых не происходит такое безобразие см. Воздух, необходимый для горения топлива на полотне цепной решетки, засасывается дутьевым вентилятором через возду-хозаборную шахту и подается через воздухоподогреватель 9 под слой топлива через специальные колосники.

Воздух, поступивший в топку вместе с топливом, называется первичным. После расширения в частях среднегодавления турбины , т.

Вода, удаляемая из котла с непрерывной продувкой, направляется в расширитель сепаратор и в дальнейшем используется в технологической схеме котельной установки для подогрева сырой или химически очищенной воды.
Автоматизация котельной с паровым котлом на газе
Заказать оборудование для промышленной автоматизации можно тут.
Одновременно для паро- и ТС применяются котлы с давлением пара 1,4 МПа.

При этой величине от 0,6 до 1,2 включительно — по двухступенчатой смешанной схеме, более 1, 2 — по параллельной схеме. Из деаэратора питательной воды питательным насосом вода поступает в паровые котлы и на впрыск в РОУ.

По надежности отпуска тепла потребителям котельные относятся: — к первой категории — котельные, являющиеся единственным источником тепла системы теплоснабжения и обеспечивающие потребителей первой категории, не имеющих индивидуальных резервных источников тепла; — ко второй категории — остальные котельные. У сдвоенного для ремонта одного из насосов необходимо останавливать оба электродвигателя и разбирать всё на месте.

В котельных с водогрейными котлами часто устанавливаются вакуумные деаэраторы.

По этой причине может быть разработана схема автоматизации котельной с выбором одного из популярных режимов.

Котельные установки

Подробнее о принципиальной схеме котельной

При выполнении рабочих монтажных схем котельных применяют общестанционную или агрегатную схему компоновки оборудования. На рис.

Так наверное, лучше сделать в котельной один щит со свободно программируемым контроллером, который и запрограммировать на выполнение всех требующихся действий.

Водогрейные котельные оборудуются стальными или чугунными водогрейными котлами, вырабатывающими горячую воду, и предназначены для обеспечения в основном жилищно-коммунальных тепловых нагрузок: отопления, вентиляции и горячего ВС. Часть воздуха подводится к месту поступления топлива в топку.

Далее продувочная вода сбрасывается в канализацию или поступает в бак подпиточной воды.

По графику видно, что при увеличении тепловой нагрузки то есть при открывании ДПЗ водоподогревателя монотонно растёт Kv.

Надежность и экономичность водогрейных котлов зависит от постоянства расхода воды через них, который не должен снижаться относительно установленного заводом-изготовителем. Важнейшими из них при компоновке по агрегатной схеме являются облегчение учета и регулирования расхода и параметров теплоносителя от каждого агрегата, уменьшения протяженности в пределах котельной сетевых трубопроводов большого диаметра и упрощения ввода в эксплуатацию каждого агрегата.

При выборе типа горелки желательно учитывать следующее: К опасным производственным объектам не относятся сети газораспределения и сети газопотребления, работающие под давлением природного газа или сжиженного углеводородного газа до 0, МПа включительно. Однако часть золы в виде жидких и тестообразных шлаков вместе с несгорев-шими частицами топлива топочные газы захватывают и выносят из топочной камеры.
Схемы котельных с теплоаккумулятором

Смотрите также: Энергетическое обследование объектов

Схемы котельных установок

Пароводяная смесь, удаляемая из деаэраторной головки, проходит через теплообменник — охладитель выпара.

В котельных с водогрейными котлами часто устанавливаются вакуумные деаэраторы. Составить схему отпуска тепла. Из деаэратора питательной воды питательным насосом вода поступает в паровые котлы и на впрыск в РОУ.

Если на внутренних стенках экранных труб образуется накипь, то это затрудняет передачу теплоты от раскаленных продуктов сгорания к воде или пару и может привести к перегреву металла и разрыву труб под действием внутреннего давления. Так как расходы воды при открытой системе неравномерны по времени, то для выравнивания суточного графика нагрузок на горячее водоснабжение и уменьшения расчетной производительности котлоагрегатов и оборудования водоподготовки предусматривают установку баков-аккумуляторов деаэрированной горячей воды. Рециркуляция необходима для подогрева воды на входе в стальные котлы до темп-р выше темп-р точки росы, значения которых зависят от вида топлива, а также для поддержания постоянного расхода воды через котлы.

При периодических продувках воду, содержащую значительное количество шлама, направляют в расширитель периодических продувок барботер , откуда образовавшийся пар отводится в атмосферу, а остаток воды со шламом сливается в канализацию. При расчете тепловой схемы водогрейной котельной, когда не происходит фазовых превращений нагреваемой и охлаждаемой сред воды , уравнение теплового баланса в общем виде можно записать следующим образом , 3. Такие условия иногда диктуют необходимость использования в тепловых схемах котельных увеличенного количества насосов — сетевых зимних и летних , перекачивающих, рециркуляционных и подпиточных также зимних и летних.

Альтернативные возобновляемые источники, например, солнце, ветер, вода, дождевая вода и биомассы составляют лишь небольшую долю в общем объеме произ-ва энергопотребления, несмотря на то, что она стремительно увеличивается. Это минимизирует мех. Если давление воды снизить до 0,03 МПа, то при этом давлении воды будет кипеть при температуре 68,7 0С. В них пар отдает тепло питательной воде, конденсируется и конденсат вливается в общий поток питательной воды.

Общие положения по проектированию

Частицы золы из золоуловителя и шлак из бункера системой шлакозолоудаления выносятся из котельной. Автоматизация работы котельного оборудования Глупо было бы не воспользоваться возможностями, которые облегчают эксплуатацию отопительных систем.

Тепловые схемы, в которых расход воды через котёл изменяется. Далее нагретая сетевая вода поступает по трубопроводам к потребителю. В общем случае котельная установка представляет собой совокупность котла котлов и оборудования, включающего следующие устройства.

Если пароводогрейная котельная обслуживает открытые водяные сети, тепловой схемой предусматривается установка двух деаэраторов — для питательной и подпиточной воды. Установленный на обратной линии сетевой циркуляционный насос обеспечивает поступление питательной воды в котел и далее в систему теплоснабжения. Дата добавления: ; просмотров: ;. Принципиальная схема котельной с паровыми котлами, отпускающими пар и горячую воду 1 — котлы; 2 — РОУ, 3 — регулирующий клапан, 4 — пароводяной теплообменник, 5 — конденсатоотводчик, 6 — сетевой насос, 7 — фильтр, 8 — регулятор подпитки, 9 — деаэратор, 10 — питательный насос, 11 — аппараты химводоочистки, 12 — подпиточный насос Пароводогрейные котельные, называемые также смешанными, оборудуются указанными выше типами паровых и водогрейных котлов или комбинированными пароводогрейными котлами например, типа KTK и предназначаются для выработки пара на технологические нужды и горячей воды для обеспечения нагрузок отопления, вентиляции и горячего ВС.
Странная схема котельной

3.2.1. Тепловые схемы котельных с водогрейными котлами и основы их расчета

Чтобы сократить расход питательной воды при непрерывной продувке, применяют двухступенчатое испарение.

Вода из обратной линии тепловых сетей поступает к сетевым насосам.

Для выравнивания режима приготовления горячей воды, а также для ограничения и выравнивания давления в системах горячего и холодного водоснабжения в отопительных котельных предусматривают установку баков-аккумуляторов. К ним же подпиточ-ными насосами из бака подводится вода, компенсирующая потери в сетях.

Задний топочный экран в верхней части топки разрежен и образует так называемый фестон. В данном случае величины пропускной способности соотносятся как 0,5 : 0,7 : 1 : 2. Как запорную арматуру их применяют при диаметрах прохода до мм.

Вместо показанной на схеме дроссельной диафрагмы желательно сделать переход трубопровода на меньший диаметр. Водяные тепловые сети бывают двух типов: закрытые и открытые.

Тепловые схемы могут быть принципиальные, развернутые и рабочие или монтажные. В зависимости от вида теплоносителя котельные подразделяются на водогрейные, паровые и пароводогрейные. Экранные трубы топки находятся в зоне высоких температур, поэтому необходимо интенсивно отводить теплоту с помощью циркулирующей в этих трубах воды. Качество подготовки воды для подпитки открытой системы теплоснабжения должно быть значительно выше качества воды для подпитки закрытой системы, так как к воде горячего водоснабжения предъявляются такие же требования, как к питьевой водопроводной воде. Установленный на обратной линии сетевой циркуляционный насос обеспечивает поступление питательной воды в котел и далее в систему теплоснабжения.

Схемы котельных установок

Схема пароводогрейной котельной состоит из двух контуров: 1 для выработки пара и 2 для выработки горячей воды. Строительство котельных с паровыми и водогрейными котлами экономически целесообразно только при общей теплопроизводительности котельной более 50 МВт. Можно значительно повысить живучесть котельной, если разделить управление. Однако часть золы в виде жидких и тестообразных шлаков вместе с несгорев-шими частицами топлива топочные газы захватывают и выносят из топочной камеры. Количество подмешиваемой воды регулируется клапаном 5 в зависимости от величины тепловой нагрузки.

Тепловые схемы водогрейных отопительных котельных можно разделить по технологии на два вида и несколько подвидов. Для приготовления питательной воды котлов и подпиточной воды тепловой сети предусмотрен один деаэратор. Вакуум в деаэраторе поддерживается за счет отсасывания из колонки деаэратора паровоздушной смеси с помощью водоструйного эжектора. Предварительная обработка воды называется водоподготовкой, а обработанная вода, пригодная для питания котлов, — питательной. ПИД-регулятор путём плавного изменения температуры греющей воды поддерживает постоянной температуру воды на выходах скоростных водоподогревателей.
✅ Котельная в частном доме на 180 кв.м. И теплый водяной пол.

Тепловые схемы котельных с водогрейными котлами, страница 3

Ввиду
того, что различные орга­низации по-разному подходят к со­ставлению
принципиальных схем, ниже будут разобраны схемы, со­ставленные как в сокращенном,
так и в расширенном виде. Ввиду того, что на тепловую схему котельной влияет
выбор схемы горячего водо­снабжения, производится разбор двух вариантов, из
которых один с закрытой схемой горячего водо­снабжения, другой с открытой. В
случае закрытой схемы горячего водоснабжения, как известно, подогрев воды,
используемой для нужд   горячего  водоснабжения, осуществляется в местную
водоводяных подогревателях при открытой схеме вода для горячего водо­снабжения
забирается непосред­ственно из теплофикационной си­стемы. Принципиальная
тепловая схема котельной, оборудованной водогрейными котлами и работающей по
закрытой схеме горячего водоснабжения, представлена на рис 6-5 1. На этой схеме
движение воды происходит следующим образом. Сете­выми насосами 7 вода из
обратной линии теплофикационной системы подается в водогрейные котлы 1, где она
нагревается до необходи­мой температуры, и далее посту­пает в прямую подающую
линию теплофикационной сети. Кроме того, вода, нагретая в котлах, расхо­дуется
на подогрев подпиточной воды, поступающей в деаэраторы 2, а также
применяется для разогре­ва мазута в мазутном хозяйстве.

Для
обеспечения необходимой температуры сетевой воды перед котлами и нужного
количества ее специальные рециркуляционные на­сосы 8 забирают нагретую в
котлах воду и подают ее в линию перед котлами 7, где путем перемешива­ния
получается нужная для пита­ния котлов температура воды.

  
Подпиточная вода подвергается необходимой химической очистке и деаэрации в
вакуумных деаэрато­рах 2. Из деаэраторов вода подпиточными насосами 9
подается во всасывающую линию сетевых насосов 7.

Вакуум
в деаэраторах 2 осуще­ствляется при помощи водоструй­ных эжекторов 5.

Принципиальная
тепловая схема котельной, оборудованной водо­грейными котлами и работающей по
открытой схеме горячего водоснаб­жения, представлена на рис. 6-6.

Приведенная
на рис. 6-6 схема характеризуется применением ба­ков — аккумуляторов
подпиточной во­ды 8, необходимых для выравнива­ния графика работы
оборудования котельной.

 При
непосредственном водоразборе на горячее водоснабжение из теплофикационной
системы значи­тельно возрастает расход подпиточ­ной воды. Применение
баков-аккумуляторов подпиточной воды позволяет избежать влияния резких скач­ков,
столь характерных для горяче­го водоснабжения, на работу водоподготовительных 
устройств  ко­ельной.

Направление
тепловых потоков в котельной с открытым водоразбором на нужды горячего водоснаб­жения
в основном аналогично уже рассмотренным схемам с закрытой системой горячего
водоснабжения.  Характерной особенностью при­веденных схем водогрейных котель­ных
является применение вакуум­ной деаэрации подпиточной воды. Необходимость в
вакуумной деаэра­ции возникает в чисто водогрейных котельных из-за отсутствия
пара и невозможности в связи с этим осу­ществить деаэрацию подпиточной воды в
обычных атмосферных деаэ­раторах.

Следует
отметить, что и в чисто водогрейных котельных не исклю­чается возможность
получения пара на нужды подогрева воды в атмо­сферных деаэраторах за счет испа­рения
части нагретой воды, отби­раемой после котлов.

Такое
решение, помимо установ­ки в котельных  специальных испа­рителей, потребовало
бы на протя­жении всего отопительного периода

держать
температуру воды на выходе из котлов на вы­соком уровне. Последнее нежелательно
в условиях качественного  регулирова­ния температуры в тепло­фикационной
системе и не­обходимости  поддержания постоянного расхода воды через котлы.

Рис,
6-5. Принципиальная тепловая схема водогрейной котельной с закрытой схемой горячего
водоснабжения 1— котел, 2 — деаэратор, 3 — теплообменник для
подогрева химически очищенной воды перед де­аэратором, 4 — охладитель
выпара 5 — эжектор; 6—расходный бак,

7—сетевой
насос 8 — рецир­куляционный насос, 9 — подпиточный насос, 10 — насос
эжекторной установки.

Рис. 6-6. Принципиальная тепловая схема водогрей­ной
котельной с открытой схемой горячего водоснаб­жения.

1—котел;
2—деаэратор вакуумный; 3 — водоводяной подо­греватель для подогрева химически
очищенной воды; 4 — охладитель выпара, 5 — водоводяной теплообменник для
охлаждения воды из деаэратора, 6—расходный бак эжекторной установки;

7
— газоводяной эжектор; 8 — бак-акку­мулятор; 9 — сетевой насос;

10
рециркуляционный насос;

11
додпиточный насос, 12 — перекачивающий насос; 13 — насос для
подачи воды к эжектору,

И
кроме того, необходимо иметь в виду, что такое ре­шение возможно лишь для
закрытых схем, а для от­крытых схем неприемлемо, так как летом температура
сетевой воды не должна пре­вышать 70° С. В связи с из­ложенным выше упомяну­тый
способ получения пара не получил практического применения и более про­стым
решением считается применение вакуумного спо­соба деаэрации подпиточной воды,
основанного на самоиспарении ча­сти воды в головке деаэратора.

6-4.
ВАКУУМНАЯ ДЕАЭРАЦИЯ ВОДЫ В ВОДОГРЕЙНЫХ КОТЕЛЬНЫХ

  
Вопрос
ы вакуумной деаэрации
воды начали широко рассматри­ваться в связи с проектированием и строительством
водогрейных ко­тельных. Способ этот не нов, изве­стен давно, но практического
при­менения в широком масштабе не получил. Большого опыта эксплуа­тации
вакуумных деаэраторов нет еще и сейчас, тем более не было его к моменту начала
разработки схем водогрейных котельных.

  
До сих пор отсутствуют спе­циальные конструкции деаэраторов производительностью
25—300 т/ч для работы под вакуумом, а от­дельные опытные образцы,
разрабо­танные в ЦКТИ, не прошли еще эксплуатационной проверки и не
изготовляются в серийном порядке. По этой причине при проектирова­нии
водогрейных котельных пока что приходится применять обычные атмосферные
деаэраторы, приспо­сабливая их для работы в качестве вакуумных. Новизна этой
задачи побуждает перед рассмотрением различных схем работ» вакуумных
деаэраторов остановиться на вопро­се деаэрации воды вообще.

  
Деаэрация или дегазация воды основана на том, что весовое коли­чество газа, растворимое
в единице объема воды, пропорционально дав­лению его над водой (закон Генри).

Закон
Генри аналитически име­ет следующий вид:

с бойлером, с 2 котлами

Тепловая схема котельной предназначена для графического изображения основного и вспомогательное оборудование, и взаимосвязи  с помощью инженерных сетей. Такие схемы являются обязательными при разработке проектной документации, их выполняют с использованием элементов, утвержденных СНИП.

На схеме отмечают потоки движения теплоносителя по трубам к приборам отопления, котлу, баку и насосу. На линиях указывают расположение регулирующей арматуры и приборов безопасности.

СодержаниеПоказать

Чем отличаются принципиальные и развернутые тепловые схемы

Тепловые схемы теплоснабжения бывают принципиальные, развернутые и монтажные. На принципиальной схеме котельной указывают только основное теплосиловое оборудование: котлоагрегаты, теплообменные аппараты, деаэрационные установки, фильтры химической очистки воды, питательные, подпиточные и дренажные центробежные насосы, а также инженерные сети, которые объединяют все это оборудование без конкретизации числа и месторасположения. На таком графическом документе обозначают расходы и характеристики теплоносителей.

На развернутой тепловой схеме отражается размещенное оборудование, а также трубы, с помощью которых они соединяются, с уточнением расположения запорно-регулирующей арматуры, приборов безопасности.
В случае, когда нанесение на развернутую теплосхему всех узлов невозможно, то такую ее разъединяют на составляющие части по технологическому принципу. Технологическая схема котельной дает развернутую информацию по установленному оборудованию.

Чем отличаются схемы с закрытой и открытой системой

Основным различием открытой или гравитационной системы отопления от закрытой, считается полное отсутствие устройств для принудительного перемещения теплоносителя по трубам. Этот процесс происходит только за счет температурного расширения нагреваемой жидкости.

Состав элементов в тепловой схеме котельной с открытой схемой теплоснабжения:

  • Источник отопления – водогрейный котел, работающий на твердом, жидком и газообразном топливе.
  • Расширительный бак, для термокомпенсации теплоносителя.
  • Переливная труба термокомпенсатора.
  • Подающая (горячая) магистраль со стояками отопления.
  • Отопительные приборы.
  • Обратная магистраль со стояками отопления.
  • Вентиль слива теплоносителя.
  • Вентиль подпитки тепловой сети.

Циркуляция отопления теплоносителя, в закрытой схеме котельной установки, осуществляется благодаря циркуляционному насосу (3), который устанавливается на линии выхода воды из котла (1), как правило, в его верхней части, здесь же размещен воздушник (4). Вода, нагреваясь в котле поступает в подающий трубопровод отопления и направляется к батареям (9) через терморегулирующий кран (8).

На подающей линии устанавливают расширительный бак (7), для температурной компенсации воды при нагреве, предохранительный клапан (6), для сброса аварийного давления в сети и манометр (5) для контроля рабочего давления среды.

На отопительном приборе устанавливаются кран маевского для спуска воздушной пробки (10). По ходу обратного движения теплоносителя установлен трехходовой кран (17), фильтр очистки воды (13), запорный вентиль (15) и дренажный вентиль (14).

Газ к котлу поступает через газовый кран (18) и фильтр (19) для очистки энергоносителя перед форсункой горелочного устройства. Вода для подпитки в схеме водогрейной котельной поступает из водопровода (11) через вентиль (16) на фильтр для очистки от взвешенных веществ и солей жесткости. Котел оборудован линией подачи горячей воды на собственные нужды (2).

Схема котельной при использовании твердого топлива

Твердотопливные котлы имеют определенный недостаток, который вызван высокой инертностью работы, из-за невозможности тонкой регулировки процесса горения твердого топлива.

Для того чтобы сгладить недостаток, в схеме устанавливают буферную емкость, которая набирает температуру для нагрева контура отопления и расходует тепло в течении продолжительного времени.

Такая тепловая схема котельной на твердом топливе состоит:

  • Источник теплоснабжения с первичным контуром нагрева: твердотопливный котел;
  • группа безопасности с предохранительным клапаном;
  • буферная емкость;
  • циркуляционный насос контура отопления;
  • циркуляционный насос котлового контура;
  • расширительный бак;
  • запорная арматура, дренажи, воздушники;
  • балансировочный вентиль;
  • смесительный узел контура отопления, для автоматического поддержания температуры в батареях;
  • смесительный узел котлового контура, для оптимального режима работы котла;
  • погодозависимая или настраиваемая автоматика с сигнализацией аварийного режима.

План с электрокотлом

Электрический котел — агрегат, нагревающий теплоноситель с помощью преобразования электричества в тепловую энергию. Он применяется в качестве источников теплоснабжения для небольших пригородных домов либо, как аварийный источник   с газовым или твердотопливным котлом.

Исходя из модификации таких устройств, используются разнообразные схемы подсоединения электрокотлов к отоплению. Наиболее популярной является многоуровневая система отопления с комбинацией приборов нагрева в виде радиаторов и системы «теплый пол».

Базовые элементы электронагрева частного дома:

  1. Источник отопления, электрокотел.
  2. Группа безопасности, с воздушником, предохранительным клапаном и манометром, для сбрасывания излишнего давления в сети.
  3. Коллектор для направления воды по контурам.
  4. Радиаторы.
  5. Теплообменник для ГВС.
  6. Расширительный бачок, для гидрокомпенсации системы.
  7. Коллектор для системы «теплый пол».
  8. Система теплый пол.
  9. Фильтр  очистки теплоносителя от взвешенных веществ.
  10. Обратный клапан.
  11. Циркуляционный электронасос.
  12. Сети электроснабжения.
  13. Автоматика безопасности с сигнализацией.

Схема с газовым котлом

Газовые котлы являются самыми экономичными и функциональными источниками отопления. В небольшом корпусе, по сути, размещается мини-котельная в частном доме.

Производители современных котлов обустраивают в корпусе все необходимое оборудование в виде насосов, расширительного бака, предохранительно сбросного клапана и воздушника. Собственнику такого оборудования остается только подключить агрегат к контуру отопления и ГВС, что существенно снижает затраты на монтаж.

Но главное преимущество комплексной сборки котла – это согласованность работы всех вспомогательных узлов, которые прошли проверку и наладку в заводских условиях.

Самая простая тепловая схема газовой котельной:

  1. Источник теплоснабжения – газовый котел.
  2. Группа безопасности, с воздушником, предохранительным клапаном, манометром и расширительным баком.
  3. Подача теплоносителя к нагревательным приборам.
  4. Обратка теплоносителя от нагревательных приборов
  5. Радиаторы отопления
  6. Подача водопроводной воды для подпитки тепловой сети с фильтром и запорно-предохранительной арматурой.
  7. Подача водопроводной воды в контур ГВС котла.
  8. Фильтр грубой очистки теплоносителя от взвешенных веществ на линии обратки.
  9. Обратный клапан на линии обратки.
  10. Циркуляционный насос на линии обратки.

Бойлер в схеме котельной

Существуют разнообразные варианты включения бойлера косвенного нагрева к котлоагрегатам, которые могут работать на любом виде топлива: газ, твердое и жидкое топливо.

В этой схеме с бойлером косвенного нагрева не установлена гидрострелка или распределительный коллектор. Монтаж данных элементов связан с определенными сложностями, так как создает очень сложную гидросистему.

В данной схеме используется 2 насоса циркуляции — на отопление и ГВС. Насос для отопления работает постоянно при работе котельной. Циркуляционный насос ГВС, запускается по электросигналу термостата, установленного в баке.

Термостат определяет падение температуры жидкости в баке и передает сигнал на включение насоса, который начинает циркулировать теплоноситель по контуру нагрева между агрегатом и бойлером, нагревая воду до заданной температуры.

Такая схема используется для всех модификаций источников нагрева, устанавливаемых и в водогрейной, и в паровой котельной.

Допускается определенное видоизменение схемы, когда в ней установлен маломощный котел. Электронасос отопления может отключаться тем же термостатом, который включает насос к бойлеру.

В таком варианте теплообменник греется быстрее, а отопление остановлено. При продолжительном простое, температурный режим в комнате будет падать.

Кроме того после завершения прогрева в бойлере, насос в контуре отопления включается в работу и начинает прокачивать в котел холодный теплоноситель, что вызывает образование конденсата на поверхностях нагрева котла и приводит к преждевременному выходу его из строя.

Процесс конденсатообразования также может проявляться в случае длинных трубопроводов, проложенных к батареям. При большом теплосъеме на приборах отопления, теплоноситель аналогично может сильно остыть, низкая температура обратки станет вредить работе котла.

Для защиты его от конденсата и гидравлического удара, возникающего при соприкосновении холодной воды с горячими поверхностями нагрева, в системе предусматривают защитный контур, оборудованный трехходовым клапаном.

На схеме изображена температура 55С. Интегрированный в схему терморегулятор автоматически выбирает требуемую интенсивность движения потока для поддержания температуры теплоносителя на обратке.

Обвязка с гидрострелкой

В сложных многоуровневых системах теплоснабжения для балансировки потоков жидкости на разнообразных участках схемы с индивидуальными циркуляционными электронасосами зачастую применяют гидромеханический распределитель — гидравлическую стрелку либо коллектор.

Подобная схема котельного агрегата предполагает включение бойлера косвенного нагрева через насос НБ и НР, радиаторное отопление через насос НК1 и НК2, теплый пол — через Н1.

Она имеет возможность работать и без наличия гидравлического модуля, в таком случае предусматривают установку балансировочных вентилей, чтобы компенсировать перепады давления в разнообразных «ветках» системы.

Комплектация тепломеханического оборудования:

  1. Источник теплоснабжения – 2.
  2. Группа безопасности, с воздушником, предохранительным клапаном, манометром и расширительным баком.
  3. Подача теплоносителя к нагревательным приборам.
  4. Обратка теплоносителя от нагревательных приборов
  5. Радиаторы отопления.
  6. Система теплый пол.
  7. Бойлер косвенного нагрева
  8. Фильтр грубой очистки котловой воды от взвешенных веществ на линии обратки.
  9. Обратный клапан на линии обратки.
  10. Циркуляционные насосы: по магистральному трубопроводу, в контуре теплого пола и бойлера косвенного нагрева.

Схема котельной с 2 котлами

Применение двух газовых агрегатов для одной системы теплоснабжения является достаточно востребованным решением среди владельцев автономного отопления при тепловой мощности системы выше 50 кВт.

Это может быть и большая обогреваемая площадь объекта, и наличие дополнительных тепловых нагрузок в виде горячей воды или установок с воздушным калориферным обогревом.

Применение двух агрегатов на одну тепловую схему обладает рядом преимуществ по сравнению с одним источником равноценной мощности. Прежде всего, потому, что несколько малогабаритных агрегатов меньшего веса, значительно проще и экономичнее разместить в котельной, что особенно актуально при возведении крышных либо полуподвальных топочных.

Кроме этого, установка 2-х агрегатов значительно увеличивает эксплуатационную надежность системы теплоснабжения. При аварийной остановке одного из агрегата, она будет продолжать функционировать с 50% тепловой нагрузкой.

Такая схема обвязки существенно увеличивает рабочий ресурс котлов, из-за того что они меньше нагружены в отопительный период года.

 

Схемы котельных установок

Категория: Монтаж котлов

Схемы котельных установок

На тепловой схеме котельной условными графическими изображениями показывают основное и вспомогательное оборудование, связанное линиями трубопроводов для транспортирования пара или воды. Тепловые схемы могут быть принципиальные, развернутые и рабочие или монтажные.

Принципиальная тепловая схема содержит лишь главное оборудование и основные трубопроводы без арматуры.

На развернутую схему наносят все оборудование котельной и все трубопроводы, включая арматуру и различные вспомогательные устройства. Часто развернутую схему разделяют на самостоятельные технологические части по функциональному признаку, например, схема водоподготовки, схема деаэрационно-питательной установки, схема дренажей, схема продувки паровых котлов и т. п.

Рабочую, или монтажную, схему выполняют с указанием отметок расположения трубопроводов, размеров, марок стали, способов креплений, массы оборудования, деталей и других необходимых сведений.

Принципиальная тепловая схема котельной с водогрейными котлами изображена на рис. 2. Вода из обратной линии тепловых сетей поступает к сетевым насосам. К ним же подпиточ-ными насосами из бака подводится вода, компенсирующая потери в сетях. Для поддержания заданной температуры воды перед котлами в трубопровод за насосом подают необходимое количество горячей воды, вышедшей из котлов. С помощью перепуска между обратной и подающей линиями регулируется температура воды, идущей в сеть. Сырая вода, пройдя подогреватель, водоподготовительную установку ВПУ, подогреватель, охладители и деаэратор, подается на подпитку тепловой сети.

Рис. 1. Принципиальная тепловая схема котельной с водогрейными котлами:
1 — водогрейный котел, 2.5 — насосы, 3 — рециркуляционный насос, 4 — насос сырой воды, 6 — бак подпиточной воды, 7 — подогреватель сырой воды, 8 — охладитель подпиточной воды. 9—подогреватель химочищенной воды, 10 — вакуумный деаэратор, 11— охладитель выпара, 12 — регулирующий клапан; ВПУ — водоподготовительная установка

Рис. 4. Схема котельной установки с паровым вертикально-водотрубным котлом, работающим на твердом топливе: 1 — конвейер, 2 — барабан котла, 3 — запорная задвижка, 4—выходная камера пароперегревателя, 5 — фестон, 6 — пароперегреватель, 7 — экономайзер, 8 — топочные поверхности нагрева, 9 — воздухоподогреватель, 10— золоуловитель, 11—- дымовая труба, 12— дымосос, 13 — вентилятор, 14 — шлаковый бункер, 15—насос, 16—химводо-очистка, 17—решетка, 18—питатель, 19 — деаэратор, 20— бункер угля, 21, 22 — трубы

Технологическая схема котельной установки с паровым вертикально-водотрубным котлом, работающим на твердом топливе, изображена на рис. 3. Ленточный конвейер подает подготовленное твердое топливо в расходный бункер, откуда оно через питатель поступает в топку, куда по двум направлениям подается воздух, нагретый в воздухоподогревателе до температуры 250…400 °С. Часть воздуха подводится к месту поступления топлива в топку. Мелкие частицы топлива подхватываются потоком воздуха и сгорают в топочном пространстве на лету в виде факела. Воздух, поступивший в топку вместе с топливом, называется первичным. Крупные куски топлива выпадают из воздушного потока на цепную решетку, которая непрерывно движется. По мере продвижения цепной решетки топливо сгорает, а шлак и зола сбрасываются в шлаковый бункер.

Воздух, необходимый для горения топлива на полотне цепной решетки, засасывается дутьевым вентилятором через возду-хозаборную шахту и подается через воздухоподогреватель 9 под слой топлива через специальные колосники. Этот воздух называют также первичным.

В процессе сгорания топлива негорючие частички золы плавятся и образуют шлаки. При слоевом сжигании топлива основная масса золы и шлака остается на решетке. Однако часть золы в виде жидких и тестообразных шлаков вместе с несгорев-шими частицами топлива топочные газы захватывают и выносят из топочной камеры. Для дожигания несгоревших частиц топлива в верхнюю часть факела подают вторичный воздух. Чтобы исключить налипание частичек шлака на трубы фестона 5, температуру топочных газов на выходе из топочной камеры поддерживают ниже температуры плавления золы (1000…) 100 °С).

В топочной камере теплота от горящего топлива воспринимается поверхностями нагрева в виде лучистой энергии (излучения), которую называют радиацией. Поверхности нагрева, расположенные в топке, называют поэтому радиационными. Передача теплоты излучением в несколько раз эффективнее передачи теплоты конвекцией, поэтому в современных котлах стены топочной камеры стремятся более плотно закрыть трубами. Радиационные поверхности нагрева защищают (экранируют) внутреннюю поверхность обмуровки котла от высоких температур и химического воздействия расплавленных шлаков и поэтому называются экранными.

Задний топочный экран в верхней части топки разрежен и образует так называемый фестон. За фестоном в горизонтальном газоходе расположены конвективные поверхности нагрева из труб диаметром 30…40 мм, которые образуют пароперегреватель. Отдав часть теплоты пароперегревателю, топочные газы поступают в опускной газоход, в котором располагаются водяной экономайзер и воздухоподогреватель. Уходящие топочные газы, охлажденные до температуры 120… 180 °С, проходят через золоулавливатель, где очищаются от летучей золы, и дымососом выбрасываются через дымовую трубу в атмосферу. Частицы золы из золоуловителя и шлак из бункера системой шлакозолоудаления выносятся из котельной.

Экранные трубы топки находятся в зоне высоких температур, поэтому необходимо интенсивно отводить теплоту с помощью циркулирующей в этих трубах воды. Если на внутренних стенках экранных труб образуется накипь, то это затрудняет передачу теплоты от раскаленных продуктов сгорания к воде или пару и может привести к перегреву металла и разрыву труб под действием внутреннего давления. Для того чтобы накипь не образовывалась, воду, поступающую для питания котлов, предварительно обрабатывают.

Обработка воды заключается в том, что из нее удаляют большую часть плохо растворимых в воде солей кальция и магния (соли жесткости), а также кислород и углекислый газ, которые вызывают коррозию металла труб, барабана и камер. Предварительная обработка воды называется водоподготовкой, а обработанная вода, пригодная для питания котлов, — питательной. Вода, находящаяся внутри котла, называется котловой.

Поскольку в котле поддерживается давление выше атмосферного, питательную воду подают в котел принудительно питательным насосом, который забирает воду из деаэратора и подает ее через водяной экономайзер в барабан котла. Барабан служит для создания необходимого запаса котловой воды, обеспечения естественной циркуляции воды и сепарации пара.

Из барабана вода через необогреваемые водоопускные (во-доподводящие) трубы и камеры поступает в трубы поверхностей нагрева, в которых она нагревается, вскипает и в виде пароводяной смеси возвращается в барабан. Пар в барабане паросепарационными устройствами отделяется от капелек котловой воды, обладающих повышенным солесодержанием, и отводится в пароперегреватель. Отделившаяся вода смешивается в барабане котла с добавочной питательной водой и возвращается в трубы поверхностей нагрева.

Естественная циркуляция воды в котле осуществляется за счет разности плотностей воды в необогреваемых (или слабо обогреваемых) водоопускных трубах и пароводяной смеси в интенсивно обогреваемых трубах поверхностей нагрева. Поскольку плотность пароводяной смеси значительно меньше плотности воды, общий собственный вес столба пароводяной смеси в интенсивно обогреваемых трубах меньше собственного веса воды в необогреваемых или слабо обогреваемых водоопускных трубах.

В тех случаях, когда в паровых котлах по конструктивным соображениям затруднительно создать надежную циркуляцию котловой воды за счет естественного напора, применяют специальные насосы, которые обеспечивают высокие скорости движения воды по всему циркуляционному контуру. Такую принудительную систему циркуляции применяют также в водогрейных котлах.

Непрерывно поступающие в котел с питательной водой соли и образующийся в котловой воде шлам скапливаются в водяном объеме котла. Чтобы соли жесткости и щелочи не накапливались в котловой воде, часть воды из котла непрерывно отводят, при этом одновременно добавляют питательную воду с меньшим солесодержанием. Этот процесс называют непрерывной продувкой.

Непрерывную продувку осуществляют из верхнего барабана котла через дырчатые трубы. Расход воды при непрерывной продувке зависит от ее качества и составляет обычно 1…2% от производительности котла. Вода, удаляемая из котла с непрерывной продувкой, направляется в расширитель (сепаратор) и в дальнейшем используется в технологической схеме котельной установки для подогрева сырой или химически очищенной воды.

Для удаления скапливающегося в нижних точках котла (нижних камерах и барабанах) шлама применяют периодическую продувку. При периодических продувках воду, содержащую значительное количество шлама, направляют в расширитель периодических продувок (барботер), откуда образовавшийся пар отводится в атмосферу, а остаток воды со шламом сливается в канализацию.

Вместе с нагретой котловой водой, удаляемой с непрерывной продувкой из котла, отводится значительное количество теплоты, тем большее, чем больше процент продувки. Кроме того, приходится увеличивать расход питательной воды на подпитку котла. Поэтому количество продувочной воды должно быть минимальным. Чтобы сократить расход питательной воды при непрерывной продувке, применяют двухступенчатое испарение.

Паросепарационные устройства, используемые для очистки и осушения пара, могут быть внутри- или внебарабанные. Внеба-рабанные паросепарационные устройства выполняют обычно в виде выносных циклонов.

В пароперегревателе пар доводится до номинальной температуры и через выходную камеру и запорную задвижку подается по паропроводам к потребителю.

В том случае, если потребителю необходимо подать горячую воду, полученный в паровом котле пар пропускают через систему теплообменников. При этом в РОУ уменьшают давление пара, а в теплообменниках — водоподогревателях пар нагревает воду сетевой установки. Далее нагретая сетевая вода поступает по трубопроводам к потребителю.

Сложность технологической схемы котельной зависит от вида сжигаемого топлива и системы теплоснабжения, которая бывает открытой и закрытой.

В открытых системах теплоснабжения нагретая в котельной вода служит не только теплоносителем, но и поступает на нужды горячего водоснабжения путем непосредственного разбора из трубопроводов тепловой сети без промежуточных подогревателей абонентских узлов горячего водоснабжения. При этом количество подпиточной воды определяется потерями в сетях и расходом воды на горячее водоснабжение.

Для закрытых систем теплоснабжения характерно наличие замкнутого (закрытого) контура с циркулирующим теплоносителем, который отдает свою теплоту в водоводяных подогревателях районных тепловых пунктов. Количество подпиточной воды определяется только потерями в сетях, поэтому даже в мощных водогрейных котельных устанавливают один подпиточный деаэратор небольшой производительности.

Выбор системы теплоснабжения производят путем технико-экономических расчетов.

Монтаж котлов — Схемы котельных установок

Основное руководство по промышленным водогрейным котлам

Теперь, когда мы знаем разницу между промышленными паровыми котлами и системами водогрейных котлов, давайте глубже погрузимся в типы систем водогрейных котлов. Как уже было сказано, основное различие между системами водогрейного котла — это температура. Следовательно, названия дают некоторое представление о температуре, связанной с системой. В этом разделе мы объясним три типа водогрейных котлов: высокотемпературные водогрейные котлы, среднетемпературные водогрейные котлы и низкотемпературные водогрейные котлы.Мы дадим определение этих котельных систем из ASME, а также то, как они обычно выглядят в применении.

Высокотемпературные водогрейные котлы (HTHW)

Согласно ASME, высокотемпературный водогрейный котел является энергетическим котлом ASME, раздел I, и включает в себя любой котел с максимальной температурой, превышающей 250 ° F и / или максимальным давлением, превышающим 160 фунтов на квадратный дюйм. В применении системы HTHW относятся к конструкциям, в которых температура превышает 350 ° F. Обычно система HTHW работает с максимальным рабочим давлением менее 300 фунтов на кв. Дюйм.Эти системы идеальны для более крупных систем, таких как централизованное теплоснабжение и отопление университетского городка, из-за больших тепловых нагрузок, разветвленных сетей трубопроводов и общего размера объектов. Крупные технологические процессы также идеально подходят для высокотемпературных систем водогрейного котла из-за требований к высокой температуре, которые не могут быть достигнуты в низкотемпературных и среднетемпературных системах.

Среднетемпературные водогрейные котлы (MTHW)

Среднетемпературные водогрейные котлы — это котлы с температурой в диапазоне от 250 ° F до 350 ° F с максимальным рабочим давлением 150 фунтов на квадратный дюйм.Это означает, что для системы MTHW может потребоваться котел ASME Section I для одних конструкций и котел ASME Section IV для других. Каждую конкретную систему необходимо сравнить с ASME BPVC, чтобы убедиться, что котел для этой системы спроектирован в соответствии с применимыми разделами. Системы, в которых используется среднетемпературный водогрейный котел, — это районные и университетские энергетические контуры, жилые и гостиничные комплексы, а также небольшие технологические процессы, требующие среднего диапазона температур.

Низкотемпературные водогрейные котлы (LTHW)

Согласно разделу IV ASME, отопительный котел включает любой котел с максимальной температурой ниже 250 ° F и максимальным давлением ниже 160 фунтов на квадратный дюйм.В применении системы LTHW относятся к конструкциям, в которых температура ниже 250 ° F. Обычно система LTHW работает с максимальным рабочим давлением менее 30 фунтов на кв. Дюйм. Это означает, что в системе LTHW обычно используется котел, построенный по нормам ASME Section IV. Эти котлы обычно используются в небольших зданиях и даже в жилых домах. В большинстве домов используется принудительная воздушная система для обогрева и охлаждения, но змеевики могут быть размещены в воздухообрабатывающем устройстве, чтобы использовать горячую воду для обогрева в более холодные месяцы.В других домах и зданиях, в которых установлен низкотемпературный водогрейный котел, используются радиаторы для распределения тепла от воды для кондиционирования различных жилых и жилых помещений.

Знакомство с котельной

Топливо для котлов

Три самых распространенных вида топлива, используемых в паровых котлах, — это уголь, нефть и газ. Однако промышленные или коммерческие отходы также используются в некоторых котлах, наряду с электричеством для электродных котлов.

Уголь

Уголь — это общий термин, обозначающий семейство твердого топлива с высоким содержанием углерода. В этом семействе есть несколько типов угля, каждый из которых относится к стадиям образования угля и количеству содержания углерода. Этими этапами являются:

  • Торф.
  • Бурый уголь или бурый уголь.
  • Битумный.
  • Полубитуминозный.
  • Антрацит.

Битумный и антрацитовый типы обычно используются в качестве котельного топлива.

В Великобритании использование кускового угля для зажигания котлов сокращается. Для этого есть ряд причин, в том числе:

Доступность и стоимость — Поскольку многие угольные пласты истощаются, в Великобритании добывается меньшее количество угля, чем раньше, и следует ожидать, что его сокращение продолжится.

Скорость реакции на изменение нагрузки — Для кускового угля существует значительная временная задержка между:

  • Возникла потребность в тепле.
  • Закачка угля в котел.
  • Розжиг угля.
  • Пар генерируется для удовлетворения спроса.

Чтобы преодолеть эту задержку, котлы, предназначенные для сжигания угля, должны содержать больше воды при температуре насыщения, чтобы обеспечить резерв энергии для покрытия этого временного лага. Это, в свою очередь, означает, что котлы крупнее и, следовательно, дороже по стоимости приобретения и занимают более ценные производственные площади.

Зола — Зола образуется при сжигании угля.

Удаление золы может быть затруднено, обычно это связано с ручным вмешательством и уменьшением количества пара, доступного во время удаления золы. Затем золу необходимо утилизировать, что само по себе может быть дорогостоящим.

Загрузочное оборудование — Существует ряд различных устройств, включая топки с шаговым двигателем, разбрызгиватели и топки с цепной решеткой. Общая идея заключается в том, что все они нуждаются в существенном обслуживании.

Выбросы — Уголь содержит в среднем 1.5% серы (S) по весу, но этот уровень может достигать 3% в зависимости от того, где был добыт уголь.

В процессе сгорания:

  • Сера соединяется с кислородом (O2) из ​​воздуха с образованием SO2 или SO3.
  • Водород (H) из топлива соединяется с кислородом (O2) из ​​воздуха с образованием воды (h3O).

После завершения процесса сгорания SO3 объединяется с водой (h3O) с образованием серной кислоты (h3SO4), которая может конденсироваться в дымоходе, вызывая коррозию, если не поддерживается правильная температура дымохода.В качестве альтернативы он уносится в атмосферу с дымовыми газами. Эта серная кислота возвращается на землю с дождем, в результате чего:

  • Повреждение ткани зданий.
  • Расстройство и повреждение растений и растительности.

Зола, производимая углем, легкая, и часть золы неизбежно уносится с выхлопными газами в дымовую трубу и выбрасывается в виде твердых частиц в окружающую среду.

Уголь

, однако, до сих пор используется для зажигания многих очень больших водотрубных котлов на электростанциях.

Из-за большого масштаба этих операций становится экономически выгодным разработка решений упомянутых выше проблем, а также может возникнуть давление со стороны правительства с целью использования топлива местного производства для обеспечения национальной безопасности электроснабжения.

  • Уголь, используемый на электростанциях, измельчается до очень мелкого порошка, который обычно называют «пылевидным топливом» и обычно обозначают аббревиатурой «pf».
  • Малый размер частиц pf означает, что его отношение площади поверхности к объему значительно увеличивается, что делает сгорание очень быстрым и преодолевает проблему скорости реакции, возникающую при использовании кускового угля.
  • Малый размер частиц также означает, что pf течет очень легко, почти как жидкость, и вводится в топку котла через горелки, исключая топки, используемые с кусковым углем.
  • Для дальнейшего повышения гибкости и гибкости котла могут быть установлены горелки 30+ pf вокруг стен и свода котла, каждая из которых может управляться независимо для увеличения или уменьшения тепла в определенной области печи. Например, для контроля температуры пара, выходящего из пароперегревателя.

По качеству газов, выбрасываемых в атмосферу:

  • Котельные газы будут направляться через электрофильтр, в котором электрически заряженные пластины притягивают золу и другие частицы, удаляя их из потока газа.
  • Сернистый материал будет удален в газоочистителе.
  • Конечный выброс в окружающую среду высокого качества.

При сжигании 1 кг угля можно произвести около 8 кг пара.

Масло

Нефть для котельного топлива создается из остатков сырой нефти после ее дистилляции для производства более легких масел, таких как бензин, парафин, керосин, дизельное топливо или газойль. Доступны различные сорта, каждая из которых подходит для котлов разной мощности; оценки следующие:

  • Класс D — Дизель или газойль.
  • Класс E — Легкое жидкое топливо.
  • Класс F — мазут среднего класса.
  • Класс G — мазут.

Нефть начала бросать вызов углю как предпочтительному котельному топливу в Великобритании в 1950-х годах. Частично это произошло из-за того, что тогдашнее Министерство топлива и энергетики спонсировало исследования по усовершенствованию котельной.

Преимущества нефти перед углем включают:

  • Более короткое время реакции между запросом и требуемым количеством генерируемого пара.
  • Это означало, что в котловой воде нужно было хранить меньше энергии. Таким образом, котел мог бы быть меньше по размеру и излучать меньше тепла в окружающую среду с последующим повышением эффективности.
  • Меньший размер также означал, что котел занимал меньше производственной площади.
  • Механические кочегарки были устранены, что снизило объем работ по техническому обслуживанию.
  • Oil содержит только следы золы, что практически устраняет проблему обращения с золой и ее утилизации.
  • Устранены трудности при приеме, хранении и транспортировке угля.

Приблизительно 15 кг пара можно произвести из 1 кг масла или 14 кг пара из 1 литра масла.

Газ

Газ — это вид котельного топлива, которое легко сжигается с очень небольшим избытком воздуха. Топливные газы доступны в двух различных формах:

  • Природный газ — это газ, который добывается (естественно) под землей. Он используется в его естественном состоянии (за исключением удаления примесей) и содержит высокую долю метана.
  • Сжиженные углеводородные газы (СНГ) — это газы, которые производятся при переработке нефти и затем хранятся под давлением в жидком состоянии до использования.Наиболее распространенными формами сжиженного нефтяного газа являются пропан и бутан.

В конце 1960-х годов доступность природного газа (например, из Северного моря) привела к дальнейшему развитию котлов.

Преимущества газового сжигания над масляным:

  • Хранение топлива не проблема; газ подается прямо в котельную.
  • В природном газе присутствует только небольшое количество серы, а это означает, что количество серной кислоты в дымовых газах практически равно нулю.

Приблизительно 42 кг пара может быть произведено из 1 термика газа (что эквивалентно 105,5 МДж) для котла на 10 бар изб., С общим КПД 80%.

Отходы как основное топливо

У этого есть два аспекта:

Отходы — Здесь отходы сжигаются для производства тепла, которое используется для производства пара.

Мотивы могут включать безопасную и надлежащую утилизацию опасного материала. Хорошим примером может служить больница:

  • В этих обстоятельствах может оказаться, что надлежащее и полное сжигание отходов затруднено, требуя сложных горелок, контроля соотношения воздуха и мониторинга выбросов, особенно твердых частиц.Стоимость такой утилизации может быть высокой, и только часть стоимости возмещается за счет использования тепла, выделяемого для производства пара. Тем не менее, общая экономичность схемы, принимая во внимание стоимость утилизации отходов другими способами, может быть привлекательной.
  • Использование отходов в качестве топлива может включать экономичное использование горючих отходов технологического процесса. Примеры включают в себя кору, срезанную с дерева на бумажных фабриках, стебли (жмых) на заводах сахарного тростника и иногда даже подстилку с птицефермы.Процесс сжигания снова будет довольно сложным, но общая экономия затрат на удаление отходов и выработку пара для других применений на объекте может сделать такие схемы привлекательными.

Отходы тепла — здесь горячие газы от процесса, такого как плавильная печь, могут быть направлены через котел с целью повышения эффективности установки. Системы этого типа различаются по уровню сложности в зависимости от потребности в паре внутри установки.Если технологическая потребность в паре отсутствует, пар может быть перегрет и затем использован для выработки электроэнергии.

Этот тип технологии становится популярным на ТЭЦ:

  • Газовая турбина приводит в действие генератор для производства электроэнергии.
  • Горячие (обычно 500 ° C) выхлопные газы турбины направляются в котел, который производит насыщенный пар для использования на установке.

Этот тип установки обеспечивает очень высокий КПД.Другие преимущества могут включать либо надежность электроснабжения на месте, либо возможность продавать электроэнергию с наценкой национальному поставщику электроэнергии.

ОСНОВНЫЕ ДАННЫЕ И СХЕМА СИСТЕМЫ ОТОПЛЕНИЯ ГОРЯЧЕЙ ВОДЫ |
ВСЕ О МАШИНОСТРОЕНИИ

Системы водяного отопления (рисунок ниже) передают тепло путем циркуляции нагретой воды в определенное место. Тепло выделяется из воды, когда она протекает через нагревательный элемент (змеевик, клемму).
После выделения тепла вода возвращается в бойлер для повторного нагрева и рециркуляции.Низкотемпературные водогрейные котлы имеют температуру ≤ 250 ° F. Водогрейные котлы с высокой температурой> 250 ° F.

ПРЕИМУЩЕСТВА НАГРЕВА ГОРЯЧЕЙ ВОДЫ ПЕРЕД ПАРОМ
Системы водяного отопления производят тепло более стабильно, чем системы парового отопления. Вода в системе водяного отопления всегда остается в трубопроводах.

Вода в линиях нагревательного элемента медленно нагревается и охлаждается, что обеспечивает равномерную выработку тепла. Когда давление в системе парового отопления падает, пар выходит из нагревательных блоков, что приводит к более быстрой потере тепла, чем в системе водяного отопления.

Кроме того, система парового отопления имеет более длительное время рекуперации тепла после отключения котла.

Котлы используются как в системах водяного отопления, так и в системах парового отопления. Системы водяного отопления, наиболее часто встречающиеся при работе с системами отопления, вентиляции и кондиционирования воздуха, представляют собой низкотемпературные системы с температурой котловой воды, как правило, в диапазоне 170-200 градусов по Фаренгейту.

В большинстве систем парового отопления будет использоваться пар низкого давления, работающий под давлением 15 фунтов на кв. Дюйм (30 фунтов на кв. Дюйм и 250 ° F).Типов и классификаций котлов великое множество. Котлы можно классифицировать по размеру, конструкции, внешнему виду, первоначальному использованию и используемому топливу.

Котлы, работающие на ископаемом топливе, будут работать на природном газе, жидком нефтяном (LP) газе или жидком топливе. Некоторые котлы настроены таким образом, что рабочее топливо можно переключить на природный газ, сжиженный нефтяной газ или мазут, в зависимости от цены и наличия топлива.

Конструкция котлов в основном не меняется, будь то водогрейные или паровые котлы.Однако водогрейные или паровые котлы по своей внутренней конструкции делятся на жаротрубные и водотрубные.

6 основных вещей, которые нужно знать о сантехнике котельной

Чтобы стать успешным водопроводчиком, нужно понимать все возможные виды работ, которые вам доступны. Например, сантехник захочет ознакомиться с устаревшей сантехникой в ​​старых домах, а также с модернизированными и эффективными вариантами, к которым ваши клиенты проявляют больший интерес. Перейдите на коммерческий уровень, и ситуация станет еще больше.Теперь у вас есть больше типов сантехнических систем, на которые стоит обратить внимание, и водопровод котельной — одна из наиболее важных областей, на которые вам нужно обратить внимание в этом отношении. Вот некоторые из ключевых элементов, о которых следует помнить.

Что такое сантехника котельной?

Схема расположения трубопроводов котельной — часть более крупной системы. Сантехника котельной — это часть общей котельной системы, которая, в свою очередь, является частью более крупной гидронной системы сооружения. Давайте сначала поговорим о четырех основных частях котла:

Фото Alhim

Горелка:

В этой области начинается горение в котле, а термостат посылает команды на производство тепла.Сопло горелки распыляет топливо, чтобы зажечь его.

Камера сгорания:

Здесь топливо сгорает и может нагреваться до более 100 градусов. Вырабатываемое здесь тепло поступает в теплообменник.

Теплообменник:

Он нагревает воду без прямого контакта с жидкостью, как кипящая вода в кастрюле над плитой. Затем вода перекачивается по трубам в обогреватели или радиаторы плинтуса.

Системы водоснабжения котла:

Эта зона, которую вы, скорее всего, будете обслуживать, распределяет тепло.Однако вам может потребоваться понять аспекты всех четырех частей, чтобы выполнять свою работу.

У вас есть множество вариантов

Не все котельные системы одинаковы, и есть вероятность, что материалы и компоновка вашей водопроводной системы котла различаются. Во-первых, у вас есть две основные стальные котельные системы:

Пожарные котлы:

Здесь дымовые газы проходят через прямые трубы с водой, окружающей их. Вода превращается в пар. Как правило, это идеальный вариант для коммерческого и промышленного применения.

Фото WUTTISAK PROMCHOO

Водотрубные котлы:

В них вода проходит через трубы и клапаны, а горение окружает трубы. Они больше подходят для промышленного использования, чем для обогрева. Хотя они могут выдерживать более высокое давление и температуру, они дороги и их сложнее чистить.

После этого у вас чугунные котлы. Здесь есть три различных типа секций, в том числе:

— Цельный чугун: Они имеют только один литой резервуар под давлением.

— По горизонтали: Эти секции штабеля расположены друг над другом и соединены нажимными ниппелями.

— Вертикальные секции: Эти секции стоят вертикально, как нарезанный хлеб.

Есть и другие типы котлов, с которыми вы можете столкнуться. Например, конденсационный котел обычно используется для подачи тепла или пара на предприятии, где в котел добавляется вода. В гидравлических котельных системах используется система трубопроводов с замкнутым контуром для нагрева воды и, как правило, они используются для отопления помещений.

Низкое давление воды имеет значение

Одна вещь, которую вы хотите сообщить своим клиентам, а также сделать самостоятельно, — это убедиться, что давление воды в конструкции работает должным образом, чтобы помочь заполнить трубы отопления водой . Если вы этого не сделаете, ваши краны и арматура могут не подавать горячую воду, пока котел включен. Любым работам с котлом должна предшествовать оценка давления воды.

Фото Alexxxey

Будьте в курсе техобслуживания

Даже если котел технически исправен, если он не работает с максимальной эффективностью, вы можете платить намного больше в счетах за отопление.Поэтому, когда сантехники работают с котельной или устанавливают новую, рекомендуется порекомендовать план обслуживания. Это означает, что котел всегда работает в полной мере.

Котлы могут заменить водонагреватели в некоторых случаях

Многие разговоры, которые мы ведем до сих пор, касаются водопровода котельной в контексте отопления. Кроме того, в некоторых случаях бойлер можно использовать для заполнения места нескольких водонагревателей в жилом помещении.Обычно это происходит из-за нехватки места или проблем с вентиляцией. Типичные примеры — отели и аналогичные объекты гостеприимства. Вы должны быть внимательны, если это произойдет с клиентом, так как это повлияет на то, как вы обслуживаете сантехнику.

Бойлеры и водонагреватели не взаимозаменяемы

С учетом сказанного, бойлер не всегда является водонагревателем для комнаты или территории. Например, котлы иногда используются для отопления коммерческих бассейнов. Опять же, это чаще всего относится к жилым комплексам или отелям.Причина этого в том, что бойлеры имеют гораздо большую мощность, а это означает, что они лучше подходят для обогрева больших бассейнов. Кроме того, существует опасение, что химические вещества в бассейне могут вызвать проблемы с обычным водонагревателем. В этих условиях бойлер — лучший выбор.

https://www.shutterstock.com/image-photo/pipes-boiler-room-312327983

Программное обеспечение для управления проектами бесценно

Если есть что-то, что вы должны уйти от этого, когда дело доходит до котельной трубопровод на этом этапе, это то, что он не взаимозаменяем с другими формами сантехники, особенно в коммерческих условиях.Вам нужно будет следовать новым методам, а также использовать новые инструменты и материалы для выполнения работы. В результате, если вы хотите расширить свои услуги до сантехники котельных, вы, скорее всего, понесете большие затраты, не говоря уже о повышенных затратах на рабочую силу для найма рабочих с нужным вам опытом.

Заключительные мысли по сантехнике котельной

Ключевым моментом здесь является обеспечение того, чтобы любые ставки, которые вы собираете на будущие работы по водопроводу котельной, были достаточно точными, чтобы обеспечить прибыль для вашего бизнеса, и лучший способ справиться с этим — через программное обеспечение для управления проектами, такое как eSUB.От управления оборудованием до человеко-часов — у нас есть все инструменты, которые помогут вам точно определить, сколько вам стоит монтаж водопровода в котельной, создав надлежащую схему ценообразования для ваших клиентов.

Различные типы котлов | Паровой и водогрейный котел | Как работают электрические, газовые и масляные котлы | Разновидности котельных систем отопления

Независимо от того, хотите ли вы установить котел в своем доме, вам нужно знать, какой тип котла установлен в доме, который вы хотите купить, или просто хотите узнать больше о своем собственном бойлере Hot Point Heating И кондиционер здесь, чтобы помочь.Системы котельного отопления бывают разных категорий и разновидностей, каждая из которых обладает отличительными характеристиками, которые лучше всего подходят для уникальных целей.

Котел паровой

И водогрейные, и паровые котлы используют теплообменник в качестве инструмента для нагрева воды и ее распределения по трубопроводной системе, соединенной с радиаторами по всему дому. Паровые котлы работают за счет использования давления и силы тяжести для подачи горячего пара к радиаторам и цикла охлажденной конденсации обратно в котел для повторного нагрева. Процесс работает как таковой:

  1. Котел частично заполнен водой.
  2. Вода нагревается и превращается в пар.
  3. Давление в системе увеличивается.
  4. Пар поднимается по трубам вверх в радиаторы.
  5. При повышении давления в радиаторах открывается вентиляционное отверстие.
  6. Когда пар достигает отверстия, оно закрывается.
  7. Головка радиатора излучает тепло в комнату.
  8. Пар охлаждается и конденсируется в воду.
  9. Охлажденная вода возвращается в котел для повторного нагрева.

Паровым котлам необходим предохранительный клапан и отсечка по низкому уровню воды. Большинство паровых котлов имеют ручной клапан, позволяющий при необходимости добавлять воду в систему. Следите за указателем уровня воды, чтобы поддерживать необходимый уровень воды. Всегда внимательно следите за системой отопления вашего котла и выполняйте техническое обслуживание котла своими руками, чтобы поддерживать его в хорошем рабочем состоянии.

Стук может указывать на неисправность в системе.Свяжитесь с нашими специалистами по ремонту котлов, если у вас возникнут проблемы с паровым котлом.

Водогрейный котел

Водогрейные системы отопления зависят от давления, объема и температуры, чтобы обеспечить эффективное и безопасное нагревание радиаторов в вашем доме. Он использует один или несколько насосов для циркуляции нагретой воды по дому. Вот как работают водогрейные котлы:

  1. Термостат требует тепла.
  2. Сработала масляная или газовая горелка, нагревая воду в бойлере.
  3. Насосы либо начнут перекачивать воду через систему, либо будут ждать, пока вода не нагреется до желаемой температуры.
  4. Нагретая вода расширяется. Лишний объем отправляется в расширительный бачок.
  5. Тепло исходит от горячей воды в радиаторах.
  6. Вода остывает.
  7. Охлажденная вода возвращается в котел самотеком или отдельным насосом.
  8. Охлажденная вода возвращается в котел для повторного нагрева.

Следует отметить, что водогрейные котлы — это не то же самое, что водонагреватели. Водонагреватели нагревают воду для душа, посудомоечной машины или водопроводной воды. Водогрейные котлы можно использовать для нагрева водопроводной воды в отдельном баке, но вода для нагрева радиаторов и для нагрева водопроводной воды хранится отдельно.

Газовый котел

Газовые котлы работают на природном газе, который перекачивается по газопроводу, проходящему под домом, по трубопроводу от прилегающей дороги.В сельских газовых котлах иногда используется пропан из большого резервуара, расположенного за пределами дома, поскольку в большинстве сельских районов нет магистрального газопровода.

Природный газ регулируется датчиком температуры и термопарой для минимизации расхода топлива. Газ используется для поддержания горения контрольной лампы, которая нагревает нагревательные змеевики в котле, передавая тепло воде в резервуаре.

Электрокотел

Электрические котлы не используют ископаемые виды топлива, такие как газ или нефть, для обеспечения теплом вашего дома.Электрические котлы остаются очень популярными, потому что они чрезвычайно эффективны и экологичны. Выхлопные газы не уносят ценное тепло в атмосферу. У них нет потребности в магистральном газе или топливе, что выгодно для сельских пользователей. Затраты на установку ниже, а электрические котлы тише и занимают меньше места.

Но это еще не все подливка. Электрокотлы имеют следующие недостатки:

  • Электроэнергия в основном вырабатывается угольными, газовыми и нефтяными электростанциями, что частично сводит на нет немедленную «зеленую» привлекательность
  • Стоимость электроэнергии выше, чем природного газа или нефти
  • Может не иметь достаточно большого резервуара для больших участков
  • Отключение электроэнергии означает, что у вас нет тепла!

Масляный котел

Жидкотопливные котлы (иногда их называют мазутными котлами) — это водные отопительные системы, работающие на жидком топливе.Они чаще встречаются в сельских районах страны с более ограниченным доступом к природному газу. Отдельный масляный бак, часто содержащий топочный мазут, смешанный с бытовым биодизелем, закачивает смесь в масляный бойлер, чтобы нагреть воду внутри и направить горячий воздух или воду по трубам в вашем доме.

Старые котлы на жидком топливе могут быть очень энергоэффективными. Если у вашего масляного котла есть естественная тяга, постоянный запальный огонь или тяжелый теплообменник, он, вероятно, не очень безопасен для окружающей среды.Возможно дооснащение, но вам придется подумать о полной замене устройства. Если вам нужна помощь в выборе того, что для вас более рентабельно, специалисты по ремонту котлов Hot Point Heating & Cooling всегда готовы ответить на ваши вопросы.

Конденсационный котел

В конденсационных котлах

используются два отдельных теплообменника: один для нагрева воды перед ее выходом в радиаторы, а другой для повторного нагрева воды, возвращающейся из трубопроводов в доме. Конденсационные котлы используют потенциал энергии выхлопных газов для предварительного нагрева возвратной воды в котел.В результате значительно повышается энергоэффективность по сравнению с аналогом без конденсации.

Для получения дополнительной информации о конденсационных котлах и их многочисленных преимуществах обратитесь к нашему руководству по работе конденсационных котлов.

Эксперты по котлам в Юго-Восточном Висконсине предоставляют круглосуточные службы экстренной помощи

Специалисты по ремонту котлов в Hot Point Heating & Air Conditioning знают вашу котельную систему и принципы ее работы. Независимо от того, какие подозрительные стуки, удары или протечки вы обнаружите, доверяйте нашим специалистам по HVAC, которые быстро приедут на место и обеспечат своевременный ремонт.

Наша фиксированная цена гарантирует, что вы не заплатите ни копейки сверх указанной вами суммы. На юго-востоке Висконсина вы не найдете более надежного сервиса HVAC.

Свяжитесь с сервисными инженерами Waukesha HVAC сегодня для установки или ремонта систем водяного отопления.

Лучшие применения для конденсационных котлов —

В этой системе нет конденсационного котла, но он должен быть! Обратите внимание на байпасную линию, расположенную между подающей и обратной линиями котла.Это необходимое осложнение для котлов без конденсации, используемых в системах WSHP. Байпасная линия необходима для смешивания горячей и возвратной воды, чтобы поддерживать температуру выше конденсации. Гидравлическое отопление с сбросом наружного воздуха

Многие гидравлические системы отопления (и охлаждения) включают сброс температуры как средство экономии энергии. Фактически, сброс теперь является требованием ASHRAE 90.1 — 2010 и 2013. Единственными исключениями являются случаи, когда применение сброса мешает работе систем отопления, охлаждения, увлажнения или осушения, или перекачка с переменным расходом используется в качестве альтернативного метода. экономить энергию.

Системы с сбросом температуры отлично подходят для конденсационных котлов.

Хотя эти системы могут быть разработаны для подачи воды под углом 180 градусов, управление сбросом означает, что они часто будут работать при температуре ниже 180 градусов. Подумайте, что происходит, когда температура на улице достигает 50 градусов во время отопительного сезона, как это часто бывает в нашей собственной юго-восточной части страны. В этих условиях система автоматически перезагрузится в соответствии с заданным графиком, вероятно, до температуры подачи воды 130 градусов.К тому времени, когда вода вернется в котел, температура, вероятно, будет 110 или 120 градусов, что значительно ниже порога конденсации. Это проблема с неконденсирующими котлами, но отличная новость, если использовались конденсационные котлы. В конденсационных котлах нет необходимости устанавливать какие-либо дополнительные трубопроводы или клапаны для защиты котла от низкотемпературной воды. Более того, конденсационные котлы будут более эффективно работать в режиме частичной нагрузки.

Гибридное решение для модернизации системы сброса

Модернизация одного конденсационного котла является идеальным решением для системы, которая в настоящее время включает два или более неконденсируемых котла, работающих по графику сброса.Скорее всего, система уже испытывает проблемы с обслуживанием из-за дождя в котлах. Замена только одного котлов без конденсации на конденсационный котел повышает эффективность системы и устраняет эти проблемы с обслуживанием. Конденсационный котел будет настроен как ведущий котел и будет работать все время, обычно в условиях частичной нагрузки. (Рисунок 2) Другой котел (-ы) включится только тогда, когда температура наружного воздуха достигнет пикового значения, а температура приточной воды будет выше 160 или около того.

Рисунок 2

% PDF-1.4
%
468 0 объект
>
эндобдж

xref
468 74
0000000016 00000 н.
0000002342 00000 п.
0000002701 00000 п.
0000002753 00000 н.
0000003159 00000 п.
0000003364 00000 н.
0000003488 00000 н.
0000003660 00000 н.
0000003824 00000 н.
0000003959 00000 н.
0000004348 00000 п.
0000004375 00000 н.
0000004534 00000 п.
0000004785 00000 н.
0000005031 00000 н.
0000005054 00000 н.
0000005105 00000 н.
0000006183 00000 п.
0000007263 00000 н.
0000008460 00000 н.
0000009675 00000 н.
0000010709 00000 п.
0000011840 00000 п.
0000012940 00000 п.
0000026920 00000 н.
0000027794 00000 п.
0000029336 00000 п.
0000078932 00000 п.
0000079193 00000 п.
0000079394 00000 п.
0000079553 00000 п.
0000079580 00000 п.
0000080002 00000 п.
0000080072 00000 п.
0000080165 00000 п.
0000081707 00000 п.
0000130499 00000 н.
0000130765 00000 н.
0000130963 00000 п.
0000131127 00000 н.
0000131197 00000 н.
0000131375 00000 н.
0000132917 00000 н.
00001

00000 н.
0000190532 00000 н.
0000190767 00000 н.
0000190945 00000 н.
0000190972 00000 н.
0000191353 00000 н.
0000191423 00000 н.
0000191521 00000 н.
0000193063 00000 н.
0000266030 00000 н.
0000266305 00000 н.
0000266674 00000 н.
0000266804 00000 н.
0000266831 00000 н.
0000267240 00000 н.
0000267500 00000 н.
0000267551 00000 п.
0000267700 00000 н.
0000267844 00000 н.
0000267937 00000 н.
0000268110 00000 н.
0000268375 00000 н.
0000268398 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *