Как накачать в насосную станцию воздух: Когда накачивать гидроаккумулятор воздухом? — Экономный — дом

Как накачать в насосную станцию воздух: Когда накачивать гидроаккумулятор воздухом? — Экономный — дом

Содержание

Когда накачивать гидроаккумулятор воздухом? — Экономный — дом

Недавно я ремонтировал насосную станцию, и один вопрос остался неясным, когда накачивать воздухом гидроаккумулятор, до заполнения водой или после? По логике вроде бы надо накачивать до, но поискав ответ в интернете, оказалось что некоторые рекомендуют это делать после.

В общем правильно накачивать гидроаккумулятор на сухую, до заполнения его водой.

Для расчета необходимого давления в воздушной части гидроаккумулятора можно воспользоваться формулами, если считать лень, то давление воздуха в гидроаккумуляторе вычисляется по очень простой формуле, оно должно быть на 10% меньше чем давление при котором реле давления включает насос. Типовые значения минимального и максимального значений давления при котором включается и отключается насос 1,5 и 3 бара,  отнимаем от 1,5 бара 10% и получаем 1,35 бара воздуха нам надо накачать в гидроаккумулятор.

Если такой расчет вам не нравится можно воспользоваться более научным подходом:

Расчет давления воздуха в гидроаккумуляторе

Какое первоначальное давление воздуха должно быть в гидроаккумуляторе? Если Вы установили гидроаккумулятор в подвале, то его минимальное значение легко подсчитать. Надо взять высоту в метрах от подвала до верхней точки Вашей системы водоснабжения. Например, для двухэтажного дома это 6-7 метров, трехэтажного — около 10 метров, потом прибавить к этому значению 6 и разделить на 10. Вы получите необходимое значение в атмосферах. Например, для двухэтажного дома 7 + 6 = 13 / 10 = 1,3 атмосферы. Это минимальное значение давления воздуха в гидроаккумуляторе. В противном случае вода из него не будет поступать на второй этаж Вашего дома. Однако завышать эти значения не следует, иначе в гидроаккумуляторе просто не будет воды. Обычно завод-изготовитель сам устанавливает давление воздуха в размере 1,5 атм., но может случиться так, что давление воздуха в купленном Вами гидроаккумуляторе будет другое. Следует первоначально проверить его обыкновенным манометром, подсоединив его к ниппелю гидроаккумулятора и при необходимости увеличить его с помощью автомобильного насоса.

Так же учтите что гидроаккумулятор требует периодического обслуживания. В воде всегда содержится небольшая часть растворенного воздуха, и этот воздух постепенно уменьшает полезный объем груши (резиновой мембраны) в гидроаккумуляторе. На гидроаккумуляторах большой емкости как правило есть специальные клапаны для спуска этого воздуха, в небольших гидроаккумуляторах которыми обычно комплектуются бытовые насосные станции, таких клапанов нет, и для удаления воздуха из мембраны надо с периодичностью в пару месяцев проделывать нехитрую операцию.

1. Необходимо обесточить насос и слить всю воду из гидроаккумулятора, лучше всего конечно для этого предусмотреть специальный краник, ну или воспользоваться ближайшим к гидроаккумулятору краном.

2. Процедуру из пункта 1 необходимо проделывать 2-3 раза подряд.

И пожалуйста не путайте гидроаккумулятор и накопительную емкость для воды, это разные девайсы, гидроаккумулятор предназначен для уменьшения количества пусков насоса, и как следствие увеличение его срока службы, а так же для защиты  от гидроударов, при отключении электричества гидроаккумулятор конечно какое-то время будет снабжать вас водой, но на многое я бы не рассчитывал. На случаи отключения электричества или поломок водопровода и нужна накопительная емкость.

 

Как правильно накачать воздух в ресивер насосной станции — порядок действий при обслуживании | Сделай Самоделку

Все владельцы поверхностных насосных станций с гидроаккумулятором рано или поздно сталкиваются с проблемой, когда воздух выходит из ресивера и станция начинает работать неправильно. Обычно сигналом о такой поломке служит прерывистая работа станции, с частым включением и выключением насоса.

На рисунке ниже можно посмотреть, как устроен гидроаккумулятор. Если за мембраной выйдет весь воздух, то давление воды растянет мембрану, заполнив водой всё внутреннее пространство. Из-за этого реле не будет нормально работать, поэтому нам необходимо снова закачать воздух!

Схема устройства гидроаккумулятора.

Схема устройства гидроаккумулятора.

Но некоторые типа мастера даже эту простейшую процедуру выполняют неправильно: я даже как-то наблюдал за такими, и это было забавно! 🙂 На примере недавней работы я покажу, как сделать это правильно. И никаких мастеров вызывать не придётся!

Шаг первый

Если доступ к насосной станции свободный, то обслужить её можно и на месте, а если станция находится, например, как в моём случае, в узком колодце, то придётся её достать! Для этого необходимо открутить две гайки разъёмных соединений — на входе и выходе.

Шаг второй

Достаём станцию, позади ресивера находится пластиковая заглушка, которая защищает воздушный клапан (золотник) от загрязнений.

Откручиваем его против часовой стрелки. Для начала нужно проверить, не порвалась ли мембрана: для это каким-нибудь тонким штырьком необходимо надавить на клапан. Если же из него польётся вода, значит, мембрана повреждена, и её придётся менять, но об этом в другой раз!

Шаг третий

Если станция обслуживается на месте, то необходимо обеспечить расход воды. Для этого открываем любой кран — главное, чтобы вы его видели. Ну или делать это нужно ещё с одним человеком. Если вы станцию достали, то поставьте её возле слива воды, во дворе или ванне.

Теперь берём обычный насос — если есть компрессор, то вообще хорошо. Подсоединяем его к клапану на станции и начинаем качать, при этом из выхода станции или крана начнёт течь вода. Качаем до тех пор, пока вода не закончится.

Шаг четвёртый

Если у вас есть манометр, то продолжайте качать до отметки 1,2-1,5 Атм. Если манометра нет, то при использовании обычного насоса сделайте ещё 20 качков, затем отсоедините шланг и закрутите заглушку.

Шаг пятый

Закройте кран или установите станцию на место. В том случае, если вы доставали станцию, подсоедините гайку к входу и затяните её, оставив незатянутой гайку выхода. Если станция обслуживалась на месте, то нужно открутить гайку на выходе.

Теперь заливаем воду в насос, через выход, до того момента, пока не заполним его полностью. Закручиваем гайку и теперь можно включать станцию.

Заключение

После проделывания всех манипуляций, представленных выше, станция начнёт работать в нормальном режиме. Как видите, ничего сложного в этом нет, сделать это сможет практически каждый взрослый человек! На этом у меня всё: надеюсь, был полезен! 🙂

Контроль и регулировка давления воздуха в гидроаккумуляторе

Интернет-магазин «Водомастер.ру» ценит доверие своих клиентов и заботится о сохранении их личных (персональных) данных в тайне от мошенников и третьих лиц. Политика конфиденциальности разработана для того, чтобы личная информация, предоставленная пользователями, были защищены от доступа третьих лиц.

Основная цель сбора личных (персональных) данных – обеспечение надлежащей защиты информации о Пользователе, в т.ч. его персональных данных от несанкционированного доступа и разглашения третьим лицам, улучшение качества обслуживания и эффективности взаимодействия с клиентом.

1. ОСНОВНЫЕ ПОНЯТИЯ

Сайт – интернет магазин «Водомастер.ру», расположенный в сети Интернет по адресу: vodomaster.ru

Пользователь – физическое или юридическое лицо, разместившее свою персональную информацию посредством любой Формы обратной связи на сайте с последующей целью передачи данных Администрации Сайта.

Форма обратной связи – специальная форма, где Пользователь размещает свою персональную информацию с целью передачи данных Администрации Сайта.

Аккаунт пользователя (Аккаунт) – учетная запись Пользователя позволяющая идентифицировать (авторизовать) Пользователя посредством уникального логина и пароля. Логин и пароль для доступа к Аккаунту определяются Пользователем самостоятельно при регистрации.

2. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Настоящая Политика в отношении обработки персональных данных (далее – «Политика») подготовлена в соответствии с п. 2 ч .1 ст. 18.1 Федерального закона Российской Федерации «О персональных данных» №152-ФЗ от 27 июля 2006 года (далее – «Закон») и описывает методы использования и хранения интернет-магазином «Водомастер.ру» конфиденциальной информации пользователей, посещающих сайт vodomaster.ru.

2.2. Предоставляя интернет-магазину «Водомастер.ру» информацию частного характера через Сайт, Пользователь свободно, своей волей дает согласие на передачу, использование и раскрытие его персональных данных согласно условиям настоящей Политики конфиденциальности.

2.3. Настоящая Политика конфиденциальности применяется только в отношении информации частного характера, полученной через Сайт. Информация частного характера – это информация, позволяющая при ее использовании отдельно или в комбинации с другой доступной интернет-магазину информацией идентифицировать персональные данные клиента.

2.4. На сайте vodomaster.ru могут иметься ссылки, позволяющие перейти на другие сайты. Интернет-магазин не несет ответственности за сведения, публикуемые на этих сайтах, и предоставляет ссылки на них только в целях обеспечения удобства пользователей. При этом действие настоящей Политики не распространяется на иные сайты. Пользователям, переходящим по ссылкам на другие сайты, рекомендуется ознакомиться с политикой конфиденциальности, размещенной на таких сайтах.

3. УСЛОВИЯ, ЦЕЛИ СБОРА И ОБРАБОТКИ ПЕРСОНАЛЬНЫХ ДАННЫХ ПОЛЬЗОВАТЕЛЕЙ

3.1. Персональные данные Пользователя такие как: имя, фамилия, отчество, e-mail, телефон, адрес доставки, skype и др., передаются Пользователем Администрации Сайта с согласия Пользователя.

3.2. Передача персональных данных Пользователем через любую размещенную на сайте Форму обратной связи, в том числе через корзину заказов, означает согласие Пользователя на передачу его персональных данных.

3.3. Предоставляя свои персональные данные, Пользователь соглашается на их обработку (вплоть до отзыва Пользователем своего согласия на обработку его персональных данных), в целях исполнения интернет-магазином своих обязательств перед клиентом, продажи товаров и предоставления услуг, предоставления справочной информации, а также в целях продвижения товаров, работ и услуг, а также соглашается на получение сообщений рекламно-информационного характера и сервисных сообщений.

3.4. Основными целями сбора информации о Пользователе являются принятие, обработка и доставка заказа, осуществление обратной связи с клиентом, предоставление технической поддержки продаж, оповещение об изменениях в работе Сайта, предоставление, с согласия клиента, предложений и информации об акциях, поступлениях новинок, рекламных рассылок; регистрация Пользователя на Сайте (создание Аккаунта).

3.5. Регистрация Пользователя на сайте vodomaster.ru не является обязательной и осуществляется Пользователем на добровольной основе.

3.6. Интернет-магазин не несет ответственности за сведения, предоставленные Клиентом на Сайте в общедоступной форме.

4. ОБРАБОТКА, ХРАНЕНИЕ И ЗАЩИТА ПЕРСОНАЛЬНОЙ ИНФОРМАЦИИ ПОЛЬЗОВАТЕЛЕЙ САЙТА

4.1. Администрация Сайта осуществляет обработку информации о Пользователе, в т.ч. его персональных данных, таких как: имя, фамилия, отчество, e-mail, телефон, skype и др., а также дополнительной информации о Пользователе, предоставляемой им по своему желанию: организация, город, должность, и др.

4.2. Интернет-магазин вправе использовать технологию «cookies». «Cookies» не содержат конфиденциальную информацию и не передаются третьим лицам.

4.3. Интернет-магазин получает информацию об ip-адресе Пользователя сайта vodomaster.ru и сведения о том, по ссылке с какого интернет-сайта он пришел. Данная информация не используется для установления личности Пользователя.

4.4. При обработке персональных данных пользователей интернет-магазин придерживается следующих принципов:

  • Обработка информации осуществляется на законной и справедливой основе;
  • Информация не раскрываются третьим лицам и не распространяются без согласия субъекта Данных, за исключением случаев, требующих раскрытия информации по запросу уполномоченных государственных органов, судопроизводства;
  • Определение конкретных законных целей до начала обработки (в т.ч. сбора) информации;
  • Ведется сбор только той информации, которая является необходимой и достаточной для заявленной цели обработки;
  • Обработка информации ограничивается достижением конкретных, заранее определенных и законных целей;

4.5. Персональная информация о Пользователе хранятся на электронном носителе сайта бессрочно.

4.6. Персональная информация о Пользователе уничтожается при желании самого Пользователя на основании его официального обращения, либо по инициативе администратора Сайта без объяснения причин, путём удаления информации, размещённой Пользователем.

4.7. Обращение об удалении личной информации, направляемое Пользователем, должно содержать следующую информацию:

для физического лица:

  • номер основного документа, удостоверяющего личность Пользователя или его представителя;
  • сведения о дате выдачи указанного документа и выдавшем его органе;
  • дату регистрации через Форму обратной связи;
  • текст обращения в свободной форме;
  • подпись Пользователя или его представителя.

для юридического лица:

  • запрос в свободной форме на фирменном бланке;
  • дата регистрации через Форму обратной связи;
  • запрос должен быть подписан уполномоченным лицом с приложением документов, подтверждающих полномочия лица.

4.8. Интернет-магазин обязуется рассмотреть и направить ответ на поступившее обращение Пользователя в течение 30 дней с момента поступления обращения.

4.9. Интернет-магазин реализует мероприятия по защите личных (персональных) данных Пользователей в следующих направлениях:

  • предотвращение утечки информации, содержащей личные (персональные) данные, по техническим каналам связи и иными способами;
  • предотвращение несанкционированного доступа к информации, содержащей личные (персональные) данные, специальных воздействий на такую информацию (носителей информации) в целях ее добывания, уничтожения, искажения и блокирования доступа к ней;
  • защита от вредоносных программ;
  • обнаружение вторжений и компьютерных атак.

5. ПЕРЕДАЧА ПЕРСОНАЛЬНЫХ ДАННЫХ

5.1. Интернет-магазин «Водомастер.ру» не сообщает третьим лицам личную (персональную) информацию о Пользователях Сайта, кроме случаев, предписанных Федеральным законом от 27.07.2006 г. № 152-ФЗ «О персональных данных», или когда клиент добровольно соглашается на передачу информации.

5.2. Условия, при которых интернет-магазин «Водомастер.ру» может предоставить информацию частного характера из своих баз данных сторонним третьим лицам:

  • в целях удовлетворения требований, запросов или распоряжения суда;
  • в целях сотрудничества с правоохранительными, следственными или другими государственными органами. При этом интернет-магазин оставляет за собой право сообщать в государственные органы о любой противоправной деятельности без уведомления Пользователя об этом;
  • в целях предотвращения или расследования предполагаемого правонарушения, например, мошенничества или кражи идентификационных данных;

5.3. Интернет-магазин имеет право использовать другие компании и частных лиц для выполнения определенных видов работ, например: доставка посылок, почты и сообщений по электронной почте, удаление дублированной информации из списков клиентов, анализ данных, предоставление маркетинговых услуг, обработка платежей по кредитным картам. Эти юридические/физические лица имеют доступ к личной информации пользователей, только когда это необходимо для выполнения их функций. Данная информация не может быть использована ими в других целях.

6. БЕЗОПАСНОСТЬ БАНКОВСКИХ КАРТ

6.1 При оплате заказов в интернет-магазине «Водомастер.ру» с помощью кредитных карт все операции с ними проходят на стороне банков в специальных защищенных режимах. Никакая конфиденциальная информация о банковских картах, кроме уведомления о произведенном платеже, в интернет-магазин не передается и передана быть не может.

7. ВНЕСЕНИЕ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ

7.1. Все изменения положений или условий политики использования личной информации будут отражены в этом документе. Интернет-магазин «Водомастер.ру» оставляет за собой право вносить изменения в те или иные разделы данного документа в любое время без предварительного уведомления, разместив обновленную версию настоящей Политики конфиденциальности на Сайте.

Давление в насосных станциях — для расширительного бачка – 1,7 Ат



Насосная станция – это агрегат, подающий воду в дома или на дачи в автономном режиме. Несмотря на то, что устроены подобные агрегаты довольно сложно, принцип работы их является достаточно простым – насос всасывает воду из источника и закачивает в специально предназначенный резервуар. В резервуаре установлен датчик, который контролирует уровень жидкости. Если уровень уменьшается, датчик подает сигнал и станция включается. В противном случае насосная станция должна отключиться.

Как выбрать насосную станцию?

Подбирая оптимальный вариант агрегата, стоит обратить внимание на следующие критерии:

  • В гидроаккумуляторе объем должен соответствовать заявленным требованиям.
  • Материал, из которого изготовлен корпус, должен быть крепким и надежным.
  • Мощность насоса должна обеспечить хороший напор воды в системе водоснабжения.

Из чего состоит насосная станция?

Важным элементом для нормального функционирования любой насосной станции является давление. Прежде чем узнать, какие существуют причины, влияющие на давление, стоит разобраться, из каких элементов состоит аппарат:

  • Насос.
  • Гидроаккумулятор.
  • Реле давления.
  • Манометр.

Регулировка давления насосной станции

Реле давления в агрегатах с насосами считается основной частью её нормального функционирования, то каждый владелец агрегата должен знать, как осуществляется настройка:

  • Обеспечить работающее состояние насоса и накачать воды до отметки в три атмосферы.
  • Выключить аппарат.
  • Снять крышку, и не спеша проворачивать гайку до тех пор, пока элемент не включится. Если совершать движения по ходу стрелки часов, то можно увеличить давление воздуха, против хода – уменьшить.
  • Открыть кран и уменьшить показания жидкости до отметки в 1,7 Атмосфер.
  • Перекрыть кран.
  • Снять крышку реле и крутить гайку до момента срабатывания контактов.

Какое давление должно быть в насосной станции в груше?

Гидроаккумулятор агрегата с насосом содержит в себе такой элемент, как резиновая емкость, которую еще принято называть груша. Между стенками бачка и самим резервуаром должен находиться воздух. Чем больше воды будет находиться груше, тем сильнее будет сжат воздух и, соответственно, больше будет его давление. И наоборот, если падает давление, значит, объем воды в резиновой емкости уменьшился. Так каким же должно быть значение оптимального давления для подобного агрегата? В большинстве случаев производители заявляют давление в 1,5 Атмосферы. Приобретая насосную станцию, необходимо проверить уровень давления манометром.

Не забывайте и о том, что разные манометры имеют разные погрешности. Поэтому лучше всего использовать поверенный автомобильный манометр с минимальными значениями градуировки шкалы на нем.

Какое давление должно быть в расширительном баке насосной станции?

Давление в ресивере не должно быть больше верхнего предела уровня давления жидкости. Иначе ресивер перестанет выполнять свою прямую обязанность, а именно, заполняться водой и смягчать гидроудары. Рекомендуемое уровень давления для расширительного бачка – 1,7 Атмосфер.

Почему падает давление в насосной станции?


Некоторые неисправности агрегата могут привести к тому, что в итоге насосная станция не включается при падении давления. Причинами того, что в водопроводе падает давление, может быть:

  1. Насос недостаточно мощный или его детали изношены.
  2. Происходит утечка воды через соединения или имеется разрыв трубы.
  3. Падает напряжение электрической сети.
  4. Всасывающая труба захватывает воздух.

Почему насосная станция не набирает давление и не отключается?

Основное предназначение подобных агрегатов – подавать жидкость из различных источников с большой глубиной, создавать и поддерживать постоянные показатели давления. Однако в процессе эксплуатации аппаратов имеют место различные неполадки. Случается и так, что агрегат не может нагнать нужное давление и выключается. Причинами этого могут стать:

  • Работа насоса «всухую». Происходит это вследствие падения водяного столба ниже уровня забора воды.
  • Увеличение сопротивления трубопровода, что возникает, если длина магистрали не соответствует диаметру.
  • Негерметичные соединения, вследствие чего наблюдается подсос воздуха. При этой проблеме стоит проверить все соединения и в случае необходимости обеспечить каждый из них герметиком.
  • Забит фильтр грубой очистки. Очистив фильтр, можно пробовать подавать давление в насосную станцию.
  • Сбой в работе реле давления. Решить проблему поможет регулировка реле.

Найдя причину неисправности насосной станции, можно приступать к её устранению.

Почему не поднимается давление в насосной станции?

Когда манометр насосной станции показывает низкое давление, и оно не поднимается, такой процесс еще принято называть завоздушиванием. Причинами такой проблемы могут быть:

  • Если это не погружной насос, то причина может скрываться во всасывающей трубке, через которую может всасываться нежелательный воздух. Справиться с проблемой поможет установка датчика «сухого хода».
  • Подающая магистраль негерметична вовсе нет плотности на стыках. Нужно проверить все стыки и обеспечить их полной герметизацией.
  • Наполняясь, в насосной установке остается воздух. Тут не обойтись без его выгонки, заполняя насос сверху под давлением.

Насосная станция не держит давление и постоянно включается


В связи с некоторыми неисправностями, давление в агрегате иногда падает, а сама станция может периодически включаться. Причиной может стать:

  • Разрыв резиновой емкости в гидроаккумуляторе, в результате чего бачок полностью заполняется водой даже там, где должен быть воздух. Именно этот элемент и регулирует постоянство давления станции. Обнаружить проблему можно, придавив штуцер закачки жидкости. Если же жидкость станет просачиваться, то проблема в резиновой емкости. Здесь лучше сразу прибегнуть к замене мембраны.
  • В гидроаккумуляторе не наблюдается давление воздуха. Решить проблему – это подкачать воздух в камеру, используя обычный прибор для закачивания воздуха.
  • Поломано реле. В случае, когда штуцер без подтеков, то проблема именно с реле. Если настройки не помогают, придется прибегнуть к замене прибора.

Рекомендуем попробовать натуральное вкуснейшее кокосовое молоко от интернет-магазина НеБанан — вы точно не пожалеете!


Как запустить насосную станцию первый запуск и эксплуатация

Регулировка давления насосной станции

Реле давления в агрегатах с насосами считается основной частью её нормального функционирования, то каждый владелец агрегата должен знать, как осуществляется настройка:

  • Обеспечить работающее состояние насоса и накачать воды до отметки в три атмосферы.
  • Выключить аппарат.
  • Снять крышку, и не спеша проворачивать гайку до тех пор, пока элемент не включится. Если совершать движения по ходу стрелки часов, то можно увеличить давление воздуха, против хода – уменьшить.
  • Открыть кран и уменьшить показания жидкости до отметки в 1,7 Атмосфер.
  • Перекрыть кран.
  • Снять крышку реле и крутить гайку до момента срабатывания контактов.

Гидроаккумулятор агрегата с насосом содержит в себе такой элемент, как резиновая емкость, которую еще принято называть груша. Между стенками бачка и самим резервуаром должен находиться воздух. Чем больше воды будет находиться груше, тем сильнее будет сжат воздух и, соответственно, больше будет его давление. И наоборот, если падает давление, значит, объем воды в резиновой емкости уменьшился. Так каким же должно быть значение оптимального давления для подобного агрегата? В большинстве случаев производители заявляют давление в 1,5 Атмосферы. Приобретая насосную станцию, необходимо проверить уровень давления манометром.

Не забывайте и о том, что разные манометры имеют разные погрешности. Поэтому лучше всего использовать поверенный автомобильный манометр с минимальными значениями градуировки шкалы на нем.

Какое давление должно быть в расширительном баке насосной станции?

Давление в ресивере не должно быть больше верхнего предела уровня давления жидкости. Иначе ресивер перестанет выполнять свою прямую обязанность, а именно, заполняться водой и смягчать гидроудары. Рекомендуемое уровень давления для расширительного бачка – 1,7 Атмосфер.

  1. Насос недостаточно мощный или его детали изношены.
  2. Происходит утечка воды через соединения или имеется разрыв трубы.
  3. Падает напряжение электрической сети.
  4. Всасывающая труба захватывает воздух.

Почему насосная станция не набирает давление и не отключается?

Основное предназначение подобных агрегатов – подавать жидкость из различных источников с большой глубиной, создавать и поддерживать постоянные показатели давления. Однако в процессе эксплуатации аппаратов имеют место различные неполадки. Случается и так, что агрегат не может нагнать нужное давление и выключается. Причинами этого могут стать:

  • Работа насоса «всухую». Происходит это вследствие падения водяного столба ниже уровня забора воды.
  • Увеличение сопротивления трубопровода, что возникает, если длина магистрали не соответствует диаметру.
  • Негерметичные соединения, вследствие чего наблюдается подсос воздуха. При этой проблеме стоит проверить все соединения и в случае необходимости обеспечить каждый из них герметиком.
  • Забит фильтр грубой очистки. Очистив фильтр, можно пробовать подавать давление в насосную станцию.
  • Сбой в работе реле давления. Решить проблему поможет регулировка реле.

Найдя причину неисправности насосной станции, можно приступать к её устранению.

Почему не поднимается давление в насосной станции?

Когда манометр насосной станции показывает низкое давление, и оно не поднимается, такой процесс еще принято называть завоздушиванием. Причинами такой проблемы могут быть:

  • Если это не погружной насос, то причина может скрываться во всасывающей трубке, через которую может всасываться нежелательный воздух. Справиться с проблемой поможет установка датчика «сухого хода».
  • Подающая магистраль негерметична вовсе нет плотности на стыках. Нужно проверить все стыки и обеспечить их полной герметизацией.
  • Наполняясь, в насосной установке остается воздух. Тут не обойтись без его выгонки, заполняя насос сверху под давлением.
  • Разрыв резиновой емкости в гидроаккумуляторе, в результате чего бачок полностью заполняется водой даже там, где должен быть воздух. Именно этот элемент и регулирует постоянство давления станции. Обнаружить проблему можно, придавив штуцер закачки жидкости. Если же жидкость станет просачиваться, то проблема в резиновой емкости. Здесь лучше сразу прибегнуть к замене мембраны.
  • В гидроаккумуляторе не наблюдается давление воздуха. Решить проблему – это подкачать воздух в камеру, используя обычный прибор для закачивания воздуха.
  • Поломано реле. В случае, когда штуцер без подтеков, то проблема именно с реле. Если настройки не помогают, придется прибегнуть к замене прибора.

Конструкция и принцип действия реле давления насосной станции

Перед тем как приступить к регулировке реле давления неплохо будет ознакомиться с его конструкцией и принципом действия.

Конструктивно реле насосной станции, чаще всего, представляет собой металлическое основание к которому снизу крепится крышка мембраны (под ней находится мембрана и металлический поршень) с быстросъемной гайкой для  крепления к переходнику насосной станции, а сверху — контактная группа, клеммная колодка  (для подключения сети, насоса и заземления) и два пружинных регулятора разных размеров. Все это сверху накрывается пластиковой крышкой, которая крепится к винту большого регулятора и которую, в зависимости от модели, можно легко снять с помощью отвертки или гаечного ключа.

В зависимости от производителя и модели реле могут отличаться размерами, формой, расположением составляющих элементов, но большинстве своем они имеют вышеописанную конструкцию. Иногда в неё включают дополнительные элементы, например, рычаг защиты от «сухого хода» или др.

Принцип действия

Принцип действия этого реле основан на том, что под действием давления воды, которая подается от насоса, мембрана давит на поршень, который приводит в движение контактную группу, смонтированную на металлической платформе, имеющей два шарнира. зависимости от её положения, контакты к которым подключены напряжение 220V и насос, могут быть замкнуты или разомкнуты, соответственно насос будет включаться или выключаться. Пружина большого регулятора действует на платформу контактной группы, уравновешивая давление поршня. Как только давление ослабевает, под действием пружины платформа опускается и контакты замыкаются (насос включается).

Пружина малого регулятора также действует против давления воды, но она расположена дальше от шарнира платформы и вступает в работу не сразу, а когда платформа с контактами поднимется на определенную высоту.

За срабатывание электрической части реле (замыкание и размыкание контактов) отвечает небольшой шарнир с пружиной. Конструктивно устроено так, что платформа и это шарнир не могут быть в одной плоскости. Как только она поднимается выше шарнира, контакты скачком опускаются вниз, а как только она опускается ниже его плоскости – они тут же перещелкиваются вверх. Плоскость этого шарнира находится немного выше основания пружины малого регулятора, что позволяет платформе подниматься до этого уровня без размыкания контактов, а как только она его достигнет – под действием пружин обеих регуляторов контакты размыкаются и насос выключается.

Таким образом, большой пружинный регулятор отвечает за момент включения насоса или так называемое «нижнее» давление (P), а меньший – за разность давлений включения и выключения (∆P).

При сжимании пружины большого регулятора (закручивании гайки по часовой стрелке) , она с большей силой действует на платформу контактной группы и «нижнее» давление возрастает. Если при этом не изменять степень сжатия пружины малого регулятора, то также возрастет и «верхнее» давление (отключения), ровно на такую же величину ( так как ∆P будет в этом случае неизменным).

При сжимании пружины меньшего регулятора, будет увеличиваться «верхнее» давление при неизменном «нижнем», то есть будет увеличиваться ∆P. При ослаблении пружин, соответственно, вышеуказанные показатели будут уменьшаться. На  этом и основана регулировка реле давления насосной станции.

Давление в гидроаккумуляторе

Понимание того, как устроен гидроаккумулятор, поможет лучше справиться с самостоятельной настройкой управляющего оборудования.

Различают два типа гидробаков: с резиновой вставкой, напоминающей грущу, или с резиновой же мембраной. Этот элемент делит емкость на две не сообщающиеся части, в одной из которых находится вода, а в другой – воздух.

Внутри гидробака находится резиновая грушевидная вставка или резиновая мембрана. Давление в гидробаке можно регулировать, подкачивая или стравливая воздух

В любом случае, работают они примерно одинаково. В бак поступает вода, а резиновая вставка давит на нее, чтобы обеспечить перемещение воды по водопроводной системе.

Поэтому в гидробаке всегда присутствует определенное давление, которое заметно изменяется в зависимости от количества воды и воздуха в баке.

Чтобы перед настройкой реле измерить давление воздуха в гидробаке, следует подключить манометр к ниппельному соединению, предусмотренному на корпусе устройства

На корпусе бака обычно имеется автомобильный ниппель. Через него можно закачать в гидробак воздух или стравить его, чтобы отрегулировать рабочее давление внутри емкости.

При выполнении подключения реле давления к насосу рекомендуется измерить текущее давление в гидробаке. Производитель по умолчанию выставляет показатель в 1,5 бар. Но на практике часть воздуха обычно уходит, и давление в емкости будет ниже.

Чтобы измерить давление в гидроаккумуляторе, используют обычный автомобильный манометр. Рекомендуется выбрать модель со шкалой, на которой проставлен самый малый шаг градации. Такой прибор позволит провести более точные измерения. Не имеет смысла замерять давление, если нет возможности учесть одну десятую часть бара.

В этом отношении имеет смысл проверить и тот манометр, которым укомплектована насосная станция промышленного производства.

Нередко изготовители экономят и устанавливают недорогие модели. Точность измерений с помощью такого прибора может вызывать сомнения. Его лучше заменить на более надежное и точное устройство.

Выбирая манометр для насосной станции или насоса с гидробаком, стоит обратить внимание на механические модели с точной шкалой градации

Механические автомобильные манометры выглядят не слишком презентабельно, однако, судя по отзывам, они значительно лучше новомодных электронных устройств. Если все же выбор сделан в пользу электронного манометра, не следует экономить. Лучше взять устройство, выпущенное надежным производителем, чем дешевую пластиковую поделку, которая точных данных не дает и может в любой момент сломаться.

Еще один важный момент – электронный манометр требует электропитания, за этим придется следить. Проверяют давление в гидробаке очень просто.

Манометр присоединяют к ниппелю и замеряют показания. Нормальным считается давление в пределах от одной до полутора атмосфер. Если давление в гидробаке слишком высокое, запас воды в нем будет меньше, но напор при этом будет просто отличным.

На этой схеме наглядно показан порядок подключения реле давления и манометра к погружному насосу и гидробаку, чтобы автоматизировать работу насосного оборудования

Следует помнить, что слишком высокое давление в системе может быть опасным. В этом случае все компоненты водопровода постоянно работают под повышенной нагрузкой, а это приводит к быстрому износу оборудования. Кроме того, чтобы поддерживать повышенное давление в системе приходится чаще подкачивать в бак воду, а значит и чаще включать насос.

Это также не слишком полезно, поскольку вероятность поломок увеличивается. При настройке системы нужна определенная уравновешенность. Например, если давление в гидроаккумуляторе слишком высокое или чрезмерно низкое, это может привести к повреждению резиновой прокладки.

Дополнение реле давления пятиходовым штуцером и манометром переводит устройство в разряд блоков автоматики Накидная гайка значительно облегчает подключение прибора в труднодоступных местах В конструкции использован пятиходовый штуцер, который подключается к реле и имеет еще 3 выхода с резьбой

Особенности устройства и принцип работы

Многочисленные разновидности реле давления, которое комплектуется практически со всеми насосными станциями, устроены примерно одинаково.

Внутри пластикового корпуса находится металлическое основание, на котором закреплены остальные элементы:

  • мембрана;
  • поршень;
  • металлическая платформа;
  • узел электрических контактов.

Сверху под пластиковой крышкой расположены две пружины – большая и малая. Когда мембрана испытывает давление, она толкает поршень.

Он, в свою очередь, поднимает платформу, которая воздействует на большую пружину, сжимая ее. Большая пружина сопротивляется этому давлению, ограничивая движение поршня.

Небольшого расстояния, которое разделяет большую и малую регулировочную пружины, достаточно для того, чтобы регулировать работу целого комплекса приборов. Платформа под давлением от мембраны постепенно поднимается до тех пор, пока ее край не дойдет до малой пружины. Давление на платформу в этот момент увеличивается, в результате ее положение изменяется.

Функциональное назначение реле давления заключается в автоматизации процессов включения/выключения электронасоса Представляет собой двухконтактный прибор коммутации электрических цепей, реагирующий на падение и повышение давления в контуре водоснабжения При использовании реле давления, дополненного манометром и пятиходовым штуцером, устройство приобретает значения автоматического комплекта Реле давления включают в схему водоснабжения только с гидроаккумулятором, конструкция которого позволяет точно фиксировать моменты изменения давления в системе В заводском исполнении реле давления рассчитано на среднестатистические значения давления в водоснабжающих системах. При необходимости внести изменения в настройки его разбирают Для выполнения бесплатного ремонта, гарантированного обязательствами изготовителя, необходимо соблюдать перечисленные в инструкции потребительские правила и корректно эксплуатировать прибор Регулировка прибора заключается в изменении уровня верхнего или нижнего предела давления, установленного при выполнении заводской настройки Для увеличения предела давления установленные на пружины гайки аккуратно подкручиваются по часовой стрелке, для уменьшения — наоборот

Это вызывает переключение контактов, что изменяет режим работы насоса, и он выключается. Для переключения контактов имеется специальный шарнир с пружинкой.

Когда платформа преодолевает уровень, на котором находится этот шарнир, электрические контакты изменяют положение, размыкая цепь электропитания. В этот момент происходит отключение насоса. После чего вода перестает поступать и давление, оказываемое на мембрану, снижается по мере расходования воды из гидроаккумулятора.

Соответственно, платформа плавно опускается. Когда ее положение оказывается ниже, чем пружинный шарнир электрических контактов, они поднимаются, снова включая электропитание.

Реле давления – это небольшое устройство, которое позволяет включать и выключать насос в зависимости от наличия или отсутствия воды в гидроаакумуляторе

Насос закачивает воду в гидробак, мембрана реле давит на платформу, она поднимается, достигает большой пружины и т.д. Цикл возобновляется и производится в автоматическом режиме.

С помощью большой пружины задается показатель давления, при котором насосный агрегат необходимо включить, а малая определяет не “потолок” допустимого давления в системе, как можно подумать, а разницу между этими двумя показателями. Это важный момент, который пригодится при изучении порядка действий при собственного насоса.

Несколько советов и рекомендаций

Для нормального функционирования насосной станции рекомендуется замерять показатели давления воздуха в гидроаакумуляторе каждые три месяца. Эта мера поможет поддерживать стабильные настройки в работе оборудования. Резкое изменение показателей может свидетельствовать о каких-то поломках, которые необходимо устранить.

Чтобы оперативно контролировать состояние системы, имеет смысл просто время от времени фиксировать показания водяного манометра при включении и отключении насоса. Если они соответствуют цифрам, установленным при настройке оборудования, можно считать работу системы нормальной.

Заметная разница свидетельствует о том, что нужно проконтролировать давление воздуха в гидробаке и, возможно, перенастроить реле давления. Иногда просто нужно подкачать немного воздуха в гидроаккумулятор, и показатели придут в норму.

Точность показателей манометра имеет определенную погрешность. Отчасти это может быть вызвано трением его подвижных частей во время измерений. Чтобы улучшить процесс показаний, рекомендуется перед началом измерений дополнительно смазать манометр.

Реле давления, как и прочие механизмы, имеет свойство со временем изнашиваться. Изначально следует выбрать прочное изделие. Важный фактор длительной работы реле давления – правильные настройки. не следует использовать этот прибор на максимально допустимых значениях верхнего давления.

Если в работе реле давления появились проблемы и неточности, возможно, его необходимо разобрать и очистить от загрязнений

Следует оставить небольшой запас, тогда элементы устройства будут изнашиваться не так быстро. Если же необходимо выставить верхнее давление в системе на достаточно высоком уровне, например, в пять атмосфер, лучше приобрести реле с предельно допустимым значением работы в шесть атмосфер. Найти такую модель сложнее, но это вполне возможно.

К серьезным поломкам реле давления может привести наличие загрязнений в . Это характерная ситуация для старых водопроводов, выполненных из металлических конструкций.

Перед установкой насосной станции водопровод рекомендуется тщательно прочистить. Не помешает и полная замена металлических труб на пластиковые конструкции, если имеется такая возможность.

При настройке реле к регулировочным пружинам следует относиться исключительно бережно. Если они будут сжаты слишком сильно, т.е. перекручены в процессе настройки, при работе устройства очень скоро станут наблюдаться погрешности. Поломка реле в ближайшем будущем почти гарантирована.

Если во время проверки работы насосной станции наблюдается постепенный рост давления выключения, это может свидетельствовать о том, что устройство засорилось. Не нужно сразу же его менять.

Нужно открутить четыре крепежных болта на корпусе реле давления, снять мембранный узел и тщательно промыть внутреннюю часть реле, где это возможно, а также все небольшие отверстия.

Иногда достаточно просто снять реле и почистить его отверстия снаружи без разборки. Не помешает также провести очистку всей насосной станции. Если же вода вдруг начинает течь прямо из корпуса реле, значит, частички загрязнений пробили мембрану. В этом случае придется устройство полностью заменить.

Работа оборудования под управлением реле

Наличие реле обеспечивает постоянные показатели давления в системе и создаёт необходимый для работы станции напор воды.

Управление насоса осуществляется автоматически.

Поэтому, правильная регулировка электромагнитного клапана для воды своими руками (прочитайте здесь) на минимальное и максимальное значение давления позволяет обеспечивать периодическое выключение и включение системы.

Управляемая реле насосная станция работает по следующему принципу:

  • закачивание воды в бак при помощи насоса;
  • увеличение давления, отражающееся на манометре;
  • срабатывание реле при давлении, достигшем выставленного предельного уровня;
  • отключение насоса.

Уменьшение количества воды в баке-накопителе сопровождается снижение давления.

После того, как давление в системе достигнет нижнего уровня, насосное оборудование вновь включается, и цикл работы повторяется.

Параметры функционирования реле:

  • на этапе включения в условиях нижнего уровня давления, происходит замыкание контактов на реле, что вызывает поступление воды в бак;
  • на этапе выключения в условиях верхнего давления, происходит размыкание контактов на реле, сопровождающееся выключением насоса.

Разность между показателями включения и выключения носит называние «диапазон давления».

Советы

Чтобы вода в вашей системе всегда радовала своим напором, стоит прислушаться к советам, которые касаются настройки реле давления

Особенно важно учитывать некоторые моменты, на которые многие даже не обращают внимания.

Не следует выставлять максимальное значение давления (более 5 атмосфер). А также не следует гайки, которыми осуществляется регулировка давления, закручивать до упора. Иначе реле, вообще, не будет работать.

В ходе эксплуатации насосной станции нужно смотреть за наличием и давлением воздуха в корпусе гидробака. Отдельные неполадки можно определить на слух. Например, если в емкости гидроаккумулятора сниженное давление воздуха, то будет заметно чрезмерно частое включение насоса. Причем автоматика будет включать его практически сразу при открытии крана и выключать при закрытии. В данном случае, когда кран открыт, стрелка манометра будет достигать нижнего значения.

Чтобы мембрана или груша работала как можно дольше, давление воздуха следует установить на 10 процентов ниже, чем значение давления на включение при регулировании реле.

Если при регулировании верхнего значения не происходит выключения насоса, а манометр показывает какую-то одну и ту же цифру, то это свидетельствует о малой мощности насоса. Ее просто не хватает, чтобы закачивать воду в установленных пределах.

Ремонтировать реле можно, но это не всегда уместно. Лучше приобрести новое исправное реле, так как оно защищает грушу от повреждений, а насос – от чрезмерной перегрузки. Реле нуждается в постоянном обслуживании, например, можно смазывать внутренние детали, которые трутся. Это позволит снизить сопротивление, и реле будет срабатывать более точно.

Достижение оптимального режима работы насосной станции важно, и он во многом зависит от правильно подобранного давления в гидробаке и правильной настройки реле.

Проверять давление лучше всего автомобильным насосом, в котором менее градуированная шкала. Это позволит обеспечить более точные измерения. В некоторых моделях насосных станций имеются пластиковые манометры, но они не отличаются надежностью и точными показателями. Что касается электронных манометров, то их показания зачастую зависят от окружающей температуры и уровня заряда батареи. Именно поэтому специалисты советуют остановить выбор на обычном механическом манометре в металлическом корпусе.

Некоторые виды ремонтных работ

Некоторые действия по ремонту насосной станции своими руками интуитивно понятны. Например, почистить обратный клапан или фильтр не составит труда, но вот заменить мембрану или грушу в гидроаккумуляторе может быть без подготовки сложно.

Замена «груши» гидроаккумулятора

Первый признак того, что мембрана повредилась — частые и кратковременные включения насосной станции, причем вода подается рывками: то сильный напор, то слабый. Чтобы убедиться в том, что дело в мембране, снимите заглушку на ниппеле. Если из него выходит не воздух, а вода, значит мембрана порвалась.

Устройство мембранного бака пригодится при замене груши

Чтобы начать ремонт , отключите систему от электропитания, сбросьте давление — откройте краны и подождите, пока стечет вода. После этого его можно отключать.

Далее порядок действий такой:

  • Ослабляем крепление фланца в нижней части бака. Дожидаемся, пока стечет вода.
  • Откручиваем все болты, снимаем фланец.
  • Если бак от 100 литров и больше, в верхней части бака откручиваем гайку держателя мембраны.
  • Вынимаем мембрану через отверстие в нижней части емкости.
  • Бак промываем — в нем обычно много осадка ржавого цвета.
  • Новая мембрана должны быть точно такой же как поврежденная. Вставляем в нее штуцер, которым верхняя часть крепится к корпусу (закручиваем).
  • Устанавливаем мембрану в бак гидроаккумулятора.
  • Если есть, устанавливаем гайку держателя мембраны в верхней части. При большом размере бака рукой вы не достанете. Можно привязать держатель к веревке и так установить деталь на место, навернув гайку.
  • Горловину натягиваем и прижимаем фланцем, устанавливаем болты, последовательно подкручивая их на несколько оборотов.
  • Подключаем в систему и проверяем работу.

Замена мембраны насосной станции закончена. Дело несложное, но нюансы знать надо.

Сфера использования устройства

Редуктор давления одновременно выполняет несколько функций. Прежде всего, он используется для защиты сантехнических приборов от высокого давления. Так, большинство сантехники и бытовых приборов рассчитано на работу, когда давление воды в трубопроводе не превышает 3 Атм. Если этот показатель несколько выше, то система водоснабжения испытывает серьезную нагрузку. Впоследствии страдают клапаны, соединения и другие элементы системы и сантехнических приборов

Также редуктор используется для борьбы с гидравлическим ударом, который может возникнуть как на промышленных предприятиях, так и в жилых домах. В результате резкого скачка давления воды в водопроводе возникает гидравлический удар, который способен повредить конструктивные элементы системы. Известны случаи, когда такой резкий скачок привел к разрыву бойлера. Поэтому специалисты рекомендуют устанавливать редуктор, так как он позволит предотвратить возникновение таких проблем

Очень важно учесть установку в системе .

Критерии выбора

При выборе регулятора обязательно обращайте внимание не только на конструктивное исполнение прибора и его технические характеристики, но и на материал, из которого он сделан. . Конструктивные особенности

Конструктивные особенности

Современные РДВ в зависимости от конструкции делятся на поршневые и мембранные. Несмотря на то, что поршень практически не изнашивается, редукторы первого типа менее надёжны. Связано это как с чувствительностью к чистоте воды (поршень может заклинить от частичек грязи или песка), так и с возможностью коррозии элементов конструкции.

РДВ мембранного типа неприхотливы в обслуживании, так как диафрагма делит их рабочее пространство на две камеры. Одна из них полностью герметизирована от контакта с водой. Как вы, наверное, уже догадались, именно в этой половине и установлено большинство деталей редуктора. При соблюдении правил эксплуатации, работа устройства не требует вмешательства, поэтому единственным недостатком можно считать необходимость регулярного контроля целостности мембраны.

Технические параметры

Бытовые редукторы, выпускаемые промышленностью, рассчитаны на разное входное и выходное давление. Например, устройство, позволяющее подключение к магистрали, рассчитанной на 15 бар, может обеспечить выходные параметры в пределах 1–4 бар. Чтобы не путаться в терминах, часто величину в 1 бар принимают равной 1 атмосфере, хоть на самом деле 1 бар = 0.987 атм. Давление на выходе бытовых регуляторов составляет от 0.5 до 4 атм или от 1 до 6 атм. Чтобы определить, какой прибор вам нужен, посмотрите требования к подключению оборудования, установленного в доме. Чаще всего производитель указывает их в техническом паспорте или специальной табличке, установленной на задней панели.

Вторым важным параметром при выборе считается рабочая температура РДВ. Устройства, рассчитанные на температурный режим 0–40 ºС, можно использовать только при использовании в системах с холодной водой. Если вам нужен прибор на «горячий» водопровод, выбирайте прибор, работающий в диапазоне до 130 ºС.

Материал и качество изготовления

Как и другая водопроводная арматура, регуляторы давления должны изготавливаться из прочных металлов и сплавов – стали, латуни, бронзы и т. д. Кроме того, сплавы, включающие железо, должны иметь в составе лигатуры с антикорродирующими свойствами. На практике в торговых сетях можно найти как очень достойные изделия, отличающиеся высоким качеством изготовления, так и откровенный хлам. «Отделить зерно от плевел» несложно благодаря двум критериям – цене и массе. Во-первых, хорошая вещь не может стоить дёшево, а во-вторых, возьмите в руки сравниваемые изделия и выберите тот, вес которого отличается в большую сторону. Кроме того, обязательно обращайте внимание на качество литья. Помните о том, что хороший производитель никогда не выпустит за территорию своих цехов изделие с раковинами или облоем на стенках.

Проблемы и решения

  1. Почему насосная станция Джилекс не держит давление в гидроаккумуляторе?

Вот список возможных причин неисправности, типичный для устройств всех производителей:

  • Отсутствие, загрязнение, неправильный монтаж или неисправность обратного клапана на всасывающем патрубке или на вводе водоснабжения. Стрелка на корпусе клапана должна указывать в сторону насоса, а сам он должен пропускать воду только в одном направлении;
  • Отсутствие воздуха с избыточным давлением в воздушном отсеке мембранного бака. Чтобы убедиться в отсутствии или наличии этой неисправности, нажмите на шток ниппеля. Если оттуда не поступает ни воздух, ни вода — гидроаккумулятор нужно просто-напросто накачать;
  • Разрыв мембраны гидроаккумулятора. В этом случае из ниппеля при нажатии на его шток начинает капать вода. Мембрана меняется на новую после отключения воды и вскрытия бака ресивера;
  • Мощности насоса не хватает для создания напора, соответствующего настройкам автоматического реле. Признак наличия этой проблемы — непрерывная, без отключений, работа насоса. Проблема устраняется путем регулировки реле;
  • Утечки воды (прежде всего течи напроток сливных бачков в туалетах). При утечках насос периодически включается в отсутствие разбора воды через смесители. Проблема устраняется регулировкой, ремонтом или заменой заливных или сливных клапанов в бачках.
  1. Почему в систему водоснабжения с насосной станцией попадает воздух?

Вероятная причина — негерметичность всасывающей трубы (разрыв или неплотное соединение с всасывающим патрубком насоса или обратным клапаном). Проблема устраняется герметизацией соединений или заменой трубы.

Проверка автоматики

После запуска насосной станции нужно проверить, правильно ли работает автоматика. Если вы приобрели реле давления с заводскими настройками, то оно должно отключить насосное оборудование при достижении верхнего порога давления в системе, установленного на реле

После запуска насосной станции нужно проверить, правильно ли работает автоматика. Если вы приобрели реле давления с заводскими настройками, то оно должно отключить насосное оборудование при достижении верхнего порога давления в системе, установленного на реле. После открывания крана и вытекания вод из гидробака реле давления должно снова запустить насос, когда показатель давления в системе понизится до установленного минимума. При необходимости заводские настройки можно изменить, настроив реле на нужное вам давление включения и выключения. Это делается так:

  1. Отключаем насосное оборудование и сливаем воду из гидробака, открутив нижний кран в системе. Открываем крышку на реле давления при помощи отвертки или гаечного ключа.
  2. Запускаем насосное оборудование, которое начнёт закачивать воду в гидробак.
  3. Засекаем и записываем показания манометра в момент отключения насоса. Это будет верхнее давление.
  4. Теперь открываем самый удалённый от насоса кран или тот кран, который находится на самой верхней отметке. По мере вытекания из него воды давление понизится, и насос снова запуститься. Нужно зафиксировать и записать показания манометра в момент запуска насоса. Это будет нижнее давление. Находим их разницу.
  5. Во время тестирования необходимо обратить внимание на напор воды, текущей из самого дальнего или высшего крана в системе. Если он вас не устраивает, то давление нужно повысить. Чтобы это сделать правильно, насос нужно отключить и туже закрутить гайку на большой пружине в реле. Для уменьшения напора, наоборот, ослабляем эту гайку.
  6. Теперь настроим разность давлений. Вы уже нашли её, отняв записанные показания манометра. Если это число равно 1,4 бар, то ничего настраивать не надо. Если найденное значение ниже, то это может привести к более частому запуску насоса и неравномерному напору, что вызовет преждевременный износ оборудования. Если значение выше, то режим работы станции будет более щадящим, но станет заметна разница между максимальным и минимальным напором. Для настройки этого параметра нужно подтянуть или ослабить гайку на малой пружине в реле. Для увеличения разности давлений гайку затягивают сильнее, а для уменьшения – ослабляют.
  7. Когда вы отрегулировали давление, нужно снова проверить работу системы, повторив предыдущие действия. При необходимости регулировку можно повторить.

Если ваше реле давления вообще без настроек, то есть все пружины полностью ослаблены, то регулировку делают так:

  1. Запускаем насос и нагнетаем давление в трубопроводе настолько, чтобы напор воды из самого дальнего или высшего в системе крана был удовлетворительным. Засекаем показания манометра и отключаем насос. Допустим, что прибор показал в этот момент давление равное 1,3 бар.
  2. Отключаем питание станции и открываем крышку на реле давления. Начинаем подтягивать гайку на большой пружине. Когда раздастся щелчок замыкания контактов, вращение прекращаем.
  3. Ставим на место крышку и включаем насос. Доводим давление в системе до 2,7 бар. Это значение мы получили, сложив наш показатель 1,3 бар с рекомендуемой разницей значений равной 1,4 бар.
  4. Отключаем насос от сети, снимаем крышку и подтягиваем гайку на меньшей пружине. Когда контакты разомкнуться, вы услышите щелчок. В этот момент вращение нужно прекратить.
  5. После наших настроек реле давления будет производить запуск насосного оборудования, когда давление в системе понизится до 1,3 бар, и отключать насос, когда давление повысится до 2,7 бар. Теперь все настройки выполнены. Крышку реле устанавливаем на место, а насосный агрегат подключаем к сети электропитания.

Facebook

Twitter

Вконтакте

Одноклассники

Какое давление должно быть в гидроаккумуляторе?

Если просмотреть переписку на тему автономного водоснабжения на различных строительных порталах и форумах, то один из часто встречающихся вопросов – почему в бак вместо обозначенной в его паспорте емкости (к примеру) 50 л заливается всего 30 – 35? Как результат – устройство работает не совсем корректно. Основная причина – неправильно выставленное давление в гидроаккумуляторе. А каким оно должно быть в гидроаккумуляторе – это и интересует многих пользователей.



О назначении и устройстве ГА подробно рассказывается здесь. Чтобы не повторяться, достаточно лишь отметить, что в баке изначально есть воздух. Он закачивается в него еще на производстве, и давление составляет (для подавляющего большинства моделей) 1,5 атмосферы. Если изделие от известной компании-изготовителя, то небольшую утечку (за предпродажный период) в расчет можно не брать – качественные гидроаккумуляторы не «травят».


Не все пользователи учитывают, что ГА функционирует в системе водоснабжения только совместно с реле давления, иначе теряется сам смысл установки бака. Именно эти два элемента автоматики и обеспечивают стабильность давления в контуре и регулируют интервал между пуском в работу и остановкой насоса.





Но есть и еще ряд нюансов, которые правильно оценить может лишь профильный специалист. Например, как рассматривать следующую рекомендацию, размещенную на одном из форумов – взять разницу высот (в м) между ГА и верхней точкой водоразбора (H) и разделить эту цифру (число) на 10. Частное – это и есть рекомендуемое давление в баке (в атм). У человека, хоть немного понимающего, как организуется схема водоснабжения, неминуемо возникнут хотя бы такие элементарные вопросы.


  • В любом доме есть много бытовой техники, присоединяемой к водопроводу. Для каждого изделия – свой нижний порог давления, при котором оно может нормально функционировать. Как это учесть?
  • Трубы в жилых строениях прокладываются по-разному. На это влияют этажность здания, внутренняя планировка и так далее. Каждый поворот «нитки», отвод от нее, фитинги – это некоторая потеря давления. Есть ли поправочные коэффициенты для всех подобных случаев?

Существует главное правило настройки гидроаккумулятора – давление в нем должно быть на 10% ниже минимального (для включения перекачивающего устройства), установленного при регулировке срабатывания реле. Но это типовая рекомендация, которой следует придерживаться. В принципе, можно взять разницу и в 12, а то и 15%. Но точно определить ее способен лишь специалист, с учетом всех нюансов системы.


Наиболее вероятные последствия неправильной настройки гидроаккумулятора


  • Некорректная работа бытовой техники, присоединенной к контуру водоснабжения. Например, периодические сбои в функционировании котельного оборудования, а то и аварийная остановка агрегата.
  • Снижение ресурса насоса по причине повышенного износа.
  • Проблемы с напором из кранов на последних этажах дома.

Производители прилагают к каждому гидроаккумулятору инструкцию, в которой расписан порядок его настройки. В чем сложность? Сортамент реле давлений значительный, и у каждой модели – свои характеристики.




Одна из основных – так называемая «дельта», то есть разница между Pmin (для пуска насоса) и Pmax (для его отключения). Применительно к большинству этих приборов она равна 1 (иногда 1,5). Но ни одно руководство не в состоянии учесть всех особенностей конкретной системы, самого строения, его «наполнения» техническими устройствами, способов их подключения и так далее.


Вывод

Он напрашивается сам собой. Несмотря на кажущуюся простоту настройки давления в гидроаккумуляторе, данную технологическую операцию целесообразнее доверить профессионалу. Логика достаточно проста – лучше оплатить его услуги «здесь и сейчас», чем не в такой уж далекой перспективе тратить деньги за визиты различных мастеров (по ремонту котла, посудомоечной машинки, того же насоса и так далее). Однозначно – в совокупности обойдется значительно дороже. А если учесть еще и неудобства, нервы, время, то решение более чем рациональное.


Компания «АЛЬФАТЕП» всегда окажет проживающим в Подмосковье практическую помощь в выборе оптимальной модели гидроаккумулятора и его настройке. Достаточно лишь позвонить на номер ее контактного телефона 8 (495) 109-00-95, и сотрудники подробно проконсультируют по любому вопросу, касающемуся организации водоснабжения, подберут требуемый для системы ГА, сами его установят и настроят по давлению его и реле. По желанию клиента, возьмут все оборудование на сервисное обслуживание.

для чего нужен и как работает

Такое приспособление как гидроаккумулятор для систем водоснабжения представляет собой цилиндрическую герметическую ёмкость, в которой установлена специальная мембрана или груша для регулирования давления воды.

Для чего нужен

Основным предназначением нашего устройства является поддержание оптимального давления жидкости в водопроводе. Такое оборудование защищает насосную станцию от частых запусков и преждевременного износа деталей, обычно это приводит к подгоранию контактов реле регулятора. После отключения электропитания в ёмкости остаётся определённый запас воды.

Основными функциями описываемого прибора считается:

  • Продление эксплуатации насоса. Запуск двигателя происходит после исчерпания запаса жидкости в баке. Длительность эксплуатации прибора зависит от частоты его запусков. Установка мембранного бака позволяет увеличить время между включениями, что продолжит длительность эксплуатации подкачивающего прибора;
  • Поддержание давления в системе по заданным параметрам. При отсутствии гидроаккумулятора перепады напора происходят во время одновременного включения нескольких потребителей, например, водопроводного крана и душа;
  • Устройство позволяет сохранять некоторый запас воды при отключении электроэнергии. Такое качество особенно ценно при эксплуатации автономного водопровода в частном доме.

Устройство

Как мы уже говорили, наше приспособление разделяется грушей на две части. В одной из них собирается жидкость, в другой – сжатый воздух. После заполнения груши напор воды сбалансируется давлением воздуха, поэтому жидкость капсулы не будет касаться к металлическим стенкам резервуара. Мембрана не раздувается до значительных размеров через внутреннее давление воздуха. На корпусе установлен клапан для регулирования давления.

Обратите внимание! Подводящие патрубки должны подсоединяться к гидроаккумулятору таким образом, чтобы можно было быстро разобрать прибор для ремонта без сливания воды из системы.

В резервуарах с объёмом больше 100 литров предусмотрен специальный клапан, который служит для отвода лишнего воздуха, выделенного из жидкости. В меньших по габаритам ёмкостях для подобных целей используют специальный кран.

Принцип работы

Рассматриваемое устройство работает следующим образом. Насосная станция из скважины подаёт воду в мембрану под определённым давлением. Когда величина напора достигнет порогового значения, насосная станция отключается.

Во время потребления жидкости давление падает, что приводит к повторному включению. Эффективность работы приспособления зависит от объёма бака. При увеличении габаритов ёмкости снижается нагрузка на насос. Реле давления можно выставить на определённый запас воды методом вращения специальных гаек.

При продолжительной работе гидроаккумулятора присутствующий в жидкости воздух скапливается в мембране, заполняя полезное пространство, которое могло бы использоваться для воды. В связи с этим рекомендовано проводить профилактические действия, которые заключаются в стравливании скопившихся газов. Подобные операции необходимо проводить с периодичностью в 1-3 месяца.

Реле давления для гидроаккумулятора и как отрегулировать

Рассматриваемое приспособление используется для автоматического регулирования работы насоса. При регулировании реле давления нужно обратить внимание на следующие термины:

  • Нижнее давление – это параметры запуска насоса, стандартное значение 1,5 Бар;
  • Параметры верхнего давления используются для раздвижения контактов реле и дальнейшего отключения насоса. Здесь используются показатели в 2,5-3 бар;
  • Гранично допустимое давление не должно превышать 5 бар.

После запуска станции вода начинает накапливаться в мембране или груше. В дальнейшем жидкость будет выталкиваться по трубам к потребителям. После приобретения необходимого оборудования нужно проверить давление воды. Рассматриваемые устройства имеют специальные манометры, но эксперты утверждают, что такие приборы имеют значительные погрешности измерений.

Обратите внимание! Для проверки показателей давления рекомендовано использовать манометр для автомобиля со специальной шкалой.

Реле давления

Во время проверки давления воздуха в мембранном баке снимают защитную крышку и подсоединяют манометр к ниппелю. Следует заметить, что при уменьшении давления в гидробаке, увеличивается объём закачанной жидкости.

Для создания необходимого напора жидкости в ёмкость нужно закачать воздух до установления давления на значении в 1,5 атмосфер. Увеличение показателей приводит к частым включениям и изнашиванию насоса. Слишком маленькое давление приведёт к раздуванию и выходу из строя резиновой груши.

Во время регулирования реле нужно снять крышку из прибора, после чего мы обнаружим корпус с двумя пружинами, на которых вкручены большая и маленькая гайки. Заметим, что первая гайка регулирует нижний уровень давления (обозначим её символом Р). Вторая, маленькая гайка используется для регулировки разницы давления (обычно обозначается буквой Н). Работу начинают относительно нижнего давления, которое выставляется на большой пружине.

Гидробак с реле давления

После заполнения гидробака сжатым воздухом включают насос и следят за положением стрелки манометра. Если показатели превысят верхнюю границу, нужно будет отключить насос. Предельный напор в системе устанавливается после остановки стрелки на манометре.

Обратите внимание! При регулировке нужно соблюдать рекомендованные параметры работы насосной станции, указанные в инструкции к изделию.

Во время настройки реле желательно соблюдать разницу между верхней и нижней границей давления в пределах одной или двух атмосфер, что обеспечит правильное использование насосной станции. После закачки воды и установления верхнего порога, насос отключают и начинают регулировать реле. Для этого маленькую гайку вращают до запуска механизма. Далее сливают воду с системы до тех пор, пока не запустится насос. Обычно это происходит при нижнем пороге давления.

Важно! Установите нижнюю границу на 0,1-0,3 атмосферы выше, чем давление в гидроаккумуляторе. Это позволит увеличить срок эксплуатации груши.

На следующем этапе работ вращаем большую гайку для установки нижнего давления. Далее включаем насос и следим за показателями стрелки манометра, она должна подняться до верхнего уровня. На этом работу по регулированию реле давления можно считать оконченной.

Автоматика для насоса с гидроаккумулятором и реле давления

Автоматические приборы для регулирования работы насосной станции позволяют минимизировать присутствие человека во время работы системы. В данном случае необходимо правильно настроить реле на подачу нужного давления в систему (эти операции мы рассматривали выше).

Гидроаккумулятор в системе водоснабжения

Как отмечают эксперты, основной причиной сокращения продолжительности жизни насоса считается так называемый сухой ход, когда устройство работает без воды. Такое явление может происходить при частых отключениях электроэнергии. Точками риска с возможным возникновением сухого хода принято считать:

  • Неправильный подбор рабочих параметров насоса, который используется для откачки воды со скважины или колодца, а особенно при засушливом лете, когда падает уровень грунтовых вод;
  • Выход воды из накопительной ёмкости. В данном случае необходимо срочно выключить насос.

Для защиты от возможности появления сухого хода используется автоматика:

  • Поплавковый выключатель — это сравнительно недорогой прибор, который применяется для перекачки жидкости из колодцев или резервуаров. На практике используют два основных вида поплавков. Первый тип автоматики останавливает насос при полном заполнении ёмкости, когда вода доходит до уровня поплавка и размыкает контакты. Во втором случае кабель прибора подключают в разрыв электропроводки для запитывания насоса. Остановка насоса происходит при опускании уровня жидкости ниже критического уровня;
  • Специальное реле давления выставляется на отключение насоса производителем. Размыкание контактов прибора происходит при понижении давления в системе до показателей в 0,4…0,6 бар. Запускается насос вручную после устранения причины сухого хода.

Какое давление должно быть в гидроаккумуляторе и как накачать

Как мы уже говорили, основным предназначением гидроаккумулятора считается уменьшение количества запусков насоса, что в конечном итоге приведёт к увеличению срока его службы, защиты системы от гидроударов. Чтоб установленное оборудование работало правильно нужно знать, какое давление должно быть в гидробаке.

Важно! Следует понимать, что гидроаккумулятор накачивают во время отсутствия воды в резервуаре.

Подключение к насосу

Существует несколько формул для расчёта давления в расширительном баке. По мнению экспертов, эти показатели должны быть меньшими от параметров давления, при которых происходит запуск насоса. Если оборудование работает в диапазоне 1,5…3 бара (что рекомендовано производителем), то гидроаккумулятор нужно будет накачать до 1,3 бар, т.е. на 0,2 бар меньше, чем нижнее давление реле.

Обычно производители поставляют оборудование с накаченным расширительным баком. Давление в ёмкости должно находиться в пределах 1,5 бара, но иногда оно падает. Перед первым запуском насосной станции нужно проверить давление воздуха специальным манометром, при необходимости подсоединить автомобильный насос к ниппелю и подкачать. Также можно добавлять давление, при помощи ручного насоса, периодически проверяя его параметры манометром.

Необходимо проводить периодический осмотр установленного оборудования для подачи воды. Дело в том, что в воде всегда имеется определённый запас сжатого воздуха, присутствие которого уменьшает полезный объём мембраны. В баках с объёмом от 100 литров для стравливания лишнего воздуха присутствуют специальные клапана, в меньших по объёму резервуарах такие приспособления не предусматриваются.

Для отвода лишнего воздуха из груши проводят следующие действия. Отключаем насос и сливаем всю жидкость из расширительного бачка методом включения одного из кранов. Подобную работу проводим несколько раз подряд, что будет способствовать отводу лишнего воздуха из водопроводной системы.

Схема водоснабжения частного дома от скважины с гидроаккумулятором

При необходимости установки автономного водопровода в частном доме многие хозяева загородной недвижимости бурят скважину, глубиной от 40 до 60 метров. Насосную станцию располагают в специальном приямке возле скважины, что повысит эффективность её работы.

Гидробак в схеме водоснабжения из скважины

В большинстве случаев подающий напор воды проходит через гидроаккумулятор, что позволяет сбалансировать давление в системе и защитить трубы от возможного гидроудара. Заметим, что в резервуаре сохраняется некоторый запас жидкости, который можно использовать после отключения электроэнергии. В дальнейшем вода из бака поступает в систему.

Обратите внимание! Как отмечают эксперты, установка гидравлического аккумулятора не считается обязательной, но это устройство позволяет повысить эффективность работы водопровода.

Гидроаккумулятор и расширительный бак – в чём разница

Расширительный бак

По внешнему виду две рассматриваемые ёмкости похожи между собой. Расширительный бак используется в отопительной системе, его основным предназначением считается компенсация лишнего давления, которое возникает в результате расширения нагретой жидкости. Во время работы котла повышается температура теплоносителя, что приводит к его расширению и увеличению объёма.

Как утверждают эксперты, подогрев воды всего на 10 градусов увеличивает её объём на 0,3%. То есть 50 градусная разница в показаниях температуры теплоносителя до и после нагрева увеличит его объём на 1,5%. Жидкость не сжимается, она должна куда-то деваться. Для этого и используется расширительный бак.

Гидроаккумулятор считается одним из основных приборов водопроводной системы. Основными задачами этого устройства является накопление воды в системе и поддержание необходимого давления. Присутствие дополнительного резервуара позволяет сократить количество включений насосной станции, что будет способствовать продолжительной работе силовой установки.

Следующей важной функцией мембранного бака считается защита водопровода от гидроудара. Как известно гидравлический удар чаще всего возникает в момент запуска или отключения насосной станции, а также при резком перекрытии кранов. Резиновая груша или мембрана в ёмкости позволяет сбалансировать избыточное давление, возникающее в системе.

Вертикальный гидроаккумулятор

Несмотря на то, что расширительный бак и гидроаккумулятор похожи между собой отличия между ними есть, причём значительные. В конструкции гидравлического аккумулятора есть специальная мембрана или груша, которая используется для компенсации давления. В расширительном баке тоже есть специальная перегородка, которая делит ёмкость на две части: первая заполняется водой, вторая – воздухом. Если в расширительном баке отопления кислород и жидкость соприкасаются, то в гидроаккумуляторе соприкосновение этих двух веществ недопустимо.

Как выбрать

Только правильно подобранный гидравлический бак поможет правильно использовать водопроводную систему. На практике используют две ёмкости: мембранную и гидравлическую. В первом резервуаре находится каучуковая капсула, которая раздувается до определённого объёма под давлением воды.

Во второй части резервуара находится сжатый воздух. Во время работы системы выдавливание жидкости происходит за счёт сжатого воздуха. Второй вид гидроаккумулятора идентичен по принципу действия, здесь пространство между воздухом и водой разделяется специальной эластичной мембраной.

Обратите внимание! При подборе рассматриваемого устройства следует отдавать предпочтение баллонному варианту. В таком резервуаре капсула не контактирует с металлическими стенками ёмкости.

Разнообразие гидроаккумуляторов

При выборе прибора для автономного водопровода необходимо рассчитать потребность семьи в воде. Во время отключения электроэнергии в приборе может находиться различное количество воды (объём увеличивается с увеличением габаритных размеров резервуара). При покупке гидравлического бака обращают внимание на следующие важные детали:

  • Независимо от объёма резервуара, груша будет занимать только половину бака. Для автономной системы, используемой в частном доме, подойдёт резервуар с ёмкостью в 80-100 литров. Такого объёма хватит для беспрерывной работы насосной станции с производительностью 30л/час. При этом устройство будет включаться не более 30 раз за час;
  • Ориентируются на максимальный расход воды, когда её используют все члены семьи одновременно;
  • 100-литровый гидроаккумулятор позволит сохранить достаточный запас воды после отключения электроэнергии.

Чтобы обеспечить максимальную эффективность работы прибора, его располагают в непосредственной близости к скважине.

Насос технологической охлаждающей воды

— Конструкция насосной станции

Насосные станции для жидкости

General Air Products созданы как надежный, не требующий особого обслуживания компонент в вашем технологическом процессе. Каждая насосная система разработана в соответствии с вашими требованиями нашей командой инженеров и экспертов по жидкостным процессам. Наш многолетний опыт работы со всеми типами применений гарантирует, что каждая спроектированная нами насосная система будет соответствовать вашим ожиданиям и превзойти их.

Стандартные насосные станции для жидкости

General Air Products поставляются в одинарной или дуплексной конфигурации насосов (хотя мы построили много тройных систем, четырехуровневых систем). Наши насосные системы полностью предварительно смонтированы и смонтированы на стальной опорной плите для простоты установки.

Насосные станции в индивидуальной упаковке

General Air Products имеет богатый опыт производства насосных станций для нестандартных применений. Качество и надежность — наш главный приоритет, независимо от того, насколько требовательны ваши требования.В чем мы отличаемся от других производителей насосных станций по индивидуальному заказу, так это после поддержки продаж: в General Air Products у нас есть опытные инженеры и обслуживающий персонал, которые находятся на расстоянии телефонного звонка.

Дополнительные функции и конфигурации:

  • Доступен с однофазным / трехфазным питанием
  • Конфигурации Simplex / Duplex / Triplex / Quad
  • Конструкция из нержавеющей стали
  • Панели управления, включенные в список UL
  • Электрические шкафы NEMA 1, 3, 3R, 12, 4 или 4X
  • Сертификат CE
  • Насосы с регулируемым приводом
  • Удаленный мониторинг и управление

Промышленные насосные станции

Арт. № Стандартный
Расход
Напорный
Головка TDH
Насос HP Стандартное напряжение
(В / Фаза / Герцы)
Присоединительные размеры
(дюймовая часть)
FPSVD44 10 галлонов в минуту100 футов 1/2 л.с. 460/3/60 1 1/4 дюйма
кадров / сек XD44 20 галлонов в минуту100 футов 1 л.с. 460/3/60 1 1/4 дюйма
FPSYD44 35 галлонов в минуту100 футов 1.5 л.с. 460/3/60 1 1/4 дюйма
FPSAD44 45 галлонов в минуту100 футов 2 л.с. 460/3/60 1 1/2 дюйма
FPSBD44 75 галлонов в минуту100 футов 3 л.с. 460/3/60 2 в
FPSCD44 125 галлонов в минуту100 футов 5 л.с. 460/3/60 2 в
FPSDD44 175 галлонов в минуту100 футов 7.5 л.с. 460/3/60 3 в
FPSED44 250 галлонов в минуту100 футов 10 лс 460/3/60 3 в
FPSGD44 400 галлонов в минуту100 футов 15 л.с. 460/3/60 3 в
кадр / сHD44 600 галлонов в минуту100 футов 20 л.с. 460/3/60 3 в
FPSID44 800 галлонов в минуту100 футов 25 л.с. 460/3/60 6 эт.
кадров / сек JD44 900 галлонов в минуту100 футов 30 лс 460/3/60 6 эт.
FPSKD44 1100 галлонов в минуту100 футов 40 л.с. 460/3/60 8 эт.
FPSLD44 1400 галлонов в минуту100 футов 50 лс 460/3/60 8 эт.
FPSMD44 1500 галлонов в минуту100 футов 60 л.с. 460/3/60 8 эт.
FPSND44 1600 галлонов в минуту100 футов 75 л.с. 460/3/60 10 Flg.
FPSOD44 1700 галлонов в минуту100 футов100 л.с. 460/3/60 10 Flg.
FPSVS44 10 галлонов в минуту100 футов 1/2 л.с. 460/3/60 1 1/4 дюйма
кадров в секунду XS44 20 галлонов в минуту100 футов 1 л.с. 460/3/60 1 1/4 дюйма
FPSYS44 35 галлонов в минуту100 футов 1.5 л.с. 460/3/60 1 1/4 дюйма
FPSAS44 45 галлонов в минуту100 футов 2 л.с. 460/3/60 1 1/2 дюйма
FPSBS44 75 галлонов в минуту100 футов 3 л.с. 460/3/60 2 в
FPSCS44 125 галлонов в минуту100 футов 5 л.с. 460/3/60 2 в
FPSDS44 175 галлонов в минуту100 футов 7.5 л.с. 460/3/60 3 в
FPSES44 250 галлонов в минуту100 футов 10 лс 460/3/60 3 в
FPSGS44 400 галлонов в минуту100 футов 15 л.с. 460/3/60 3 в
кадров / сек HS44 600 галлонов в минуту100 футов 20 л.с. 460/3/60 3 в
FPSIS44 800 галлонов в минуту100 футов 25 л.с. 460/3/60 6 эт.
FPSJS44 900 галлонов в минуту100 футов 30 лс 460/3/60 6 эт.
ФПСКС44 1100 галлонов в минуту100 футов 40 л.с. 460/3/60 8 эт.
FPSLS44 1400 галлонов в минуту100 футов 50 лс 460/3/60 8 эт.
кадров / сек MS44 1500 галлонов в минуту100 футов 60 л.с. 460/3/60 8 эт.
ФПСНС44 1600 галлонов в минуту100 футов 75 л.с. 460/3/60 10 Flg.
FPSOS44 1700 галлонов в минуту100 футов100 л.с. 460/3/60 10 Flg.
FPSVD44 5 галлонов в минуту150 футов 1/2 л.с. 460/3/60 1 из
кадров / сек XD44 10 галлонов в минуту150 футов 1 л.с. 460/3/60 1 из
FPSYD44 20 галлонов в минуту150 футов 1.5 л.с. 460/3/60 1 1/2 дюйма
FPSAD44 35 галлонов в минуту150 футов 2 л.с. 460/3/60 1 1/2 дюйма
FPSBD44 50 галлонов в минуту150 футов 3 л.с. 460/3/60 2 в
FPSCD44 75 галлонов в минуту150 футов 5 л.с. 460/3/60 2 в
FPSDD44 125 галлонов в минуту150 футов 7.5 л.с. 460/3/60 3 в
FPSED44 175 галлонов в минуту150 футов 10 лс 460/3/60 3 в
FPSGD44 275 галлонов в минуту150 футов 15 л.с. 460/3/60 3 в
кадр / сHD44 350 галлонов в минуту150 футов 20 л.с. 460/3/60 3 в
FPSID44 500 галлонов в минуту150 футов 25 л.с. 460/3/60 6 эт.
кадров / сек JD44 600 галлонов в минуту150 футов 30 лс 460/3/60 6 эт.
FPSKD44 800 галлонов в минуту150 футов 40 л.с. 460/3/60 6 эт.
FPSLD44 900 галлонов в минуту150 футов 50 лс 460/3/60 6 эт.
FPSMD44 1200 галлонов в минуту150 футов 60 л.с. 460/3/60 8 эт.
FPSND44 1400 галлонов в минуту150 футов 75 л.с. 460/3/60 8 эт.
FPSOD44 1700 галлонов в минуту150 футов100 л.с. 460/3/60 8 эт.
FPSVS44 5 галлонов в минуту150 футов 1/2 л.с. 460/3/60 1 из
кадров в секунду XS44 10 галлонов в минуту150 футов 1 л.с. 460/3/60 1 из
FPSYS44 20 галлонов в минуту150 футов 1.5 л.с. 460/3/60 1 1/2 дюйма
FPSAS44 35 галлонов в минуту150 футов 2 л.с. 460/3/60 1 1/2 дюйма
FPSBS44 50 галлонов в минуту150 футов 3 л.с. 460/3/60 2 в
FPSCS44 75 галлонов в минуту150 футов 5 л.с. 460/3/60 2 в
FPSDS44 125 галлонов в минуту150 футов 7.5 л.с. 460/3/60 3 в
FPSES44 175 галлонов в минуту150 футов 10 лс 460/3/60 3 в
FPSGS44 275 галлонов в минуту150 футов 15 л.с. 460/3/60 3 в
кадров / сек HS44 350 галлонов в минуту150 футов 20 л.с. 460/3/60 3 в
FPSIS44 500 галлонов в минуту150 футов 25 л.с. 460/3/60 6 эт.
FPSJS44 600 галлонов в минуту150 футов 30 лс 460/3/60 6 эт.
ФПСКС44 800 галлонов в минуту150 футов 40 л.с. 460/3/60 6 эт.
FPSLS44 900 галлонов в минуту150 футов 50 лс 460/3/60 6 эт.
кадров / сек MS44 1200 галлонов в минуту150 футов 60 л.с. 460/3/60 8 эт.
ФПСНС44 1400 галлонов в минуту150 футов 75 л.с. 460/3/60 8 эт.
FPSOS44 1700 галлонов в минуту150 футов100 л.с. 460/3/60 8 эт.

Экономичные насосные станции HVAC

Арт. № Стандартный
Расход
Напорный
Головка TDH
Насос HP Стандартное напряжение
(В / Фаза / Герцы)
Присоединительные размеры
(дюймовая часть)
кадров в секунду EVD44 10 галлонов в минуту100 футов 1/2 л.с. 230/1/60 1 из
кадров / сек EXD44 20 галлонов в минуту100 футов 1 л.с. 230/1/60 1 из
FPSEYD44 35 галлонов в минуту100 футов 1.5 л.с. 230/1/60 1 из
FPSEAD44 45 галлонов в минуту100 футов 2 л.с. 230/1/60 1 из
FPSEBD44 60 галлонов в минуту100 футов 3 л.с. 230/1/60 1,5 дюйма
FPSECD44 100 галлонов в минуту100 футов 5 л.с. 230/1/60 1.5 в
FPSEDD44 120 галлонов в минуту100 футов 7.5 л.с. 208/230/460/3/60 2 в
FPSEED44 180 галлонов в минуту100 футов 10 лс 208/230/460/3/60 2 в
FPSEVS44 10 галлонов в минуту100 футов 1/2 л.с. 230/1/60 1 из
кадров / сек EXS44 20 галлонов в минуту100 футов 1 л.с. 230/1/60 1 из
FPSEYS44 35 галлонов в минуту100 футов 1.5 л.с. 230/1/60 1 из
FPSEAS44 45 галлонов в минуту100 футов 2 л.с. 230/1/60 1 из
FPSEBS44 60 галлонов в минуту100 футов 3 л.с. 230/1/60 1,5 дюйма
FPSECS44 100 галлонов в минуту100 футов 5 л.с. 230/1/60 1.5 в
ФПСЭДС44 120 галлонов в минуту100 футов 7.5 л.с. 208/230/460/3/60 2 в
FPSEES44 180 галлонов в минуту100 футов 10 лс 208/230/460/3/60 2 в
  • Циркуляция технологического охлаждения
  • Еда и напитки — подходит для мытья посуды
  • Система перекачки жидкости деионизированной воды (деионизированной воды)
  • Насосная система для заправки гликоля
  • Насос и резервуар для покрытия труб
  • Горное дело
  • Производство стекла
  • Производство военной техники
  • Резка металла
  • Ванны охлаждающие
  • Бумажные фабрики
  • Высококачественные центробежные насосы с моноблочной муфтой
  • Расширительный бак, воздухоочиститель и воздухоотводчик
  • Запорные предохранительные клапаны
  • Манометры и манометры
  • Реле потока высокого качества
  • Опорная плита из армированной стали
  • Звуковая и визуальная сигнализация
  • Дуплексный блок с обратными клапанами и автоматическим переключением с чередованием

Нажмите, чтобы связаться с нами сегодня или позвоните:

1-888-863-7389

(PDF) Воздействие воздушного резервуара на гидравлический удар в высоконапорной насосной станции

Воздействие воздушного резервуара на гидравлический удар в высоконапорной насосной станции

станция

L Wang, FJ Wang, ZC Zou, XN Li и JC Zhang

Колледж водных ресурсов и гражданского строительства, Китайский сельскохозяйственный университет,

Пекин 100083, Китай

Эл. Почта: wangling0113 @ 126.com, [email protected]

Аннотация. Влияние воздушного резервуара на процесс гидроудара в насосной станции с высоким напором

было проанализировано с использованием метода характеристик. Результаты показывают, что объем воздушного резервуара

является ключевым параметром, определяющим защитное действие по давлению гидроудара. Максимальное давление

в системе снижается с увеличением объема воздушного резервуара. Для воздушного резервуара фиксированного объема

форма воздушного резервуара и способ монтажа, например, горизонтальная или вертикальная установка

, мало влияют на гидравлический удар.Для получения хороших защитных эффектов,

расположение воздушного резервуара должно быть близко к выпускному отверстию насоса. Как правило, если объем воздушного резервуара составляет

, гидравлический удар всего трубопровода эффективно контролируется.

1. Введение

Внезапная остановка насосов часто приводит к огромному изменению давления в проектах отвода воды для насосных станций с высоким напором

. В худшем случае отделение водяного столба может вызвать резкое и мгновенное повышение давления.Возникающее изменение давления угрожает безопасной эксплуатации

насосных станций. Следовательно, гидравлический удар защищен установкой расширительных баков [1-2], воздушных клапанов [3-4], воздушных резервуаров

или другого оборудования в реальной технике. Для традиционных мер безопасности существуют некоторые проблемы, связанные с ограничением расширительного бачка из-за топографии, а плохие характеристики выпуска воздуха из клапана

приводят к большому давлению. Однако в качестве эффективной меры защиты от гидроудара широко используется сосуд Air

, поскольку он отличается меньшими инвестициями и прост в обслуживании.

Общий объем, начальный объем воздуха и монтажное положение воздушного резервуара имеют важное влияние

на гидравлический удар. В настоящее время широко используемыми методами определения общего объема воздушного судна

являются графический метод [5], формульный метод [6] и метод оценки [7]. Размер общего объема

может быть определен опытным путем на основе этих методов. Для начального объема воздуха в воздушном сосуде Лю [8]

и Лян [9] обнаружили, что по мере увеличения начального объема воздуха в воздушном сосуде эффект защиты водяного молота

был лучше.Более того, Сайед [10] сравнил влияние двух различных положений установки

на гидравлический удар и указал, что гидравлический удар был эффективно защищен, когда позиция

воздушного резервуара находилась на главной линии сразу после соединения параллельной линии; Гао [11] также проанализировал

влияние положения на гидроудар и показал, что различные положения воздушного судна имели разные эффекты

на гидроудар. Но фактическое место установки не было указано.

В данной работе построена математическая модель воздушного резервуара и проанализировано влияние режима установки

и положения воздушного резервуара на процесс гидроудара с помощью метода характеристик

. Гидравлический удар для высоконапорной насосной станции эффективно защищен конструкцией воздушного судна

.

6-я Международная конференция по насосам и вентиляторам с компрессорами и ветряными турбинами IOP Publishing

IOP Conf.Серия: Материаловедение и инженерия 52 (2013) 072010 doi: 10.1088 / 1757-899X / 52/7/072010

Содержимое этой работы может использоваться в соответствии с условиями лицензии Creative Commons Attribution 3.0. Любое дальнейшее распространение

этой работы должно содержать указание на автора (авторов) и название работы, цитирование журнала и DOI.

Опубликовано по лицензии IOP Publishing Ltd 1

Системы автоматизации насосов | Festo USA

Пневматическое решение с ножевыми задвижками

Festo предлагает безопасное и энергоэффективное решение для насосных станций, заменяющее механические обратные клапаны: автоматические задвижки с пневматическими линейными приводами.Клапаны процесса подключаются через централизованный или децентрализованный ПЛК.

Энергоэффективная работа насосов

Важным аргументом в пользу пневматической автоматической ножевой задвижки является то, что насос больше не должен работать против гидравлического сопротивления, создаваемого заслонкой. Экономия энергии в результате работы насоса намного превышает энергозатраты на дополнительный контроллер и создание сжатого воздуха.

Долговременная стабильная система

Клапаны NAMUR, которые устанавливаются непосредственно на линейный привод и управляются централизованным или децентрализованным ПЛК, гарантируют, что ножевые задвижки открываются и закрываются одновременно с насосом. Если возникает нежелательная кавитация, газ выходит из пузырька сразу после открытия задвижки, что не влияет на работу насоса. И в результате контролируемой функции закрытия гидравлический удар больше не создается в системе трубопроводов.Кроме того, снижен износ автоматической ножевой задвижки и улучшено уплотнение, что значительно продлевает срок службы системы.

Повышенная эксплуатационная безопасность

Даже в случае сбоев питания ваша система остается надежной и переходит в безопасное положение; при падении напряжения автоматически включается воздушный резервуар компрессора. Пневматические приводы имеют три аварийные функции: открывать, закрывать, останавливать.Правильное функционирование технологических клапанов гарантируется в любое время.

9VAC25-790-380. Перекачка сточных вод.

Артикул 2
Канализационные насосные станции

A. Особенности. Канализационные насосные станции должны располагаться как можно дальше от существующих или предполагаемых застроенных жилых районов, и должна быть обеспечена всепогодная дорога. Станции должны иметь соответствующую зону контролируемого или ограниченного использования вокруг них. В таких зонах следует предотвращать использование в жилых помещениях или деятельность людей с высокой плотностью населения или деятельность, связанную с приготовлением пищи.Условия для контроля шума и контроля запаха, а также архитектурный проект станции должны соответствовать требованиям площадки. Площадки для станций должны быть достаточного размера для будущего расширения или добавления, если это применимо. Все механическое и электрическое оборудование, которое может быть повреждено или выведено из строя в результате контакта с водой или погружения в воду (двигатели, оборудование управления, воздуходувки, переключатели, подшипники и т. Д.), Должно быть физически расположено в зоне воздействия 100-летнего наводнения / волнения или защищено иным образом. от 100-летнего ущерба от наводнений / волн.Все станции должны быть спроектированы таким образом, чтобы они оставались полностью работоспособными во время 25-летнего паводка / воздействия волн.

1. Там, где может возникнуть необходимость перекачивать неочищенные (неочищенные) или осевшие сточные воды перед удалением песка, особое внимание следует уделить конструкции мокрого колодца. Нагнетательный трубопровод должен быть спроектирован таким образом, чтобы предотвратить оседание песка в нагнетательных линиях, когда насосы не работают.

2. Должно быть предусмотрено не менее двух насосных агрегатов. Если предусмотрено два агрегата, каждый должен быть способен обрабатывать потоки, превышающие ожидаемый максимальный поток или как минимум в 2-1 / 2 раза превышающий средний расчетный поток, в зависимости от того, что больше.Если предусмотрено три или более агрегата, они должны быть спроектированы с учетом фактических условий потока и должны иметь такую ​​производительность, чтобы при отключении любого одного агрегата оставшиеся агрегаты были способны обрабатывать максимальный поток сточных вод или минимум 2. -1/2 среднего расчетного расхода, в зависимости от того, что больше. Если ожидается, что станция будет работать с расходом менее чем в два раза превышающим средний расчетный расход в течение продолжительного периода времени, в проекте должны быть учтены меры, принимаемые для предотвращения заражения из-за длительного времени выдержки неочищенных сточных вод в мокром колодце.

3. Насосные станции очистных сооружений должны быть спроектированы таким образом, чтобы сточные воды поступали на очистные сооружения примерно с той же скоростью, что и на насосной станции. Должно быть предусмотрено не менее двух насосных агрегатов. Насосные станции очистных сооружений — это те станции, которые сбрасывают в очистные сооружения без рассеивания потока через систему самотечного сбора. Если используются только два насосных агрегата, они должны иметь регулируемую скорость и размер, чтобы насосы обеспечивали от 1/2 до 2–1 / 2-кратного среднего расчетного расхода или максимального расхода, в зависимости от того, что больше, за исключением случаев выравнивания расхода. используется в соответствии с данной главой.Если насосы постоянной скорости должны использоваться без выравнивания, либо (i) не менее трех насосов, каждый из которых имеет производительность примерно в 1-1 / 4 раза выше среднего расчетного расхода, либо (ii) два насоса, каждый из которых имеет производительность примерно При необходимости для передачи максимального потока должен быть предусмотрен 1-1 / 4-кратный средний расчетный расход, при этом производительность третьего насоса в 2-1 / 2 раза превышает средний расчетный расход. Для конкретных применений могут быть рассмотрены многоскоростные насосы вместо насосов с регулируемой скоростью.Эти критерии для притока не будут применяться к таким очистным сооружениям, где предусмотрена возможность удержания на несколько дней, например, в стабилизационных прудах или в аэрируемых лагунах.

4. Насосам, перекачивающим неочищенные сточные воды, должны предшествовать легкодоступные штанговые стойки с чистыми отверстиями, не превышающими 2-1 / 2 дюйма, если не используются пневматические эжекторы или не установлены специальные устройства для защиты насосов от засорения или повреждения. Если размер установки требует, рекомендуется использовать механически очищенную решетку с измельчителем или устройством для измельчения.Если экраны расположены под землей, должны быть предусмотрены удобные условия для работы с экранами. Для более крупных или более глубоких станций предпочтительны дублирующие блоки защиты надлежащей мощности. Перед насосами, перекачивающими неочищенные сточные воды, могут потребоваться перехватчики или разделительные бассейны.

5. Насосы, в которых твердые частицы проходят через рабочее колесо (колеса), должны пропускать сферы диаметром не менее трех дюймов. Насосное оборудование, имеющее встроенные экраны для предотвращения прохождения твердых частиц через рабочее колесо, должно пропускать сферы диаметром не менее двух дюймов.Насосное оборудование, которому предшествует измельчающее оборудование, должно пропускать твердые частицы, выходящие из измельчающего механизма.

6. Насосы должны быть размещены таким образом, чтобы при нормальных условиях пуска они запускались с положительной высотой всасывания, за исключением случаев, предусмотренных для всасывающих насосов. Каждый насос должен иметь индивидуальную всасывающую и всасывающую линии. Конструкция мокрого колодца должна быть такой, чтобы не было турбулентности вблизи водозабора. Диаметр всасывающего и нагнетательного трубопроводов насоса должен быть не менее четырех дюймов, за исключением случаев, когда это позволяет конструкция специального оборудования.Расчетная скорость в трубопроводе насоса не должна превышать (i) шесть футов в секунду во всасывающем трубопроводе и (ii) в нагнетательном трубопроводе — восемь футов в секунду. Все насосы должны иметь линию сброса воздуха на напорном трубопроводе насоса.

7. Клетки управляющих поплавков должны быть расположены так, чтобы на них не влияли потоки, поступающие в мокрый колодец, или всасывание насосов. Поплавковые трубки не допускаются ни во влажный, ни в сухой колодец. Пневматическое управление является предпочтительным для всех канализационных насосных станций.Должны быть предусмотрены условия для автоматического переключения используемых насосов (что называется опережающим режимом), если не будет обеспечена надлежащая эксплуатация и техническое обслуживание для защиты от отказа насоса.

8. С целью определения уровней жидкости для аварийных сигналов, высокий уровень жидкости в мокром колодце определяется как уровень сточных вод во влажном колодце выше нормальных рабочих уровней, такой, что либо: (i) резерв сточных вод во входящем может произойти канализация, или (ii) может произойти переполнение, или (iii) может потребоваться активация резервного насоса (ов).В случае дуплексной насосной станции с ограниченным объемом мокрого колодца схема аварийной сигнализации должна включать активацию во время одновременной работы обоих насосов, инициируемую при запуске второго чередующегося насоса (называемого запаздывающим насосом).

9. Соответствующие запорные клапаны должны быть размещены на каждой всасывающей и нагнетательной линиях каждого насоса для нормальной изоляции насоса. На каждой напорной линии между запорным клапаном и насосом должен быть установлен обратный клапан. На всасывающей стороне всасывающих или погружных насосов нет необходимости размещать запорный клапан.Периодические проверки клапанов должны быть предусмотрены в программах текущего обслуживания.

10. Системные насосные станции должны иметь возможность установки расходомеров при необходимости. Следует рассмотреть возможность установки таких устройств на насосных станциях системы, расход которых может повлиять на правильную работу очистных сооружений.

11. Надлежащее освещение для всей насосной станции должно быть обеспечено в соответствии с VOSH и другими применимыми нормами и стандартами.

12. Насосные станции должны быть спроектированы в соответствии со строительными нормами штата и с тем, чтобы свести к минимуму неблагоприятные последствия вандализма. Насосные станции должны быть оборудованы надежным внешним выключателем, расположенным над уровнем земли, где это возможно.

B. Вентиляция должна быть обеспечена в соответствии с требованиями VOSH и должна соответствовать данной главе для замкнутых пространств внутри насосных станций в течение всех периодов, когда станция обслуживается людьми. Если насос постоянно установлен под землей, требуется механическая вентиляция, которая должна быть устроена таким образом, чтобы независимо вентилировать сухой колодец.

1. Как минимум, вентиляция мокрого колодца должна осуществляться с помощью вентиляции с соответствующей сеткой, конец которой должен быть повернут вниз или снабжен «грибовидной» крышкой. Вентиляционное отверстие должно быть не менее четырех дюймов в диаметре. Если экраны или механическое оборудование, которое может потребовать периодического обслуживания и осмотра, находятся во влажном колодце, то оно должно механически вентилироваться во время доступа обслуживающего персонала.

2. Не должно быть взаимосвязи между вытяжным потоком влажного колодца и системами вентиляции сухого колодца.В ямах глубиной более 15 футов желательно иметь несколько входов и выходов. Заслонки не должны использоваться на вытяжных или свежих воздуховодах, и необходимо избегать мелких сеток или других препятствий в воздуховодах, чтобы предотвратить засорение. В климатических условиях, где повышенная влажность или низкая температура являются проблемами, следует рассмотреть возможность установки автоматического оборудования для обогрева и осушения.

3. Выключатели для работы вентиляционного оборудования должны иметь маркировку и удобно располагаться над уровнем земли и возле входа в насосную станцию.Следует также уделить внимание автоматическому контролю, в котором используется прерывистый режим работы. Привод вентилятора должен быть изготовлен из неискрящего материала в соответствии с применимыми нормами и стандартами.

4. Там, где может возникнуть проблема тепловыделения от двигателей насосов, следует рассмотреть возможность автоматического охлаждения и вентиляции для отвода тепла от двигателя.

5. Вентиляция мокрых колодцев в соответствии с требованиями ВОШ может быть как непрерывной, так и прерывистой. Вентиляция, если она непрерывная, должна обеспечивать не менее 12 полных воздухообменов в час; в случае перебоев — не менее 30 полных воздухообменов в час.Такая вентиляция должна осуществляться механическими средствами.

С. Водоснабжение. Между любым источником питьевой воды и насосной станцией для сточных вод не должно быть перекрестных соединений, которые при любых условиях могут вызвать загрязнение источника питьевой воды. Любая подача питьевой воды на станцию ​​должна соответствовать условиям, установленным в Правилах водоснабжения штата Вирджиния (12VAC5-590). Если условия не требуют установки одобренного устройства предотвращения обратного потока в зоне пониженного давления на линии подачи воды к насосным станциям, в каждом конкретном случае могут рассматриваться другие одобренные устройства.

Д. Сервис. Должны быть приняты меры для облегчения демонтажа насосов, двигателей и другого оборудования без прерывания работы системы при обеспечении всех необходимых средств безопасности рабочих.

1. В соответствии с требованиями VOSH, должны быть обеспечены подходящие и безопасные средства доступа к сухим колодцам и мокрым колодцам, содержащим оборудование, требующее осмотра или обслуживания. Рекомендуется соблюдение всех применимых требований VOSH и Единых государственных строительных норм и правил. Все лестницы должны иметь нескользящие ступеньки.

2. Если пол сухого или влажного колодца находится более чем на 10 футов ниже входа, особое внимание должно быть уделено таким средствам безопасности, как подъемники с привязью, лестничные клетки, винтовые лестницы или промежуточные площадки. Промежуточные приземления не должны превышать 10 футов вертикальных интервалов.

E. Колодцы мокрые. Правильное проектирование мокрых колодцев имеет важное значение для эффективной работы насосной станции.

1. Мокрые колодцы на основных насосных станциях и в колодцах, расположенных в критических зонах, следует разделить на две секции, должным образом соединенные между собой, чтобы облегчить ремонт и очистку.

2. Размер мокрого колодца и настройки управления должны быть спроектированы и эксплуатироваться таким образом, чтобы избежать накопления тепла в двигателе насоса из-за частого запуска и избежать септических условий из-за чрезмерного времени выдержки.

3. Должны быть приняты меры для предотвращения осаждения твердых частиц. При использовании филе влажного колодца должно иметь минимальный наклон один к одному к дну бункера. Горизонтальная площадь дна бункера не должна быть больше, чем необходимо для правильной установки и функционирования входного отверстия.

Бывший 12VAC5-581-440, полученный из тома 18 реестра Вирджинии, выпуск 10, эфф. 27 февраля 2002 г .; изменен и принят как 9VAC25-790-380, Virginia Register Volume 20, Issue 9, eff. 12 февраля 2004 г.

% PDF-1.3
%
396 0 объект
>
эндобдж
xref
396 99
0000000016 00000 н.
0000002331 00000 п.
0000003385 00000 н.
0000003559 00000 н.
0000003626 00000 н.
0000003715 00000 н.
0000003861 00000 н.
0000004044 00000 н.
0000004172 00000 н.
0000004280 00000 н.
0000004329 00000 н.
0000004396 00000 н.
0000004445 00000 н.
0000004512 00000 н.
0000004680 00000 н.
0000004783 00000 н.
0000004934 00000 п.
0000005064 00000 н.
0000005183 00000 п.
0000005298 00000 н.
0000005420 00000 н.
0000005572 00000 н.
0000005716 00000 н.
0000005859 00000 н.
0000005977 00000 н.
0000006136 00000 н.
0000006276 00000 н.
0000006379 00000 н.
0000006488 00000 н.
0000006623 00000 н.
0000006749 00000 н.
0000006869 00000 н.
0000006993 00000 п.
0000007176 00000 н.
0000007337 00000 н.
0000007562 00000 н.
0000007877 00000 н.
0000008004 00000 н.
0000008146 00000 п.
0000008274 00000 н.
0000008410 00000 н.
0000008540 00000 н.
0000008671 00000 н.
0000008815 00000 н.
0000008966 00000 н.
0000009150 00000 н.
0000009320 00000 п.
0000009424 00000 н.
0000009533 00000 п.
0000009671 00000 п.
0000009807 00000 н.
0000009927 00000 н.
0000010089 00000 п.
0000010196 00000 п.
0000010302 00000 п.
0000010436 00000 п.
0000010595 00000 п.
0000010732 00000 п.
0000010848 00000 п.
0000011006 00000 п.
0000011132 00000 п.
0000011301 00000 п.
0000011438 00000 п.
0000011543 00000 п.
0000011662 00000 п.
0000011783 00000 п.
0000011902 00000 п.
0000012021 00000 н.
0000012142 00000 п.
0000012259 00000 п.
0000012350 00000 п.
0000012507 00000 п.
0000012644 00000 п.
0000012772 00000 п.
0000012895 00000 п.
0000012993 00000 п.
0000013169 00000 п.
0000013280 00000 п.
0000013387 00000 п.
0000013530 00000 п.
0000013659 00000 п.
0000013762 00000 п.
0000013823 00000 п.
0000013931 00000 п.
0000014040 00000 п.
0000014150 00000 п.
0000014209 00000 п.
0000014344 00000 п.
0000014405 00000 п.
0000014525 00000 п.
0000014740 00000 п.
0000015416 00000 п.
0000015682 00000 п.
0000015904 00000 п.
0000016452 00000 п.
0000052229 00000 п.
0000077761 00000 п.
0000002500 00000 н.
0000003363 00000 н.
трейлер
]
>>
startxref
0
%% EOF

397 0 объект
>
эндобдж
493 0 объект
>
ручей
HSkHa ~] Ftrfvm9 \ f: # A% Et ~! JL.? 2 — + # 2! 3t ​​\ `_ /}

Как использовать воздушный насос бензоколонки и правильно накачать шины

Вождение с недостаточно накачанными шинами не только крайне небезопасно, но и дорого обходится в долгосрочной перспективе. Очевидно, я говорю о расходе бензина, потому что правильно накачанные шины могут сэкономить деньги на бензине . Один из самых быстрых способов накачать шины — использовать воздушный насос на заправочной станции.

Но если вы никогда раньше не накачивали шины, не говоря уже о воздушном насосе на бензоколонке, вы можете испугаться.Без проблем. Вот почему я создал это краткое руководство — чтобы помочь вам научиться пользоваться воздушным насосом на заправочной станции .

Заправка шин с помощью воздушного насоса на заправочной станции

1. Найдите воздушный компрессор

Когда вы подъезжаете к заправочной станции, первое, что вам нужно сделать, это найти воздушный компрессор. В большинстве случаев он не находится в том же месте, что и бензоколонки. Попробуйте посмотреть вправо или влево от участка, чтобы найти его. Вероятно, там будет какой-нибудь знак , который просто читает «Воздух» или «Воздух свободный.”

2. Припаркуйте машину рядом с насосом

Найдя воздушный насос, припаркуйте автомобиль рядом с ним. Убедитесь, что вы не паркуетесь слишком далеко, потому что у вас могут возникнуть проблемы с дотянуться до шин, если шланг короткий. Не нужно выключать двигатель .

3. Поднимите носик

Иногда на воздушном насосе можно увидеть несколько носиков. В общем, вы должны использовать только один, чтобы поддерживать последовательность. Затем проверьте, правильно ли он работает.Если нет, попробуйте другой. Поскольку воздушные насосы постоянно подвергаются воздействию элементов и часто используются, они могут сломаться, особенно из-за износа .

4. Поместите свое жилище

Некоторые заправочные станции взимают плату за использование своих воздушных насосов . Если в помпе есть прорезь для монет, вставьте четвертак. В противном случае вам, возможно, придется попросить кассира включить насос вручную. В остальных случаях можно сразу же начать пользоваться помпой.

5. Установите номинальное давление в фунтах на квадратный дюйм

Если на насосе есть кнопки для настройки номинального давления в фунтах на квадратный дюйм, используйте их для установки давления, подходящего для шин вашего автомобиля.В некоторых случаях настройки PSI будут автоматическими. Обычно это означает, что в насосе есть датчики , которые предупредят вас, если вы накачаете шину слишком сильно.

6. Снимите колпачок воздушного клапана.

Держа воздушный шланг в руке, присядьте к шине и снимите колпачок воздушного клапана. Убедитесь, что вы его не потеряете. Крышка важна, потому что она предотвращает утечку воздуха во время движения. Кроме того, если крышка загрязнена или повреждена, подумайте о замене ее на новую. Возможно, вы даже сможете купить новые крышки на заправке.

7. Установите выпускной патрубок на клапан.

Вам, возможно, придется приложить небольшое усилие, чтобы патрубок плотно прилегал к воздушному клапану . Однако не применяйте слишком много силы. Как только вы это сделаете, воздух из насоса автоматически начнет поступать к шине.

8. Снимите носик с воздушного клапана.

После заполнения шины воздухом снимите носик с воздушного клапана. Затем проверьте, не перекачана ли шина. В некоторых случаях в насосе есть датчик , который начинает подавать звуковой сигнал, если вы залили слишком много воздуха в шину .В этом случае используйте металлическую иглу или что-то подобное, чтобы выпустить воздух.

Наконец, не забудьте снова закрыть крышку воздушного клапана.

9. Проверьте другие шины

Даже если у вас возникла проблема только с одной шиной, вы должны заполнить и другие шины. Важно, чтобы все ваши шины имели одинаковое количество воздуха для поддержания устойчивости и баланса . Для этого повторите шаги с 6 по 8.

10. Верните носик

После того, как вы закончите накачивать шины, верните носик в воздушный насос.Затем вернитесь в машину и проверьте приборную панель, чтобы убедиться, что индикатор давления в шинах не погас. Если нет, возможно, вам придется повторить процесс.

Зачем нужен воздушный насос для бензоколонки?

Конечно, вы всегда можете отнести свою машину в магазин и попросить механика накачать ваши шины до нужного давления. Но это будет стоить вам времени и денег . Если вы похожи на меня, вы всегда торопитесь, и у вас просто нет времени. Кроме того, большинство магазинов взимают дополнительную плату за эту услугу.

Итак, единственный логичный вариант — это накачать шины до нужного давления для безопасного вождения и увеличения расхода бензина самостоятельно. Если у вас есть воздушный компрессор, это хорошо для вас. Но большинство людей этого не делает, поэтому им нужно найти ближайшую заправочную станцию, на которой она есть.

Использование воздушных насосов для АЗС имеет много преимуществ. Во-первых, вы можете найти заправочную станцию ​​практически на каждом углу . Также в большинстве из них будет воздушный насос. Во-вторых, на некоторых заправках можно использовать насос бесплатно или за небольшую плату — около 2 долларов.

Другими словами, воздушные насосы для АЗС удобны. Кроме того, вы можете заправить бак и накачать шины за одну остановку. Итак, когда вы замечаете, что ваши шины недостаточно накачаны, когда вы заправляете бак, вы можете решить эту проблему на месте и не беспокоиться об этом позже .

Кроме того, в некоторых штатах, таких как Коннектикут и Калифорния, есть законы, требующие, чтобы заправочные станции предлагали воздушные насосы бесплатно. Но в некоторых ситуациях вам, возможно, придется купить бензин или что-то еще, чтобы использовать компрессор бесплатно.

Немного о давлении воздуха

Если вы занятой человек, вы, вероятно, склонны упускать из виду тот факт, что ваши шины нуждаются в надлежащем уходе. Точнее, поддержание правильного давления воздуха в шинах важно во многих отношениях. Вот несколько причин, почему:

  • Общая безопасность на дороге и в плохих погодных условиях
  • Лучшая производительность шин
  • Повышение топливной экономичности
  • Повышенная стабильность и точность рулевого управления

Перекачанный или недостаточно накачанный

Правильное давление в шинах повысится жизненный цикл ваших шин .Если они недостаточно или чрезмерно накачаны, вам, вероятно, придется чаще их заменять.

Прокачивая автомобильные шины самостоятельно, легко ошибиться. Чтобы избежать проблем с давлением воздуха, вот несколько советов, которые помогут вам получить нужное количество воздуха в шинах:

  • Купите манометр, потому что манометры на воздушных насосах заправочных станций часто неточны.
  • Медленно наполняйте шины воздухом и время от времени снимайте носик для проверки чрезмерного накачивания.
  • Если вы переполнили шины, используйте небольшую металлическую иглу, чтобы выпустить лишний воздух.
  • Убедитесь, что крышки штока клапана находятся в хорошем состоянии, чтобы предотвратить утечку воздуха.
  • Проверить давление воздуха после резких перепадов температуры.

В большинстве случаев вам следует свериться с руководством по эксплуатации автомобиля, чтобы узнать, какой диапазон PSI (фунтов на квадратный дюйм) соответствует вашим шинам. В целом, для большинства стандартных автомобильных шин требуется около 35 фунтов на квадратный дюйм давления воздуха для плавной работы.

Заключение

Подводя итог, можно заправить шины воздухом с помощью воздушного насоса на заправочной станции. Но вам нужно будет знать, что вы делаете, если вы решите накачать шины самостоятельно.

Самая распространенная проблема, с которой вы можете столкнуться, — это чрезмерное накачивание шин. Итак, будьте особенно осторожны, потому что как избыточное, так и недостаточное давление может повредить шину . Если вы залили слишком много воздуха, просто выпустите его с помощью металлической иглы. Это так просто.

В некоторых случаях на воздушном насосе АЗС есть датчики, которые будут предупреждать вас, если вы накачиваете шину слишком сильно.

В целом воздушные насосы для АЗС удобны и просты в использовании. В некоторых штатах их можно использовать бесплатно, а в других вам, возможно, придется потратить около 2 долларов. Но это небольшая цена по сравнению с тем, сколько денег вы сэкономите на бензине, потому что ваши шины накачаны до нужного давления .

СВЯЗАННЫЕ ЗАПИСИ:

Снижение мощности из-за забора воздуха на насосных станциях сточных вод

В Нидерландах сточные воды обычно собираются в комбинированной канализационной системе и перекачиваются на очистные сооружения через напорную магистраль.Эти напорные магистрали являются частью системы, которой в последнее время не уделялось особого внимания в плане контроля ее работы и технического обслуживания. Недавняя инвентаризация показала, что около половины напорных трубопроводов страдают от повышенных потерь давления без очевидной причины. Снижение номинальной производительности системы может быть вызвано многими причинами, такими как повышенная шероховатость стенок, образование накипи и наличие свободного газа в трубопроводе. Свободный газ может быть вызван дегазированием растворенного газа, а также захватом воздуха на входе насоса или в воздушных клапанах.

Были проведены эксперименты с трубами DN200 для исследования влияния захваченного газа на потерю напора в системах сточных вод на явления переноса газа. Критическая скорость потока для транспортировки газа в наклонных вниз трубах исследуется как функция угла трубы и расхода воды. В этой статье описаны первые результаты экспериментов.

Christof L. Lubbers *, **, François H.L.R. Clemens **
* WL | Delft Hydraulics, P.O. Box 177, 2600 MH Делфт, Нидерланды
[email protected]
** Секция сантехники, Факультет гражданского строительства и
наук о Земле, Делфтский технологический университет P.O. Box 5048, 2600 GA Delft, the
Netherlands. [email protected]

Ключевые слова: магистральная транспортная магистраль, снижение пропускной способности, эксперименты по газожидкостной смеси, описание явления.

Труды Конференция по насосным станциям для воды и сточных вод, Крэнфилд, Великобритания, 12-13 апреля 2005 г.

1 ВВЕДЕНИЕ

Гидравлическая мощность напорной магистрали изменяется в течение срока ее службы из-за образования накипи, образования воздушных / газовых карманов, износа насосов и т. Д.На практике выявить причину потери мощности — нетривиальная задача. Найти надежное решение для «проблемной» напорной магистрали во многих случаях даже труднее, поскольку в значительном числе случаев причиной, по-видимому, является основная проблема конструкции насосной станции. Свободный газ в напорных трубопроводах / магистралях может значительно снизить пропускную способность. Когда пропускная способность напорной магистрали сточных вод не соответствует проектному значению, результатом могут быть нежелательные разливы или снижение эффективности.

Delft Hydraulics и Делфтский технологический университет в 2003 году начали обширную программу исследований этих процессов. Цели этой программы:

  • Разработка метода диагностики причины потери мощности напорной магистрали.
  • Получите представление о процессах и основных параметрах, влияющих на масштабирование.
  • Количественное понимание процессов, участвующих в динамике воздушных / газовых карманов в напорных магистралях
  • Получить более совершенный свод правил проектирования с точки зрения предотвращения образования накипи и возникновения постоянных воздушных / газовых карманов в напорных магистралях.

В этой статье рассматривается только третья упомянутая цель, обсуждаются только предварительные результаты.

В настоящее время мало что известно о влиянии свойств сточных вод на перенос воздушных / газовых карманов в напорных магистралях по сравнению с чистой водой. Обычно используемые уравнения для критической скорости переноса газа (например, Kent (1952), Wisner (1975), Walski (1994)) основаны на экспериментах, проведенных с чистой водой и трубами малого диаметра.Вероятно, что для сточных вод с их отличающимися свойствами по сравнению с чистой водой эти уравнения не верны. На рисунке 1 показаны различия в критических скоростях, приведенные в литературе. Указаны также некоторые предварительные результаты делфтских экспериментов.

2 ЗАЩИТА ВОЗДУХА В ОТНОШЕНИИ КОНСТРУКЦИИ НАСОСНОЙ СТАНЦИИ

Свободный газ может быть введен в систему разными способами, например, биогаз, который растворяется в точках низкого давления вдоль трубопровода, и неисправные (воздушные) клапаны, расположенные в местах ниже гидравлической линии.Некоторые конструктивные особенности насосных станций сточных вод могут вызвать попадание воздуха в систему. Ниже обсуждаются несколько возможных недостатков конструкции.

2,1 Канализационная труба

Трубка подачи канализации к всасывающему резервуару часто преднамеренно располагается выше уровня включения, чтобы максимально опорожнить канализацию. Обратной стороной этой конструкции является то, что канализационная вода всегда попадает в резервуар в виде нисходящей струи, увлекая большое количество воздуха в воду резервуара.Многие канализационные резервуары имеют компактную округлую конструкцию для удержания твердых частиц во взвешенном состоянии и предотвращения засорения резервуара. Такая конструкция обеспечивает короткое время пребывания сточных вод и, таким образом, увеличивает риск переноса пузырьков воздуха в систему. На рисунке 2 слева показан пример стандартной насосной станции. Дно трубы для подачи канализационной воды находится на уровне воды, на котором включается насос (MAX WL). На рисунке 2 справа показан вид резервуара сверху.Канализационный поток врезается между двумя насосами, увлекая воздух в зону всасывания насоса.

На рисунке 3 показано изображение падающей струи и области, где присутствуют захваченные пузырьки воздуха. С левой стороны вода падает с умеренного расстояния над поверхностью воды. Глубина воды, на которой захватываются пузырьки воздуха, даже больше, чем расстояние падения. Если вода во всасывающем резервуаре находится в движении, большое количество воздуха, вероятно, будет всасываться насосом и транспортироваться в систему трубопроводов.

2,2 Обратный клапан

На рисунке 2 показана типовая компоновка всасывающего резервуара насосной станции сточных вод. Обратные клапаны часто располагаются в вертикальной стояке между насосом в нижней части всасывающего резервуара и горизонтальной транспортной трубой. Когда насос отключается, обратный клапан закрывается. Если обратный клапан расположен выше уровня воды всасывающего резервуара, давление водяного столба под обратным клапаном ниже атмосферного.Известны случаи, когда перед обратным клапаном давление составляет 6 м. Растворенный газ может растворяться и образовывать газовый карман под обратным клапаном. В худшем случае водяной столб может разорваться, и между насосом и обратным клапаном будет образовываться большой объем воздуха. При следующем перезапуске насоса воздушный или газовый карман перемещается дальше по системе, что может привести к снижению производительности.

2.3 Погружение насоса

Воздух может засасываться в насос посредством воздухововлекающих вихрей, если уровень воды на входе в насос слишком низкий.Критическое погружение насоса зависит от входной скорости, входного диаметра и геометрии насоса и резервуара. Если критическое погружение известно, например, на основании опыт или испытания модели, можно оценить соответствующий уровень отключения. Однако, в зависимости от системы, поток не прекращается сразу после отключения насоса из-за инерции воды в системе.

Чтобы проиллюстрировать этот последующий поток, который может быть доставлен после отключения насоса, проведено моделирование для простой трубопроводной системы.Система состоит из всасывающего резервуара площадью 10 м 2, насоса, за которым следует обратный клапан, 500 м стальной трубы с внутренним диаметром 300 мм и заканчивается резервуаром с постоянным напором. В момент t = 0 секунд напор обоих резервуаров составляет 0 м, и насос отключается. На рис. 4 показана последующая подача воды и результирующий уровень воды во всасывающем резервуаре после отключения насоса. Обратный клапан закрывается через 90 секунд. Общий объем воды, доставленной впоследствии, составил 2.3. Предполагается, что вода из канализации не подается. В этом примере уровень воды упал на 29 см после отключения насоса. На рисунке 2 слева показана насосная станция и уровень ее отключения (MIN WL). Для этой насосной станции существует значительная вероятность того, что воздух будет уноситься в этот временной интервал.

3 ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Создан короткий экспериментальный цикл для исследования поведения свободного газа в высоких точках. Эксперименты проводятся в специальной установке для исследования воздушных / газовых карманов, расположенных на переходе от горизонтальных к наклонным трубам.Установка (рис. 5) специально разработана для нагнетания контролируемого и контролируемого потока воздуха в жидкую фазу.

Из резервуара постоянного напора насос прокачивает воду через экспериментальную установку. Клапан управления потоком (FCV) в сочетании с расходомером EMF и ПК регулирует расход до заданного значения. Нагнетание воздуха в систему приводит к увеличению напора насоса, что приводит к падению расхода. Регулировка расхода позволяет поддерживать постоянный расход при смене напора.

Воздух подается через стандартную систему сжатого воздуха 6 бар в здании. Комбинированный массовый расходомер и клапан регулирования расхода регулируют расход воздуха до заданного значения. Поскольку расходомер воздуха измеряет массу, на выходе получается «нл / мин», то есть объемный расход при нормальных условиях (давление 101325 Па и температура 0 ° C).

Испытательная секция состоит из наклонной вверх секции, которая включает в себя точку впрыска воздуха. За этим участком следует изгиб под углом 90 градусов и участок горизонтального захода на посадку, участок с уклоном вниз и горизонтальный участок.Эта секция изготовлена ​​из прозрачного материала (Perspex) с внутренним диаметром 220 мм. Гибкие шланги соединяют испытательную секцию с резервуаром и насосом. Смесь вода / воздух возвращается в резервуар через водослив, чтобы удалить как можно больше воздуха из воды.

Установка включает в себя следующее оборудование.

диапазон неопределенность
ЭДС DN125 0-100 1 / с <0.25%
Расходомер газа 1-50 нл / мин <0,5%
Два преобразователя абсолютного давления 0–3 бара <0,1%
Датчик температуры от 3 до 100 ° C <0,1 ° С

Датчики абсолютного давления расположены в наклонной вверх секции и в нижней по потоку горизонтальной части испытательных секций.Чтобы воздух не мешал измерениям давления, отвод находится в нижней части трубы. Датчик температуры расположен у резервуара, чтобы отслеживать возможное повышение температуры, вызванное насосом.
Все сигналы записываются с использованием автоматизированной системы сбора данных, в которой частота дискретизации может регулироваться вручную в диапазоне от 0 до 10 кГц, полученные данные сохраняются на жестком диске.

4 РЕЖИМА ТРАНСПОРТИРОВКИ ВОЗДУШНЫХ / ГАЗОВЫХ КАРМАНОВ

Процессы, связанные с транспортировкой воздуха / газа в воде, хорошо известны и сами по себе не очень сложны:

  • Плавучесть
  • Перетащите
  • Равновесие поверхностного натяжения (вода / воздух / стена)

Тем не менее, изучение переноса в стационарных условиях (постоянный расход воды и воздуха / газа) показывает, что имеет место хаотическое поведение.В наклонной вниз трубе видно, что при низких концентрациях воздуха / газа пузырьки воздуха остаются небольшими (порядка 10 мм), эти пузырьки имеют высокое отношение сопротивления / плавучести (Рисунок 6, слева). При уменьшении расхода воды или при увеличении расхода воздуха пузырьки проявляют тенденцию к агрегированию, образуя более крупные пузырьки с небольшим соотношением сопротивления / плавучести (рис. 6 справа). Это приводит к увеличению скорости воздушного потока к хаотическому процессу, в котором поток больших воздушных карманов / пробок течет вверх (в направлении, противоположном потоку воды), в то время как второй поток более мелких пузырьков транспортируется вниз (Рисунок 7).

Агрегация пузырьков воздуха — это процесс, частично контролируемый поверхностным натяжением и турбулентностью; количественная оценка этого, однако, будет исследована более глубоко в оставшейся части исследовательского периода.
В этом «режиме двойного потока» теряется много энергии, поскольку в данном поперечном сечении большой процент этого поперечного сечения составляет воздух.
Еще один интересный процесс — это способ транспортировки воздушных / газовых карманов в изгибе, направленном вниз.

Маленькие пузырьки воздуха выходят из точки входа воздуха.Эти пузырьки воздуха переносятся водой к повороту. При достаточно высоких скоростях воды пузырьки воздуха беспрепятственно проходят изгиб и стекают по наклонной части (рис. 8 слева). В этом транспортном режиме воздушный транспорт контролируется за счет сопротивления потока воды маленьким пузырькам воздуха. На наклонном склоне пузырьки воздуха могут скапливаться в более крупные воздушные карманы, которые движутся вверх по потоку, если их размер достаточно большой, из-за их повышенного отношения плавучести к сопротивлению. Этот воздушный карман простирается выше по потоку от изгиба и образует «буфер» (рис. 8 справа).Теперь маленькие пузырьки воздуха, попавшие во входное отверстие, сначала сливаются с воздушным карманом в колене. Маленькие пузырьки воздуха, которые вырываются из хвостовой части воздушного кармана из-за турбулентности, вызывают перенос воздуха из «буфера»; механизм для воздушного транспорта теперь другой. Наличие воздушного кармана играет важную роль при транспортировке воздуха.

5 ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

Для разных уклонов (30o, 20o, 10o и 5o) потеря напора между двумя датчиками давления отслеживалась для большого диапазона расхода воды и воздуха.

Временной масштаб, в котором происходят явления, колеблется от десятых долей секунды до часов. Особенно ситуации, близкие к критической скорости, и небольшие выбросы воздуха показывают медленную адаптацию к изменившимся условиям (например, больший расход). Первоначально воздух, выходящий из хвостовой части «буфера», может быть очень близок, но не равен потоку воздуха. Воздушный карман увеличивается, но скорость роста не видна на глаз и может ошибочно приниматься за стационарную.

Измеряются значения давления на входе и выходе, а разница давлений строится во время испытаний в большом масштабе времени.На рисунке 9 показан пример записи роста воздушного кармана. Измерение проводится только в том случае, если линия перепада давления находится на постоянном уровне.

Как только установилась стационарная ситуация, были зарегистрированы следующие сигналы; расход воды и воздуха, давление на входе и выходе и температура воды. Все сигналы записывались в течение 30 секунд с частотой дискретизации 100 Гц. Частота дискретизации достаточно высока, чтобы отслеживать «всплески» сигнала разности давлений (Рисунок 10).

Среднее значение и стандартное отклонение сигналов берутся для каждого измерения. Дальнейшие расчеты ведутся со средними значениями. Потери энергии, показанные на следующих рисунках, рассчитываются путем вычитания статического напора h из сигнала давления p. Общая потеря энергии определяется как:

в предположении, что разница скоростного напора между точками 1 и 2 не учитывается. После измерения потери напора только для воды во всем диапазоне расхода (от 5 до 65 л / с или 0.От 15 до 1,70 м / с), была определена наименьшая скорость потока, при которой возможен выпуск минимальной скорости потока воздуха (1 нл / мин). Если это приводило к установлению стационарного состояния, расход воздуха постепенно увеличивали до максимального расхода (49 нл / мин). Оказалось, что при всех скоростях воды переносится воздух. Однако при умеренных скоростях потока воздушный карман присутствует по всей длине наклонной части испытательного участка, что приводит к максимальной потере напора.

Для больших расходов воздуха (> 10 нл / мин) результаты не показывают большого разброса значений потери напора.После изменения скорости потока структура потока относительно быстро становится стационарной. На нижнем конце воздушного кармана маленькие пузырьки воздуха движутся вниз по потоку, в то время как воздушные пробки (образованные из скопления более мелких пузырьков) перемещаются вверх по потоку.

При меньших расходах воздуха (от 1 до 5 нл / мин) структура потока может очень медленно переходить в стационарную ситуацию. Время перехода может достигать часа. Замечено, что режимы потока различаются при одинаковых условиях расхода в зависимости от начального состояния.Если небольшой расход воздуха вводится в полностью заполненную трубу, создается стационарный пузырьковый поток без воздушного кармана (рис. 8 слева), что приводит к небольшой потере напора. Если, с другой стороны, воздушный карман уже сформирован и скорость воздушного потока уменьшается до такой же небольшой скорости воздушного потока, достигается стационарное состояние с воздушным карманом и, следовательно, большей потерей напора (рис. 8 справа).

На рис. 11 показаны измеренные общие потери напора для различных расходов воды для отвода 5 °.

Для больших расходов воздуха линия потери напора кажется линейно уменьшающейся с увеличением расхода воды до значений потери напора, соответствующих значениям чистой воды. При меньших расходах воздуха потеря напора резко падает до 0,75 м / с.

Вклад присутствия воздуха в общие потери энергии оценивается путем вычитания потерь энергии потока чистой воды (сплошная линия на рисунке 11). Вклад воздуха в потерю энергии составляет:

, в котором коэффициент сопротивления соответствует геометрии.На рисунке 12 показано влияние присутствия воздуха на потерю напора. Для большей скорости потока воздуха потеря напора при постоянном потоке воздуха, кажется, линейно падает с увеличением скорости потока. Для более низких расходов воздуха линия потери напора быстро уменьшается, когда скорость воды увеличивается до 0,75 м / с. Следует отметить, что эти линии предназначены для стационарных условий. Период адаптации, то есть время, необходимое для уменьшения размера воздушного кармана, когда скорость воды изменяется с 0,7 м / с на 0.8 м / с составляет порядка 10 минут.

Помимо электронных наблюдений велось также визуальное наблюдение. Используя маркировку на испытательном участке, регистрировали длину и расположение поверхности воздуха / воды. Определив место фазового перехода, можно оценить число Фруда и удельную энергию. Эти отметки были добавлены в точках i -36, -3, 15 42 72 102 132 162 и 212 см. Знак минус указывает на расположение перед поворотом.

Число Фруда и удельная энергия в точке i определяются следующим образом:

На рисунке 13 показана кривая удельной энергии для расхода воды 40 л / с для изгиба 10 °, значения, измеренные вдоль воздушного кармана от точки «-34» (крайняя левая точка) до «212» (крайняя правая точка. ) и соответствующие им значения Фруда. Подобно водосливам со свободной поверхностью, поток свободной поверхности через изгиб стремится к своему минимальному уровню энергии, соответствующему значению Фруда, равному 1.

6 ОБСУЖДЕНИЕ

В данной статье представлены первые результаты исследования воздушных карманов в трубопроводах. Маленькие пузырьки воздуха отвечают за перенос воздуха, в то время как большие воздушные пробки, идущие навстречу потоку, в то же время компенсируют часть выброса воздуха. Что касается скоростей, с которыми переносится воздух, он показал, что были обнаружены более низкие скорости, чем в предыдущих упомянутых исследованиях (см. Рисунок 1).

Частично проблемы, связанные со свободным газом в системах трубопроводов, вызваны воздухом, который уносится на насосных станциях.При проектировании новых насосных станций необходимо приложить большие усилия для предотвращения вовлечения воздуха. Для существующих насосных станций, страдающих от воздухововлечения, модельные испытания могут предоставить эффективные решения.

Если изменение конструкции невозможно, достаточно высокая скорость воды может обеспечить удаление газа / воздуха в системе. Другой вариант — установить воздушные клапаны в нужном месте. При 30 ° и 20 ° воздушный карман всегда находился на изгибе. Поток не мог прогнать его через изгиб.Для случая 10 ° воздух мог проходить через изгиб в случае, если подача воздуха была прекращена. Для корпуса 5 ° воздушный карман также находился в наклонной части. Воздушный клапан в самой высокой точке будет неэффективен для трубопроводов с небольшим наклоном. Лучшее понимание поведения воздушного кармана является важным при проектировании расположения воздушных клапанов.

Дальнейшие исследования будут сосредоточены на том, в какой степени свойства потока в открытом канале и теория связаны с воздушными карманами в закрытых каналах.
Зона смешения ниже по потоку от воздушного кармана показывает как явления открытого канала, такие как поток при скачке воды, так и явления закрытого канала, такие как перемещение пробок вверх по потоку. Дальнейшие исследования будут сосредоточены на описании этих механизмов, которые играют роль в воздушном транспорте.

ПОДТВЕРЖДЕНИЕ

Исследование финансируется: фондами RIONED и STOWA, Waterboard of Aquafin, Brabantse Delta, Delfland, DWR, Fryslân, муниципалитетом Гааги, Hollandse Eilanden en Waarden, Hollands Noorderkwartier, Reest en Wieden, Rivierenland, Veluwe и Zivierenland. Инжиниринговые / консалтинговые компании DHV и Grontmij.

ССЫЛКИ

Камма, П.С. и ван Зейл, Ф. (2002) De weerstand in persleidingen voor afvalwater tijdens de gebruiksfase (Потери давления в действующих канализационных системах трубопроводов, на голландском языке с резюме на английском языке) Rioleringswetenschapen techniek, jaargang 2 nr-5, стр. 45-64. ISSN 1568-3788

Кент, Дж. К. Захват воздуха водой, протекающей в кольцевых трубопроводах с уклоном вниз. Диссертация представлена ​​в Калифорнийском университете в Беркли, Калифорния., в 1952 г.

Lubbers, C.L. (2003) Capwat: Resultaten van inventoryarisatie, voortgangsrapportage-02 (Результаты инвентаризационного исследования, часть проекта Capwat) h5230.10 Delft Hydraulics.

Вальски, Т. (1994) Гидравлика очагов коррозионных газов в силовых сетях. Исследование водной среды, Том 66, номер 6.

Wisner, P.E. (1975), Удаление воздуха из водопроводов с помощью гидравлических средств, Труды Американского общества инженеров-строителей, журнал отдела гидравлики, Vol.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *