Схема котла индукционного: Индукционный котел своими руками: устройство, схема, чертежи, монтаж
Содержание
Индукционный котел своими руками: устройство, схема, чертежи, монтаж
Индукционные отопительные котлы появились в продаже недавно и сразу составили конкуренцию привычным электрокотлам с ТЭНами. При схожих размерах и потребляемой мощности индукционные нагреватели способны значительно быстрее прогреть систему, кроме того, они могут работать в системах с низким качеством теплоносителя и реже требуют обслуживания. Применив знания в электротехнике и смекалку, можно сделать индукционный котел отопления своими руками.
Принцип действия
В основе действия индукционных котлов и других нагревательных приборов этого типа лежит способность токопроводящих материалов нагреваться под действием вихревых токов, создаваемых в результате электромагнитной индукции.
Источником индукции служит высокочастотный переменный ток, проходящий по первичной обмотке нагревательного прибора, выполненной в виде катушки. Нагревательный элемент, помещенный внутрь катушки, играет роль вторичной короткозамкнутой обмотки. В нем происходит преобразование электромагнитной энергии в тепловую.
Вихревые токи возникают и при промышленной частоте 50 Гц, но эффективность нагревателя при этом будет невысока, а работа прибора будет сопровождаться сильным гулом и вибрацией. При повышении частоты до 10 кГц и выше шум исчезает, вибрация становится неощутимой, а нагрев усиливается.
Данная статья рассказывает о том, как сложить печи для дачи на дровах своими руками.
Об особенностях эксплуатации дровяного котла с водяным контуром можно узнать здесь
Об особенностях и преимуществах конструкции кирпичной печи с водяным контуром можно смотрите: https://gidpopechkam.ru/pechki/kirpichnaya-vodyanym-konturom.html
Устройство
Промышленный индукционный котел состоит из сердечника, роль которого играет теплообменник, вокруг которого намотана тороидальная обмотка, подключенная к высокочастотному преобразователю. При прохождении по обмотке тока создается переменное электромагнитное поле, в результате которого возникают вихревые токи, проходящие через сердечник.
Обмотка подключена к высокочастотному преобразователю, в котором сигналом с блока управления создается ток необходимой частоты. Современные котлы имеют высокий уровень автоматизации, позволяющий не только создать оптимальный режим нагрева теплоносителя, но и отключить устройство в случае аварийной ситуации.
Внутри сердечника-теплообменника находится теплоноситель. Под воздействием вихревых токов он нагревается до высоких температур. За счет разницы между температурой теплоносителя на входе и на выходе, из котла циркуляция теплоносителя по системе происходит непрерывно, даже без подключения насоса. Поэтому индукционные котлы можно использовать в системах с принудительной и естественной циркуляцией.
Теплоносителем может быть как вода, так и антифриз, тосол, масло. Качество жидкости при этом не имеет значения: постоянная вибрация системы, неощутимая человеком, делает невозможной осаждение накипи и других примесей на стенках теплового контура.
Внешняя оболочка — металлический корпус, оснащенный системой тепловой и электрозащитной изоляции.
Форма котла может быть любой, как и способ его установки: благодаря отсутствию бака внутри котла его размеры обычно невелики, а масса не превышает 50 кг.
Индукционный котел нельзя даже кратковременно включать в работу без заполнения системы теплоносителем! Может произойти перегрев котла и выход из строя его элементов!
Достоинства:
- Высокий КПД. Большинство производителей называют цифры 95-98%;
- Большой выбор моделей различной мощности на однофазное напряжение ~220 В или трехфазное ~380 В;
- Быстрый прогрев системы отопления при запуске;
- Могут работать с любым теплоносителем;
- Контур, по которому внутри котла проходит теплоноситель, абсолютно герметичен, что исключает протечки и связанные с ними неисправности;
- Длительная работа без образования накипи и отложений. Именно это явление со временем снижает эффективность котлов с ТЭНами и служит частой причиной их поломки из-за перегрева нагревательных элементов;
- Срок службы, заявленный производителями — от 25 до 30 лет.
Не лишены нагреватели и недостатков, наиболее значимый из которых — высокая цена. Этот фактор обычно побуждает рачительного хозяина собрать самодельный индукционный котел из подручных материалов и приборов. Несмотря на сложность процессов, происходящих в котлах такого типа, возможно создать конструкцию, не отстающую по основным параметрам от котла промышленного изготовления, и сделать индукционный котел своими руками.
Котел с питанием от сварочного инвертора
Конструкция такого самодельного котла довольно проста. Наиболее сложный для самостоятельного выполнения блок, требующий знаний основ электроники и электротехники — высокочастотный преобразователь. Его функцию отлично выполняет сварочный инвертор современного типа, способный выдавать выходной сигнал с частотой 20-50 кГц.
Кроме этого для монтажа потребуются:
- медная проволока в эмалевой изоляции диаметром 1-1,5 мм;
- изолированный провод с клеммами для подключения обмотки к инвертору;
- обрезки проволоки из нержавейки диаметром 3-5 мм, длиной 5 см;
- мелкая сетка из нержавейки;
- отрезок водопроводной трубы из шитого полиэтилена или полипропилена для систем ГВС и отопления с диаметром 50 мм и толщиной стенки 8,4 мм, длина — 1 м;
- переходники с трубы 50 мм на трубы, задействованные в существующей или проектируемой системе отопления, тройник для подключения аварийного клапана и два шаровых вентиля;
- полосы текстолита для крепления обмотки;
- эпоксидный клей для изоляции обмотки;
- корпус самодельного котла, его можно сделать из распределительного металлического или пластикового шкафа, в который можно установить инвертор и закрепить нагревательный элемент.
Последовательность сборки и монтажа элементов:
- На отрезок полипропиленовой трубы диаметром 50 мм с помощью эпоксидного клея крепят 4 полосы из текстолита шириной 8-10 мм, отступив от концов трубы по 70-100 мм. На них будет намотана обмотка. Для закрепления крайних витков обмотки в текстолите можно сделать пазы.
- Наматывают 50-100 витков медной проволоки в эмалевой изоляции. Витки должны располагаться примерно через 0,3-0,6 мм на равном расстоянии. Точное количество витков зависит от диаметра используемого провода и его удельного сопротивления, а также выходных параметров инвертора.
- При установке самодельного котла в жилом помещении рекомендуется выполнить тороидальную обмотку для снижения внешнего электромагнитного поля. Тороидальная обмотка состоит из одинакового количества встречно направленных витков, при этом электромагнитные потоки взаимно компенсируются и проходят только по внутреннему контуру.
- Внутрь трубы с одного ее конца вставляют сетку из нержавейки и плотно набивают ее с другой стороны отрезками нержавеющей проволоки — она будет нагреваться под воздействием вихревых токов. Нержавейку рекомендуется использовать для того, чтобы со временем не произошло коррозионное разрушение проволоки, но теоретически подойдет любой токопроводящий металл, в том числе проволока-катанка. Второй конец трубы также закрывают сеткой.
- На оба конца трубs напаивают полипропиленовые переходники на диаметр, используемый в системе отопления. На них устанавливают шаровые вентили, позволяющие перекрыть циркуляцию и снять теплообменник для ревизии.
- Со стороны верхнего выходного переходника устанавливают аварийный клапан для сброса давления.
Обмазывают обмотку эпоксидным клеем для обеспечения качественной электроизоляции обмотки. Изготовление клея рекомендуется выполнять с небольшим отступлением от инструкции, добавив на 10-15% меньше отвердителя. Это сделает изоляцию менее хрупкой. - Крепят к выводам обмотки провода в изоляции с помощью обжимных клемм. Второй конец провода должен быть оснащен клеммами для подключения к инвертору. Диаметр проводов должен выдерживать максимальный выходной ток инвертора.
- Устанавливают теплообменник в шкаф, закрепив его на кронштейны из термостойкого не проводящего ток материала. Можно использовать текстолит.
- Подключают нагреватель к системе и заполняют ее водой.
- В нижнюю часть шкафа ставят инвертор. Подключают к нему клеммы и включают его в сеть. Производят запуск котла и настройку режима.
Корпус шкафа из металла необходимо обязательно заземлить!
Из индукционной плитки
Индукционный котел можно сделать также на основе индукционной плитки. Для этого разбирают нагревательный элемент плитки и используют медный провод для намотки на сердечник, изготовленный указанным выше способом.
Блок управления плиткой используют для питания полученной обмотки, выставляя необходимую мощность на сенсорной панели управления.
Однако, этот способ имеет существенные недостатки:
- Для успешной работы такого самодельного котла нужно рассчитать параметры индуктивности вновь собранной катушки. Они могут не совпасть с теми, на который рассчитана электроника плитки, в результате чего блок управления может выйти из строя. Для расчетов нужно обладать неплохими знаниями в области электротехники и уметь разбираться в схеме подключения;
- Большинство моделей плит оснащено автоматическим отключением через 2-3 часа после начала работы конфорки. Это приведет к регулярному отключению котла;
- Плитки индукционного типа обычно имеют мощность не более 2,5 кВт, поэтому пригодны только для переделки на котел малой мощности.
Ошибки в устройстве индукционного котла из плитки показаны в видеоролике:
Более простой вариант использования индукционной плитки, исключающий разборку устройства и монтаж новой схемы — установить на неё герметичный бак из нержавейки подходящего размера с входным и выходным штуцером и подключив его в качестве котла в систему отопления. С такой схемой подключения справиться практически каждый.
При наличии необходимых знаний и умения разбираться в схемах можно последовать примеру автора видеоролика и собрать функциональный индукционный котел из плитки, доработав его схему.
Нагреватель сухого типа
Принцип работы индукционного котла предполагает использование воды или другой жидкости не только в качестве теплоносителя, но и для охлаждения сердечника. Но нагрев вторичной обмотки, роль которой в этом устройстве играет труба с водой, произойдет и в том случае, если она будет состоять только из металла.
Степень нагрева в этом случае зависит от соотношения силы электромагнитного поля, создаваемого обмоткой, и массы металла сердечника. Произведя расчеты, можно создать сухой индукционный нагреватель своими руками из металлических труб и медной обмотки, как это показано в видео.
Использование индукционного котла обходится дешевле, чем обычного электрокотла с ТЭНами, и самодельная конструкция позволит значительно уменьшить затраты на его установку. Аналогично можно собрать водонагреватель проточного типа для установки на даче, подобрав устройство необходимой мощности.
Как сделать индукционный котел отопления своими руками
Чтобы обеспечить теплый и уютный комфорт своего загородного дома, человек, в первую очередь, задумывается о том, каким способом обогреть свое жилище. Прежде всего, это касается выбора отопительного оборудования.
Главными критериями выбора отопительных агрегатов являются эффективность их использования, а также минимум затрат за оплату энергоносителей.
Исходя из этих критериев, многие люди считают, что наиболее оптимальным оборудованием для частного дома являются газовые котлы и электрические. Но об эффективности их использования смело можно поспорить в силу того, что газ и электричество постоянно дорожают, а это, в свою очередь, никак не удешевляет затраты на обогрев жилища.
Мы же предлагаем вам ознакомиться с таким альтернативным вариантом обогрева загородного дома, как использование индукционного отопления. Поэтому, в этой статье мы подробно расскажем об индукционном котле и его технических характеристиках, а также опишем процесс создания этого агрегата своими руками.
Устройство
Такой вид современного отопительного оборудования, как индукционный котел, состоит из следующих конструктивных компонентов:
- Индуктор. Этот элемент является самым важным компонентом устройства индукционного агрегата. Это, своего рода трансформатор, схема которого имеет две обмотки:
- первичная обмотка, как правило, намотана на сердечник, и именно в ней создается электромагнитное поле, которое и образует вихревые потоки;
- вторичная обмотка, которая одновременно является и корпусом котла, принимает вихревые токи и передает энергию непосредственно теплоносителю.
- Инвертор. Этот компонент котлоагрета можно назвать еще и преобразователем. Иначе говоря, основная функция инвертора заключается в том, что он принимает обычную бытовую электроэнергию и преобразовывает ее в высокочастотный ток, который подается непосредственно на первичную обмотку индуктора.
- Нагревательный элемент. Это тот же самый сердечник, который может быть представлен в виде металлической трубы.
- Патрубки. Один из них предназначен для того, чтобы в котел поступал теплоноситель, а другой подает нагретую воду непосредственно в отопительную систему.
Замечание специалиста: расчет индуктора производится в зависимости от того, какая мощность котла необходима для обогрева жилища.
Как правило, мощность котла рассчитывается по следующей формуле: 1 кВт на 10 м2 помещения, при условии, что высота потолков не превышает 3 метров. Например, если общая площадь дома составляет 130 м2, то, соответственно, нужен будет индукционный котел мощностью 13 кВт.
Принцип работы
Чтобы понять, как функционирует индукционный агрегат, необходимо ознакомиться с следующими важными моментами:
- вода поступает в котлоагрегат по входному патрубку;
- включается инвертор и подается высокочастотный ток;
- вихревые потоки начинают сначала нагревать сердечник, а затем весь нагревательный элемент в целом;
- получаемое тепло передается непосредственно теплоносителю;
- разогретый теплоноситель с помощью гидростатического давления передается в отопительную систему через выходящий патрубок.
Совет специалиста: в качестве теплоносителя в индукционном котле может выступать вода, антифриз, масло и другие жидкости на нефтяной основе.
Анализируя устройство и принцип работы котла этого вида, невольно можно прийти к выводу о том, что индукционный котлоагрегат можно вполне сконструировать своими руками, не обладая при этом слишком глубокими знаниями о физических явлениях.
Материалы и инструменты
Перед тем, как начать сборку индукционного котла, прежде всего, нужно позаботиться о наличии всех необходимых материалах для его изготовления, а также, чтобы под рукой были требуемые для работы инструменты.
Для конструирования будут нужны:
- отрезок пластиковой трубы, который будет являться корпусом агрегата;
- стальная или нержавеющая проволока, которая будет являться своего рода нагревательным элементом;
- медная проволока необходима для создания индуктора;
- шаровые краны и переходники будут нужны для подключения индукционного котла к отопительной системе;
- инвертор, желательно от сварочного аппарата;
- циркуляционный насос;
- кусачки;
- плоскогубцы.
Когда все готово из вышеперечисленного списка, можно приступать непосредственно к сборке котлоагрегата.
Порядок работы
Конструирование индукционного агрегата сводится к следующим основным и последовательным этапам изготовления:
- Стальная или нержавеющая проволока нарезается кусачками на отрезки длиной от 3 до 7 см.
- Пластиковая труба плотно заполняется нарезанными кусками проволоки. При этом важно знать, что проволоку нужно укладывать таким образом, чтобы внутри не образовывались пустоты.
- На торцах трубы закрепляется металлическая сетка с той целью, что не допустить высыпания отрезков проволоки.
- Сверху и снизу трубы врезаются патрубки. Нижний патрубок нужен для поступления теплоносителя в котел, а верхний – для его подачи в отопительную систему.
- Поверх трубы наматывается медная проволока, при этом необходимо соблюсти то условие, чтобы количество витков было не менее 90.
- Концы проволоки присоединяются к разъемам инвертора.
- С помощью переходников и шаровых кранов котел подключается к отопительной системе, а также устанавливается циркуляционный насос, если такового не было в схеме отопления.
Важный момент: подачу высокочастотного тока на индукционный котел нужно делать только после того, когда включен циркуляционный насос, и агрегат полностью заполнился теплоносителем!
Достоинства
Подключение индукционного котла в отопительную систему. (Для увеличения нажмите)
Собранный своими руками котлоагрегат, будет обладать целым рядом достоинств, среди которых можно выделить следующие важные моменты:
- быстрый нагрев теплоносителя в котле за 3–5 минут;
- минимальная температура нагрева теплоносителя составляет 35 0С;
- магнитное поле, помимо создания тепловой энергии образует вибрации, которые отлично препятствуют появлению накипи;
- коэффициент полезного действия приближается к 100%, иначе говоря, вся электроэнергия перерабатывается в тепло практически без потерь;
- при функционировании агрегата не выделяются продукты сгорания, вследствие чего, нет необходимости возведения дымохода, а также частого технического обслуживания;
- срок бесперебойного функционирования индукционного котла может достигать до 30 лет благодаря тому, что в конструкции агрегата не предусмотрено механическое движение деталей, и как следствие, отсутствует износ и повреждение комплектующих элементов.
Таким образом, мы раскрыли все характеристики индукционного котлоагрегата, а также указали на все нюансы изготовления котла своими руками. Мы искренне надеемся, что все наши советы и рекомендации, изложенные в этой статье, станут для вас настольным руководством при сборке индукционного агрегата своими руками.
Смотрите видео, в котором опытный пользователь демонстрирует устройство и работу индукционного котла отопления, сделанного своими руками:
Оцените статью: Поделитесь с друзьями!
Индукционные котлы отопления схема
Как сделать индукционный котел своими руками
Индукционные отопительные котлы появились в продаже недавно и сразу составили конкуренцию привычным электрокотлам с ТЭНами. При схожих размерах и потребляемой мощности индукционные нагреватели способны значительно быстрее прогреть систему, кроме того, они могут работать в системах с низким качеством теплоносителя и реже требуют обслуживания. Применив знания в электротехнике и смекалку, можно сделать индукционный котел отопления своими руками.
Принцип действия
В основе действия индукционных котлов и других нагревательных приборов этого типа лежит способность токопроводящих материалов нагреваться под действием вихревых токов, создаваемых в результате электромагнитной индукции.
Источником индукции служит высокочастотный переменный ток, проходящий по первичной обмотке нагревательного прибора, выполненной в виде катушки. Нагревательный элемент, помещенный внутрь катушки, играет роль вторичной короткозамкнутой обмотки. В нем происходит преобразование электромагнитной энергии в тепловую.
Вихревые токи возникают и при промышленной частоте 50 Гц, но эффективность нагревателя при этом будет невысока, а работа прибора будет сопровождаться сильным гулом и вибрацией. При повышении частоты до 10 кГц и выше шум исчезает, вибрация становится неощутимой, а нагрев усиливается.
Устройство
Промышленный индукционный котел состоит из сердечника, роль которого играет теплообменник, вокруг которого намотана тороидальная обмотка, подключенная к высокочастотному преобразователю. При прохождении по обмотке тока создается переменное электромагнитное поле, в результате которого возникают вихревые токи, проходящие через сердечник.
Обмотка подключена к высокочастотному преобразователю, в котором сигналом с блока управления создается ток необходимой частоты. Современные котлы имеют высокий уровень автоматизации, позволяющий не только создать оптимальный режим нагрева теплоносителя, но и отключить устройство в случае аварийной ситуации.
Внутри сердечника-теплообменника находится теплоноситель. Под воздействием вихревых токов он нагревается до высоких температур. За счет разницы между температурой теплоносителя на входе и на выходе, из котла циркуляция теплоносителя по системе происходит непрерывно, даже без подключения насоса. Поэтому индукционные котлы можно использовать в системах с принудительной и естественной циркуляцией.
Теплоносителем может быть как вода, так и антифриз, тосол, масло. Качество жидкости при этом не имеет значения: постоянная вибрация системы, неощутимая человеком, делает невозможной осаждение накипи и других примесей на стенках теплового контура.
Внешняя оболочка — металлический корпус, оснащенный системой тепловой и электрозащитной изоляции.
Форма котла может быть любой, как и способ его установки: благодаря отсутствию бака внутри котла его размеры обычно невелики, а масса не превышает 50 кг.
Индукционный котел нельзя даже кратковременно включать в работу без заполнения системы теплоносителем! Может произойти перегрев котла и выход из строя его элементов!
Достоинства:
- Высокий КПД. Большинство производителей называют цифры 95-98%;
- Большой выбор моделей различной мощности на однофазное напряжение ~220 В или трехфазное ~380 В;
- Быстрый прогрев системы отопления при запуске;
- Могут работать с любым теплоносителем;
- Контур, по которому внутри котла проходит теплоноситель, абсолютно герметичен, что исключает протечки и связанные с ними неисправности;
- Длительная работа без образования накипи и отложений. Именно это явление со временем снижает эффективность котлов с ТЭНами и служит частой причиной их поломки из-за перегрева нагревательных элементов;
- Срок службы, заявленный производителями — от 25 до 30 лет.
Не лишены нагреватели и недостатков, наиболее значимый из которых — высокая цена. Этот фактор обычно побуждает рачительного хозяина собрать самодельный индукционный котел из подручных материалов и приборов. Несмотря на сложность процессов, происходящих в котлах такого типа, возможно создать конструкцию, не отстающую по основным параметрам от котла промышленного изготовления, и сделать индукционный котел своими руками.
Котел с питанием от сварочного инвертора
Конструкция такого самодельного котла довольно проста. Наиболее сложный для самостоятельного выполнения блок, требующий знаний основ электроники и электротехники — высокочастотный преобразователь. Его функцию отлично выполняет сварочный инвертор современного типа, способный выдавать выходной сигнал с частотой 20-50 кГц.
Кроме этого для монтажа потребуются:
- медная проволока в эмалевой изоляции диаметром 1-1,5 мм;
- изолированный провод с клеммами для подключения обмотки к инвертору;
- обрезки проволоки из нержавейки диаметром 3-5 мм, длиной 5 см;
- мелкая сетка из нержавейки;
- отрезок водопроводной трубы из шитого полиэтилена или полипропилена для систем ГВС и отопления с диаметром 50 мм и толщиной стенки 8,4 мм, длина — 1 м;
- переходники с трубы 50 мм на трубы, задействованные в существующей или проектируемой системе отопления, тройник для подключения аварийного клапана и два шаровых вентиля;
- полосы текстолита для крепления обмотки;
- эпоксидный клей для изоляции обмотки;
- корпус самодельного котла, его можно сделать из распределительного металлического или пластикового шкафа, в который можно установить инвертор и закрепить нагревательный элемент.
Последовательность сборки и монтажа элементов:
- На отрезок полипропиленовой трубы диаметром 50 мм с помощью эпоксидного клея крепят 4 полосы из текстолита шириной 8-10 мм, отступив от концов трубы по 70-100 мм. На них будет намотана обмотка. Для закрепления крайних витков обмотки в текстолите можно сделать пазы.
- Наматывают 50-100 витков медной проволоки в эмалевой изоляции. Витки должны располагаться примерно через 0,3-0,6 мм на равном расстоянии. Точное количество витков зависит от диаметра используемого провода и его удельного сопротивления, а также выходных параметров инвертора.
- При установке самодельного котла в жилом помещении рекомендуется выполнить тороидальную обмотку для снижения внешнего электромагнитного поля. Тороидальная обмотка состоит из одинакового количества встречно направленных витков, при этом электромагнитные потоки взаимно компенсируются и проходят только по внутреннему контуру.
- Внутрь трубы с одного ее конца вставляют сетку из нержавейки и плотно набивают ее с другой стороны отрезками нержавеющей проволоки — она будет нагреваться под воздействием вихревых токов. Нержавейку рекомендуется использовать для того, чтобы со временем не произошло коррозионное разрушение проволоки, но теоретически подойдет любой токопроводящий металл, в том числе проволока-катанка. Второй конец трубы также закрывают сеткой.
- На оба конца трубs напаивают полипропиленовые переходники на диаметр, используемый в системе отопления. На них устанавливают шаровые вентили, позволяющие перекрыть циркуляцию и снять теплообменник для ревизии.
- Со стороны верхнего выходного переходника устанавливают аварийный клапан для сброса давления. Обмазывают обмотку эпоксидным клеем для обеспечения качественной электроизоляции обмотки. Изготовление клея рекомендуется выполнять с небольшим отступлением от инструкции, добавив на 10-15% меньше отвердителя. Это сделает изоляцию менее хрупкой.
- Крепят к выводам обмотки провода в изоляции с помощью обжимных клемм. Второй конец провода должен быть оснащен клеммами для подключения к инвертору. Диаметр проводов должен выдерживать максимальный выходной ток инвертора.
- Устанавливают теплообменник в шкаф, закрепив его на кронштейны из термостойкого не проводящего ток материала. Можно использовать текстолит.
- Подключают нагреватель к системе и заполняют ее водой.
- В нижнюю часть шкафа ставят инвертор. Подключают к нему клеммы и включают его в сеть. Производят запуск котла и настройку режима.
Корпус шкафа из металла необходимо обязательно заземлить!
Из индукционной плитки
Индукционный котел можно сделать также на основе индукционной плитки. Для этого разбирают нагревательный элемент плитки и используют медный провод для намотки на сердечник, изготовленный указанным выше способом.
Блок управления плиткой используют для питания полученной обмотки, выставляя необходимую мощность на сенсорной панели управления.
Однако, этот способ имеет существенные недостатки:
- Для успешной работы такого самодельного котла нужно рассчитать параметры индуктивности вновь собранной катушки. Они могут не совпасть с теми, на который рассчитана электроника плитки, в результате чего блок управления может выйти из строя. Для расчетов нужно обладать неплохими знаниями в области электротехники и уметь разбираться в схеме подключения;
- Большинство моделей плит оснащено автоматическим отключением через 2-3 часа после начала работы конфорки. Это приведет к регулярному отключению котла;
- Плитки индукционного типа обычно имеют мощность не более 2,5 кВт, поэтому пригодны только для переделки на котел малой мощности.
Ошибки в устройстве индукционного котла из плитки показаны в видеоролике:
Более простой вариант использования индукционной плитки, исключающий разборку устройства и монтаж новой схемы — установить на неё герметичный бак из нержавейки подходящего размера с входным и выходным штуцером и подключив его в качестве котла в систему отопления. С такой схемой подключения справиться практически каждый.
При наличии необходимых знаний и умения разбираться в схемах можно последовать примеру автора видеоролика и собрать функциональный индукционный котел из плитки, доработав его схему.
Нагреватель сухого типа
Принцип работы индукционного котла предполагает использование воды или другой жидкости не только в качестве теплоносителя, но и для охлаждения сердечника. Но нагрев вторичной обмотки, роль которой в этом устройстве играет труба с водой, произойдет и в том случае, если она будет состоять только из металла. Степень нагрева в этом случае зависит от соотношения силы электромагнитного поля, создаваемого обмоткой, и массы металла сердечника. Произведя расчеты, можно создать сухой индукционный нагреватель своими руками из металлических труб и медной обмотки, как это показано в видео.
Использование индукционного котла обходится дешевле, чем обычного электрокотла с ТЭНами, и самодельная конструкция позволит значительно уменьшить затраты на его установку. Аналогично можно собрать водонагреватель проточного типа для установки на даче, подобрав устройство необходимой мощности.
Поделиться:
Нет комментариев
gidpopechkam.ru
Индукционный котел отопления: все про принцип работы + 2 варианта устройства своими руками
В процессе планирования устройства отопительной системы на даче или в загородном доме многие пытаются решить проблему чрезмерных расходов на энергоносители путем установки индукционного котла отопления. Кроме экономии электроэнергии его устройство таково, что позволяет обходиться без вредных выбросов в окружающую среду и не представляет никакой опасности в процессе использования. Немаловажным аргументом в его пользу является и возможность его самостоятельного конструирования. В данной статье мы рассмотрим, что такое индукционный котел отопления: все про принцип работы + 2 варианта устройства своими руками. Кроме того, нам станут очевидны его преимущества перед обычными электрическими котлами и газовыми агрегатами.
Индукционный котел отопления
Устройство индукционных котлов
В основу внутреннего устройства такого котла включен индуктор (трансформатор). Обычные бытовые индукционные котлы немного отличается от аналогичных промышленных с цилиндрической системой обмотки. В компактных котлах бытового назначения применяется медная обмотка тороидального типа.
Схема нагрева жидкости в индукционном котле отопления
Внешний корпус агрегата выполнен из окрашенного металла, затем идет толстый слой тепло- и электроизоляции, внутри которой находится сердечник с двойной стенкой. Он изготовлен из особой ферромагнитной стали и имеет толщину стенок не менее 10 мм. Тороидальная обмотка, которая намотана на сердечнике — это первичная обмоткой. Именно в ней происходит преобразование энергии электрического поля в магнитное, которое создает вихревые токи. Уже их энергия переносится на вторичную обмотку. В роли вторичной обмотки выступает корпус контура, который под действием этой энергии выделяет большое количество тепла, передающегося теплоносителю. Тороидальная обмотка позволяет создавать агрегаты с небольшим весом и габаритами.
Принцип действия индукционных котлов
В стандартную комплектацию обычно входит сам котел, совершенно необходимый полупроводниковый преобразователь, называемый инвертором, автоматические выключатели, терморегулятор электронный. Сам температурный датчик находится внутри корпуса котла.
Работа индукционных котлов базируется на принципе электромагнитной индукции. Его суть в том, что электроэнергия, потребляемая из сети, создает электромагнитное поле. Теплоноситель подается внутрь котла котел через водный патрубок, который приварен внизу. Переменный ток частотой 20 кГц поступает на котел через инвертор. При включении этого прибора ток протекает через тороидальную обмотку котла. При этом стальной сердечник всего за 7 минут нагревается до температуры 750 градусов.
Принцип действия индукционного котла
Произведенное тепло передается теплоносителю, циркулирующему внутри контура. Быстрый нагрев жидкости создает конвекционные потоки. Это означает, что разогретый теплоноситель сильно расширяется и устремляется вверх по конструкции котла и далее в саму систему отопления. Часто этого бывает достаточно, чтобы происходила полноценная работа бытового котла, имеющего среднюю протяженностью отопительного контура. Такой метод позволяет достаточно быстро обогревать всю систему, но для лучшей циркуляции нужно дополнительно устанавливать обычный циркуляционный насос.
Благодаря применению принципа магнитной индукции, разогрев теплоносителя в таких котлах происходит гораздо быстрее, чем в агрегатах с тэнами, а потери тепла минимальны. На сердечнике почти не возникает накипь, какой бы жесткой и известковой не была вода.
Это происходит потому, что вихревые потоки вынуждают сердечник вибрировать, не позволяя образоваться накипи. Одновременно, вскипающие у его тела пузырьки, очищают поверхность сердечника. По причине герметичности всей системы, теплоноситель забирает максимальное (98%) количество выделяемой тепловой энергии. Таким образом, эти параметры очень сильно увеличивают КПД котла, что положительным образом сказывается на его экономичности и сроках эксплуатации.
Плюсы и минусы индукционных котлов
Индукционные котлы обладают рядом безусловных преимуществ перед обычными котлами на ТЭНах:
- Стабильные показатели КПД до 99% практически весь срок эксплуатации.
- Отсутствие нагревающихся элементов, что значительно продлевает срок применения устройства.
- Отсутствие двигающихся элементов, что полностью исключает механический износ и необходимость замены комплектующих.
- Отсутствие разъемных внутренних соединений не дает возможность возникновения течи.
- Полная доступность работы даже при постоянном токе либо низком напряжении в сети.
- Очень быстрый нагрев до нужной температуры теплоносителя (5 – 7 мин).
- Достаточно высокая степень электро- и пожаробезопасности, соответствующая классу II за счет использования сердечника, не связанного напрямую с индуктором.
- Отсутствие необходимости установки дымохода и предоставления под котел отдельно расположенного помещения. Для установки данной системы нет потребности в привлечении высококвалифицированных специалистов.
- Нормативный срок эксплуатации прибора до 25 лет и даже более. Он напрямую зависит от герметичности запаянного внешнего шва и от большой толщины металлических труб для сердечника. Ему не нужны никакие профилактические работы в течение всего срока эксплуатации.
- Котел может использовать все доступные жидкие теплоносители: масло, вода, антифриз, этиленгликоль без какой-либо предварительной подготовки.
- Менять отработку теплоносителя можно всего один раз в 10 лет.
- Хорошая защита от перегрева и различных аварий, бесшумность в ходе работы.
- На котлах установлены электронные автоматизированные системы управления.
- Внутри контура отсутствует накипь.
- Возможность подключения котла к любым отопительным системам закрытого типа.
- Минимально возможный прогрев теплоносителя — 35°С.
Но у индукционных котлов есть недостатки, как перед другими отопительными приборами, так и по индивидуальным специфическим параметрам.
- Такие котлы можно подключить только к закрытому контуру отопления, очень часто с принудительной циркуляцией теплоносителя
- Достаточно большой вес котла при довольно небольших размерах. Вес котла мощностью 2,5 кВт составляет не менее 23 кг при полной высоте 45 см и диаметре 12 см.
- Большая, чем у других котлов цена, которая обусловлена наличием дорогостоящей детали – инвертора.
- Генерируемые на расстояние в несколько метров от котла радиопомехи в длинноволновом, средневолновом и даже УКВ-диапазоне. Они не оказывают воздействия на человеческий организм, но их хорошо чувствуют домашние животные и электронная аппаратура.
Установка индукционного котла и системы управления к нему
Установка таких котлов возможна только в закрытую систему отопления. Это требует наличия расширительного бачка-экспанзомата и насоса для принудительной циркуляции теплоносителя.
Согласно инструкции, индукционный котел выставляется строго вертикально. После этого, к нижнему патрубку ввода подключается обратная труба контура отопления. Выходной патрубок расположен в верхней части устройства (сбоку или сверху). На него закольцовывается подающий трубопровод.
Вес монтируемого котла достаточно серьезный, поэтому креплениям нужно уделить самое особое внимание. Они должны быть очень надежными с учетом того, что при работе котла его вес значительно увеличится за счет поступающего внутрь теплоносителя. Боковое расстояние от котла до окружающих предметов и стен – 300 мм. Расстояние до пола и потолка — 800 мм и не меньше. Важным и обязательным условием при монтаже таких котлов является их заземление. С ним возможно использовать, как металлические, так и металлопластиковые трубы.
Рядом с выводным патрубком встраивается группа приборов безопасности: подрывной клапан, манометр, воздухоотводчик. Расширительный бачок устанавливается на удобном участке обратной трубы системы. Запорная арматура главным образом монтируется уже после группы безопасности.
Монтаж всей системы управления, а также самого котла нужно производить в соответствии с существующими правилами и нормами ПУЭ, схемами и условиями, содержащимися в имеющемся в комплекте техническом паспорте.
Схема подключения индукционного котла к системе отопления
Примеры самодельных конструкций
Если вы не собираетесь использовать индукционный котел для осуществления главного отопления в частном доме, а хотите оборудовать им дачу или гараж, то вы можете попытаться сконструировать его самостоятельно. Существует два варианта, как это сделать.
Первый вариант
Для его реализации понадобятся куски пластиковых труб и сварочный инвертор. Имея элементарные знания в области физики и умея пользоваться кусачками, можно самостоятельно смастерить элементарную индукционную модель. Для этого нужно приобрести уже созданный высокочастотный сварочный инвертор с плавной регулировкой мощности тока до 15 ампер или даже выше. Для обогрева большой площади лучше выбрать гораздо более мощный аппарат. Еще понадобится катанка из нержавеющей стали либо обычные отрезки стальной проволоки. Это нужно для выполнения роли нагреваемого элемента. Их длина – около 50 мм, при диаметре 7 мм.
Важной составляющей является медная проволока, которую можно без проблем приобрести в любом тематическом магазине. Не следует использовать обмотку со старых катушек. Корпус, являющийся основой индукционной катушки — это одновременно часть трубопровода, поэтому его можно изготовить из пластиковой трубы с толстыми стенками. Ее внутренний диаметр должен быть 50 мм. К этому корпусу крепят два выходных патрубка для поступления холодного и отдачи горячего теплоносителя. Все внутреннее пространство корпуса нужно полностью заполнить отрезками проволоки и закрыть металлической сеткой, чтобы они не высыпались.
Так может выглядеть самодельное индукционное устройство
Индукционную катушку делают следующим образом: вокруг уже ранее приготовленной пластиковой трубы постепенно наматывают покрытый эмалью медный провод. Понадобится примерно 90 витков. Получившееся самодельное устройство требуется подключить к трубопроводной сети. Из трубопровода вырезают небольшой участок трубы, а вместо него устанавливают самодельный индукционный котел. Его подключают через инвертор и просто запускают воду.
Второй вариант
Это вариант предусматривает использование трехфазного трансформатора с возможностью и фиксации. Кроме того, понадобится еще и сварочный аппарат. Для изготовления устройства нужно сварить две трубы таким образом, чтобы они были похожи на бублик в разрезе. Эта конструкция выполняет, как проводниковую, так и нагревательную функции. Потом наматывают обмотку, непосредственно на корпус котла в целях его более эффективной работы, несмотря на небольшой вес и размеры. Здесь используется стандартная схема нагрева теплоносителя: он получает большое количество тепловой энергии при контакте с обмоткой.
Самодельный индукционный котел из трансформатора
Схема изготовления такой конструкции несколько сложнее, чем в первом варианте. Котел оборудуется двумя патрубками, как для входа холодного теплоносителя, так и для выхода нагретого. Если придумать и самостоятельно соорудить защитный кожух, то можно минимизировать тепловые потери.
Особенности самостоятельной установки и эксплуатации самодельных котлов
Как и в случае котлов, произведенных на заводе, для монтажа самодельной индукционной установки может подойти только отопительная система закрытого типа. В ее состав должен входить центробежный насос, который создает постоянную циркуляцию теплоносителя внутри отопительной системы. Распространенные сегодня пластиковые трубопроводы как нельзя лучше подходят для установки самодельного индукционного котла. Все нормативы, относящиеся к установке магазинных котлов, должны соблюдаться в полной мере и в данном случае. Если установить на систему органы управления и приборы безопасности, то ваша самодельная установка будет мало чем уступать своим заводским собратьям.
Хотя изготовить такой прибор достаточно сложно, и лучше не браться за это дело, не имея «прямых рук», эксплуатировать ее одно удовольствие. Ведь вместе с удобством эксплуатации мы получаем еще и серьезную экономию электроэнергии.
stroyvopros.net
Индукционный котел своими руками — все о конструкции и монтаже!
Хотите обустроить свой дом эффективным и одновременно с этим экономически выгодным обогревом? Тогда обязательно обратите свое внимание на современные индукционные котлы. Подобные агрегаты характеризуются высокой производительностью и имеют при этом предельно простую конструкцию, поэтому со сборкой индукционного отопительного котла можно с легкостью справиться своими руками. Работа рассматриваемого оборудования основывается на использовании индукционной электрической энергии.
Индукционный нагреватель
Такие котлы абсолютно безопасные и экологически чистые. Во время их эксплуатации не выделяется никаких побочных продуктов, способных навредить человеку и состоянию окружающей среды.
Механизм действия индукционного котла
По конструкционному исполнению такие котлы представляют собой своего рода электрические индукторы, в состав которых входит две короткозамкнутые обмотки.
Так, внутренняя обмотка отвечает за преобразование поступающей электрической энергии в специальные вихревые токи. В агрегате образуется электрическое поле, которое в дальнейшем поступает на вторичный виток. Последний одновременно выполняет функции нагревательного элемента отопительного агрегата и корпуса котла.
Схема индукционного вихревого агрегата для отопительной сети
Вторичная же обмотка отвечает за передачу образующейся энергии непосредственно на теплоноситель системы отопления. В качестве теплоносителя в подобных установках используются специальные масла, незамерзающие жидкости или чистая вода.
Внутренняя обмотка нагревателя подвергается воздействию электроэнергии. В результате появляется некоторое напряжение и образуются вихревые токи. Созданная энергия отдается вторичной обмотке, после чего начинается нагрев сердечника. По достижению нагрева всей поверхности, теплоноситель начнет давать тепло радиаторам, а они — обогреваемым помещениям.
Рационально ли собирать котел самостоятельно?
Схема работы индукционного котла
Индукционные котлы отопления имеют простейшую конструкцию, никаких сложностей с их сборкой не возникает. Однако вам однозначно придется как минимум внимательно изучить предложенные инструкции и приложить усилия для правильной сборки качественного агрегата.
Наградой за ваши старания станет эффективное и выгодное в финансовом плане отопительное оборудование. Для сборки котла не нужно покупать какие-либо дорогостоящие комплектующие – все необходимые элементы продаются в обычных строительных, хозяйственных и прочих специализированных магазинах.
При условии правильной сборки и подобающего обращения с готовым агрегатом он спокойно прослужит 20 лет и даже более. Главное – выполнять все в строгом соответствии инструкции.
Сверхсложных задач перед вами не ставится, и допустить какие-либо критические ошибки при сборке индукционного котла по инструкции практически невозможно.
Индукционный нагреватель
Сборка простого индукционного котла
Для сборки индукционного котла не нужно использовать никаких сложных в обращении инструментов и дорогостоящих материалов. Все, что вам надо – иметь хотя бы базовые представления о работе сварочного аппарата инверторного типа.
Как сделать индукционный котел своими руками
Первый шаг. Нарежьте проволоку из нержавейки либо катанку на куски длиной порядка 5 см. Необходимый диаметр используемой проволоки – 7-8 мм.
Второй шаг. Подготовьте пластиковую трубу для сборки корпуса устройства. Будет достаточно изделия диаметром порядка 50 мм.
Третий шаг. Закройте дно основной трубы мелкоячеистой металлической сеточкой. Подбирайте сетку с такими ячейками, чтобы через них не могли пройти куски загруженной нержавейки либо катанки.
Четвертый шаг. Полностью заполните корпус проволокой либо катанкой, а затем закройте свободное отверстие трубки второй металлической сеточкой.
Пятый шаг. Аккуратно и как можно более плотно намотайте на среднюю часть корпуса порядка 90 витков провода из меди.
Шестой шаг. Подключите к корпусу нагревателя специальные переходники для врезки в отопительную или водопроводную систему. Схема предельно простая: вода заходит в нагреватель через один переходник – практически мгновенно нагревается – выходит в отопительную систему через второй переходник – батареи и трубы отдают тепло обслуживаемому помещению.
Закрытая система отопления
В результате таких нехитрых манипуляций вы получите недорогое и предельно простое в сборке устройство для эффективного обогрева. Преимуществом использования самодельного индукционного котла является отсутствие необходимости выделения под его установку отдельного котельного помещения. Вы попросту вырезаете часть трубы недалеко от входа в радиатор и закрепляете вместо нее свой самодельный нагреватель.
Далее останется лишь подключить к готовой катушке инвертор на 18-25А и можно заполнять отопительную систему теплоносителем.
Важно: не включайте нагреватель при отсутствии теплоносителя в отопительной системе. В такой ситуации пластиковый корпус нагревателя попросту расплавиться и вся ваша работа пойдет насмарку.
Не забудьте выполнить надежное заземление самодельного нагревательного приспособления.
Устройство вихревого индукционного отопительного агрегата
Сборка такого агрегата потребует от вас наличия определенных навыков обращения со сварочным аппаратом, а также трехфазным трансформатором. Преимуществом вихревого нагревателя является отсутствие в его составе элементов, не способных в течение длительного времени переносить интенсивные нагрузки. То есть риск скорого выхода котла из строя на порядок снижается.
Также к числу преимуществ рассматриваемого агрегата нужно отнести отсутствие разъемных соединений. Это позволяет полностью забыть о риске появления протечек.
Самодельный вихревой индукционный котел работает практически в бесшумном режиме. Это позволяет монтировать его в любом желаемом месте. Вредные выхлопы тоже отсутствуют, поэтому вы можете не беспокоиться по поводу необходимости обустройства надежного котельного помещения и установки дымохода.
Первый шаг. Сварите друг с другом пару металлических труб диаметром порядка 2,5 см так, чтобы в результате получилось изделие круглой формы. Полученная заготовка одновременно является нагревательным элементом котла и его сердечником.
Второй шаг. Установите полученный круг в пластиковую трубу подходящего размера.
Третий шаг. Выполните обмотку на пластиковом корпусе из уже знакомых вам материалов. Благодаря подобной обмотке эффективность и производительность агрегата будут заметно увеличены.
Четвертый шаг. Поместите пластиковый корпус в качественный изоляционный чехол. Он будет предотвращать возможные утечки электрического тока и поспособствует существенному уменьшению потерь тепла.
Нагрев будет осуществляться за счет контакта теплоносителя с все той же обмоткой. Обмотка и все дальнейшие действия выполняются по той же схеме, что и в случае с обыкновенной индукционной установкой, рассмотренной в предыдущей инструкции.
Важные замечания по монтажу и использованию котла
Индукционный нагреватель
Самодельные индукционные котлы предельно просты в сборке, установке и эксплуатации. Однако прежде чем начинать пользоваться подобного рода нагревателем вам нужно знать несколько важных правил, а именно:
Патрубок котла настоятельно рекомендуется оснастить подрывным клапаном. Через это простое приспособление вы сможете при необходимости избавлять систему от лишнего воздуха, нормализуя давление и обеспечивая оптимальные условия эксплуатации.
Клапан обратный подрывной
Таким образом, из недорогих материалов при помощи простейших инструментов вы можете собрать полноценную установку для эффективного обогрева помещений и нагрева воды. Следуйте инструкции, помните об особых рекомендациях и уже очень скоро вы сможете наслаждаться теплом в собственном доме.
Удачной работы!
Видео – Индукционный котел своими руками
svoimi-rykami.ru
Индукционный котел отопления: виды, особенности, схема, сборка своими руками, фото и видео
Рейтинг: 1 140
Энергоносители, которые обычно используются для отопления частных домов, постоянно растут в цене. Обогреть загородное жилье без дополнительных трат поможет индукционный котел отопления. Именно такой способ для отопления получения тепла позволит достигнуть максимального результата за небольшие деньги.
Устройство необязательно покупать. Сделать самому индукционный котел под силу любому домовитому хозяину. Причем использовать такой вид обогрева жилья можно, использовать как в больших загородных домах, так и в маленьких дачных домиках. Владелец любой недвижимости останется доволен экономическим результатом.
Принцип работы
Принцип работы высокочастотных индукционных котлов позволяют оставить прежнюю систему обогрева помещения в неизменном виде. Это порадует любителей сэкономить. Ведь переделать отопление в большом доме обязательно станет в копеечку. И заняло немало времени. Монтаж индукционного котла отопления своими руками не займет много времени, денег. Он доступен даже неопытному мастеру.
Индукционный котел
Схема индукционного котла
Индукционный теплогенератор — это трансформатор, в котором используется принцип первичной и вторичной обмотки. Так можно описать простейший принцип работы. Первичная обмотка котла преобразует электрическое поле. Вторичная обмотка направляет тепло к воде, маслу, антифризу, любому другому.
Понять принципиальную схему индукционного котла и воплотить ее в жизнь способен даже начинающий мастер. Под корпусом расположены слои теплоизоляционного материала, электрической изоляции, сердечник с двойной стенкой, а также внешний контур. Результатом такой конструкции становится почти полное отсутствие потерь тепла при передаче на теплоноситель.
Фото схемы индукционного котла
Благодаря чему проявляется такая высокая эффективность высокочастотного аппарата? Секрет в том, что теплоноситель за более короткий, чем в обычных системах срок — в два раза быстрее — успевает нагреться дважды. Все это из-за низкого уровня инерции. Финансовая выгода от подобной конструкции налицо. Есть еще один плюс благодаря магнитному полю трубы отопления остаются чистыми, без накипи.
Собираем индукционный котел своими руками
По мере использования становятся очевидными другие достоинства индукционного отопления. Срок пользования оборудованием никак не ограничен. Полученную конструкцию не нужно никак обслуживать, даже чистить. Максимум протереть пыль поверхности.
Устройство индукционного котла
Самая простая форма индукционного котла отопления может быть успешно реализована в помещении разных размеров.
Создать дешевую систему отопления индукционного типа в своем жилище— дело нехитрое, под силу любому. Специального образования получать не нужно. Изучать теорию отопления тоже не потребуется. Достаточно иметь под рукой необходимые инструменты и исходные материалы, чтобы воплотить задумку в жизнь.
Изготовить индукционный котел своими руками вполне реально. Что для этого понадобится? Сварочный инвертор — для быстрой и легкой сборки корпуса и подсоединения труб отопления. Далее нужно подобрать материалы, которые будут нагреваться с помощью электромагнитного поля. Опыт показывает, что самыми эффективным и недорогим вариантом станет стальная проволока. Диаметром не более 7 мм. Ее нужно разрезать на части длиной не более 5 см.
В качестве корпуса индукционного электрокотла проще всего использовать обыкновенную пластиковую трубу, внутренний диаметр которой также не превышает 5 см. В нем необходимо расположить основу индукционной катушки. Для этих целей лучше подобрать трубу с толстыми стенками. В этой части аппарат будет происходить нагрев. Такой котел отопления станет участком трубопровода с теплоносителем.
Подключение индукционного котла к системе отопления — один из ключевых этапов. Для этого используются специальные переходники, которые соединят трубы отопления с механизмом. Теплоноситель через переходник будет поступать в индукционный котел, нагреваться там, затем обогревать всю систему отопления. Таким образом, переходник должен быть подведен с самому основанию корпуса котла.
Дно пластикового корпуса нужно выложить металлической сеткой. Она станет барьером от выпадения кусочков стальной проволоки. Короткими проволочными отрезками, необходимо заполнить всю полость трубы. Хорошо, если кусочки будут короткими, не более 5 сантиметров. Так труба будет заполнена более основательно.
Пластиковая труба в качестве корпуса
Индукционная катушка выступает в этой конструкции главным нагревательным элементом. Изготавливать катушку для котла нужно из эмалированной медной проволоки. На уже подготовленный корпус будущего электрического прибора необходимо намотать этот медный провод. 90 витков.
Важный момент: во время обмотки нужно следить, чтобы расстояние между витками было максимально одинаковым. Теперь индуктор готов для подключения к системе отопления.
В результате такой работы получается небольшого размера устройство, которое подключается в любой части обогревательной системы. Необходимо лишь вырезать кусок трубопровода, а вместо него с помощью переходников, установить индукционный аппарат. Нужно помнить, что катушка подключается к инвертору высокой частоты. И может использоваться только в системах, заполненных носителем тепла: водой, антифризом, маслом и так далее. Иначе корпус не выдержит нагрева и расплавится.
В результате на изготовление индукционного котла были потрачены совсем небольшие средства. При этом скорость нагрева батарей отопления увеличивается вдвое.
Второй вид котла
Существуют и другие способы создания подобных нагревательных приборов. Рассмотрим второй вид котла индукционного типа. Он будет стоить дороже, но результат порадует еще больше.
Мастер должен обладать более серьезными навыками. Желателен опыт работы со сваркой. Понадобится трехфазный стационарный инвертор, дополнительные инструменты.
Этот самодельный индукционный котел включает в себя уже две трубы. Одна крепится внутри другой с помощью сварки. Устройство будет сразу выполнять две функции. С одной стороны, это сердечник — источник электромагнитного поля, с другой — нагревательный элемент.
Медной проволокой обвивается внешняя труба. В результате — высокая эффективность, компактные габариты и легкий вес устройства. Для подводки теплоносителя используются патрубки.
Обмотка внешней трубы
Достоинства
Во время самостоятельного изготовления индукционных котлов необходимо придерживаться некоторых правил.
Устройство индукционного котла можно устанавливать только в закрытые отопительные системы. В них обязательно должен использоваться циркуляционный насос. При этом трубы в системе могут быть любыми, даже пластиковыми.
Необходимо позаботиться, чтобы расстояние между индукционным электрическим котлом и другими объектами (мебелью, бытовой техникой) составляло минимум 30 см. Во избежание порчи имущества. Слишком близко к потолку тоже не стоит монтировать прибор. Дистанция не должна быть меньше 80 см.
Работать над вторым вариантом котла придется немного дольше. Однако отзывы о индукционном котле говорят, что трудозатраты того стоят. Такое устройство будет эффективно обогревать дом не меньше четверти века. Без всякого дополнительного обслуживания.
Фото схемы подключения индукционного котла
Достоинства индукционных котлов:
- допускается использование, как переменного, так и постоянного тока;
- все элементы устройства долговечны;
- элементарная конструкция;
- нет необходимости выделять специальное место для котельной;
- класс пожарной безопасности относится ко 2 группе;
- КПД котла, который сделан своими руками или куплен в магазине равен почти 100 процентам;
- вид теплоносителя может быть любым;
- на самостоятельное изготовление нужны минимальные затраты.
Очевидно, что электрический котел индукционного типа — современное устройство, которое имеет все качества техники будущего. Высокоэффективный, дешевый агрегат способен быстро обогреть и загородный коттедж, и дачу, и складское помещение. При этом никаких сложностей в установке. И никаких затрат на обслуживание.
Не получили ответ на свой вопрос? Спросите нашего эксперта: Спросить
sdelatotoplenie.ru
своими руками, как лучше сделать самому, схема, плюсы обогрева частного дома плиткой на индукции
Индукционный котёл отопления, сделанный своими руками – выгодный вариант, который поможет экономно отопить частный дом, квартиру либо нежилое здание.
Подобные аппараты имеют высокую производительность и несложный тип конструкции. Принцип действия данной системы основан на индукционной электроэнергии.
Преимуществами нагревательного прибора являются элементы, входящие в состав, которые способны выдержать большие нагрузки. Риски скорых поломок котла отопления минимальны. А также в проекте рассматриваемого аппарата отсутствуют разъёмные соединения, что гарантирует отсутствие протечек. Отопительный котёл, сделанный своими руками, функционирует бесшумно, что даёт возможность установить его в удобном месте.
Устройство индукционного котла для отопления частного дома
Оборудование предназначено для преобразования электроэнергии в тепловую энергию с помощью аппарата.
Индукционные агрегаты способны быстро увеличить температуру теплоносителя в отличие от ТЭНов. Важной частью устройства является трансформатор (индуктор), который состоит из двух видов обмотки.
Внутри образуется ток, который имеет вихревой тип, затем энергия поступает на короткозамкнутый виток, служащий одновременно корпусом. Когда вторичная обмотка получает достаточное количество энергии, которая мгновенно преобразуется в тепло, нагревающее теплоноситель.
Индуктор
Данный элемент является важным компонентом устройства, в котором появляется переменное магнитное поле, состоит устройство из двух типов обмотки — первичной и вторичной. Выполняется из нержавеющей проволоки на пластиковом корпусе. Подобный способ увеличивает эффективность и производительность агрегата. Чтобы сделать корпус аппарата потребуется толстая пластиковая труба диаметром 5 сантиметров. Она послужит для основы индукционной катушки и будет частью теплопровода.
Инвертор
Этот компонент принимает бытовой тип электроэнергии и преобразовывает в ток высокой частоты. После чего энергия поступает на первичную обмотку индуктора.
Нагревательный элемент
Для заготовки понадобится две металлические трубы, которые имеют диаметр 2.5 см. Изделия следует сварить между собой, сделав форму детали круглой. Механизм будет служить не только нагревательным элементом, но и сердечником котла.
Фото 1. Индукционный котел, сделанный своими руками. Внутри конструкции расположен нагревательный элемент.
Патрубки
Один патрубок служит для поступления теплоносителя в котёл, второй для подачи нагретой воды в систему отопления.
Справка. Принцип расчёта индуктора зависит от необходимой мощности котла для обогрева помещения. Формула расчёта: 1 кВт на 10 квадратных метров площади помещения, при высоте потолков, не превышающих трёх метров. Например, помещение общей площадью 160 м2 отопит индукционный котёл с мощностью 16 кВт.
Механизм действия отопления из индукционной плитки
Конструкция котла основана на электрических индукторах, в состав которых входят 2 обмотки короткозамкнутые. Внутренняя обмотка преобразует поступающую электроэнергию в вихревые токи. Внутри агрегата возникает электрическое поле, поступающее после на второй виток.
Вторичный элемент функционирует как нагревательное звено агрегата отопления и корпуса котла.
Передаёт образовавшуюся энергию на теплоноситель отопительной системы. В роли теплоносителей, предназначенных для подобных котлов, применяют специальное масло, очищенную воду или незамерзающую жидкость.
На внутреннюю обмотку нагревателя воздействует электроэнергия, которая способствует появлению напряжения и образования вихревых токов. Полученная энергия передаётся вторичной обмотке, после чего нагревается сердечник. Когда произошёл нагрев всей поверхности теплоносителя, он передаст поток тепла радиаторам.
Как самому сделать прибор
Индукционный котёл можно изготовить своими руками, главное следовать изложенной ниже инструкции.
Вам также будет интересно:
Необходимые инструменты и материалы
- Кусачки, плоскогубцы.
- Циркуляционный насос.
- Инвертор сварочный.
- Шаровые краны и переходники потребуются при монтаже агрегата к системе обогрева.
- Медная, стальная или нержавеющая проволока. Лучше приобрести новые материалы, так как обмотку со старых катушек лучше не применять. Сечение провода, которое подходит для обмотки патрубка — 0.2 мм, 0.8 мм, 3 мм.
- Отрезок пластиковой трубы — корпус конструкции.
Порядок выполнения работ
Для сборки простого индукционного котла не понадобится применять сложные инструменты и дорогостоящие материалы.
Все что понадобится — сварочный аппарат инвертированного типа. Основные и пошаговые этапы изготовления:
- Стальную либо нержавеющую проволоку нарезать при помощи кусачек на отрезки от 5 до 7 см.
- Пластиковая труба для сборки корпуса аппарата с диаметром 5 см. Трубу следует плотно заполнить нарезанными кусками проволоки и уложить её так, чтобы внутри не было пустого места.
- На торцевых частях трубы крепится мелкочастотная металлическая сетка.
- Короткие отрезки труб крепятся в нижней и верхней части основной трубы.
- Трубу плотно обмотать медной проволокой, количество витков не меньше 90. Между витками следует соблюдать одинаковое расстояние.
Важно! Все открытые участки медной проволоки следует изолировать специальными материалами, которые имеют хорошую электро- и теплопроводность. Индукционный котёл требует обязательного заземления.
- К корпусной части нагревателя подключаются специальные переходники, предназначенные для врезки в отопительные или водопроводные конструкции.
- Устанавливается циркулярный насос.
- К готовой катушке подключается инвертирующий элемент на 18—25 А.
- Отопительная система готова к заполнению теплоносителем.
Внимание! Не запускайте котёл отопления, если в конструкции отсутствует теплоноситель. В противоположном случае пластиковый материал корпуса начнёт плавиться.
В итоге получается недорогой, несложный агрегат, который будет эффективно обогревать обслуживаемое помещение.
Для установки индукционной системы подойдёт отопительная конструкция закрытого типа с насосом, который будет создавать циркуляцию воды в трубопроводе.
Трубы, выполненные из пластика, также подойдут для монтажных работ при подключении самодельного отопительного устройства.
При установке обязательно требуется соблюдать расстояние до предметов, которые находятся вблизи. По правилам безопасности от отопительного агрегата до других предметов и стен должно быть около 30 см и больше, от пола и потолка 80 см и больше. Рекомендуется у выводного патрубка установить прибор для измерения давления жидкости в замкнутом пространстве и ручной воздухоотводчик.
Как подключить котел своими руками, схема
- Источник постоянного тока 220 V.
- Индукционный котёл.
- Группа элементов безопасности (прибор для измерения давления жидкости, воздухоотводчик).
- Шар-кран.
- Циркуляционный насос.
- Фильтр сетчатый.
- Бак мембранный для водоснабжения.
- Радиатор.
- Указатель линии наполнения и слива отопительной системы.
Фото 2. Схема подключения индукционного котла к системе отопления. Цифрами обозначены части конструкции.
Полезное видео
Посмотрите видео, в котором рассказывается, как самому сделать отопительный котел индукционного типа.
Основные аргументы в пользу данной технологии
Главное преимущество самостоятельного изготовления индукционного котла — это удобство монтажа, который производится в любом удобном месте, отдельное помещение не требуется. Например, вырезается часть трубы, расположенная близко к входу радиатора, и крепится нагревательный прибор. Индукционный агрегат отопления сделать своими руками достаточно сложно, но экономия в эксплуатации и отсутствие потребности в дополнительном обслуживании — выгодные качества конструкции.
схема плиты и своими руками нагреватель воды
Сегодня производители позиционируют индукционный котел отопления как инновационное и дорогое оборудование, которое может работать на любых площадях. Однако стоит знать, что самый простой вид прибора – катушка с проволочной обмоткой, дополненная диэлектрической трубкой со стальным внутренним стержнем. При подаче электрического тока сердечник нагревается и передает тепло на магистраль отопления. Простое устройство следует рассмотреть подробнее.
Принцип работы индукционного отопления
Основная схема прибора предполагает выработку вихревого потока, на котором выстраивается вся функциональность котла.
Стоит знать! Индукционный электрический котел – это усовершенствованный тип трансформатора с обычными конструкционными элементами в виде катушки, сердечника, обмоткой первичного и вторичного типа.
Вторичная обмотка выглядит как труба с теплоносителем, размещенная внутри устройства, и именно этот элемент отвечает за транспортировку тепла в магистраль системы отопления. Особенность оборудования в том, что котлы с теплонагревательными элементами встраиваются в любую схему отопления, могут быть основными или вспомогательными источниками энергии и работают на площадях любого формата.
Виды индукционных котлов для отопления
Производителя выпускают два типа оборудования с подачей напряжения сети в 220 V это стандарт в 50 герц на первичную обмотку и с подачей напряжения через инвертор. Этот прибор отвечает за преобразование стандартного напряжения электросети в ток высокой частоты с показателем в 20 килогерц. Также инвертор гарантирует большую надежность, при этом электрокотел индукционный для отопления получает свойства экономичности, практичности, и оборудование с инвертором обладает компактными размерами.
На заметку! Медная обмотка, сплавы для теплообменника, наличие автоматики приводят к удорожанию инвертора, поэтому с данным характеристиками котлы стоят дороже, чем обычные электрические типы изделий с ТЭНами.
Также различается индукционное отопление по материалам изготовления. В частности, котлы SAV оснащены стальными трубчатыми замкнутыми теплообменниками, а в вихревых котлах стоят теплообменники из материала с ферромагнитными сплавами.
Рекомендуем к прочтению:
Прежде чем начинать обустройство отопления, следует выбрать вид котла:
- SAV – оборудование, не оснащенное инвертором, работает от сети электроснабжения на 50 герц (стандарт). В этом случае напряжение подается на индуктор. Прибор вторичной обмотки выглядит как сетка тонких труб из стали, такой теплообменник оперативно прогревается за счет токов Фуко. Подача теплоносителя в магистраль принудительная, работает циркуляционный насос, уже установленный в котел. Оборудование представлено двумя типами – с работой от напряжения в 220 V и 380 V.
Важно! Покупая котлы SAV, следует смотреть на мощность. Показатель 2,5 кВт способен дать тепло в помещения до 30 м2.
- ВИН. Этот тип вихревых котлов, для работы которых нужен инвертор. Оборудование стоит дороже, но при этом снижен вес и уменьшены размерные параметры. Теплообменник изготавливается из ферромагнитного сплава, магнитопровод и вторичная обмотка представляются как в виде теплообменника, так и корпуса самого котла. Комплектация дополнена блоком автоматического управления, насосным оборудованием приточного и циркуляционного типа.
На заметку! Котлы типа ВИН с показателем мощности в 3 кВт подают тепло для дома площадью в 40 м2.
Устройство и основные элементы котла
Если знакома схема индукционной плиты, то с устройством котла пользователь разберется без особых проблем.
Оборудование представляет собой набор основных и вспомогательных элементов:
- Индуктор. Это деталь типа трансформатора с парой обмоток, из которых первая дополняет сердечник, что объясняет возникновение электромагнитного поля для выделения вихревых потоков. Вторичная обмотка – корпус котла, который принимает токи и затем передает тепловую энергию теплоносителю.
- Нагревательный элемент. Деталь выглядит как труба увеличенного диаметра или несколько меньших по размеру труб и является сердечником катушки. Если нагреватель представлен множеством тонких трубок, то они параллельно соединяются между собой.
- Выходные патрубки. Детали применяются для соединения с магистралью отопления. Один патрубок нужен для подключения к тепловой сети прямого тока, второй – для обратки.
- Инвертор. Агрегат для преобразования постоянного электрического тока в высокочастотный.
На заметку! Если планируется изготовление индуктивного котла отопления своими руками, нужно правильно просчитать материал для основных элементов схемы. Пригодится инвертор от сварочного аппарата, а патрубки можно найти в технических отделах магазинов.
Как выбрать индукционный котел?
На что обращать внимание при подборе оборудования:
- Уровень безопасности. Для устранения утечки тепла теплоноситель не должен иметь прямой контакт с током или магнитным полем устройства.
- Стабилизатор напряжения. Этот элемент нужно докупить для предупреждения остановки агрегата при скачках напряжения в сети.
- Коэффициент полезного действия. Производители рассчитывают КПД со 100% подачей, но возможны потери из-за плохого утепления корпуса. Именно поэтому возникает разница между КПД, заявленным изготовителем и получаемым в реальности. Если продавец уверяет, что КПД снижен из-за появления накипи, то это неправда, слои кальция хорошо проводят тепло и не нарушают теплообменные процессы. Поэтому при выявлении КПД ниже заявленного на момент покупки, об этом часто предупреждают продавцы, нужно отказаться от прибора и отдать предпочтение другому производителю.
- Также не нужно принимать на веру фразу об экономии энергии в 30% при повышенном коэффициенте полезного действия. Индукционный котел, это не оборудование на газовой горелке, где избыток тепла поступает в дымовую трубу, поэтому, если экономия составляет до трети количества выработки тепла, то вопрос о том, куда денется избыток энергии, заставит продавца задуматься, стоит ли покупателю подсовывать явно некачественный товар.
- Шумовой эффект при работе, габариты оборудования и вес агрегата. Шум при тестовом запуске возникает только при плохой работе насоса, перегревании изделия или установке трубопровода малого диаметра. Индукционный котел в исправном состоянии работает очень тихо, а агрегаты с инвертором еще и мало весят, входят даже в ограниченные пространства.
- Регулятор температуры. Терморегулятор поможет выставить режим нагревания теплоносителя и сэкономить на отоплении. Все данные об экономичности системы прописываются в характеристиках коэффициента использования топлива (КИТ) и никак не зависят от КПД.
Важно! Чтобы не ошибиться с выбором прибора, необходимо регулировать показатель температуры в помещении, а не уровень нагрева теплоносителя в батарее. Для выявления нужных параметров потребуется выносной термостат или терморегулятор на радиаторе – приборы придется докупать.
Преимущества и недостатки индукционных котлов
Что касается достоинств оборудования, то тут можно сказать одно – единственной альтернативой по объему расходов может стать только отопление на газе. По всем остальным параметрам индукционные котлы превосходят доступные прочие системы отопления.
Рекомендуем к прочтению:
К преимуществам относят:
- нет ограничений по типу теплоносителя;
- сниженный риск поломок, ремонта;
- простоту обслуживания оборудования;
- не образуется накипь из-за наличия высокочастотных вибраций;
- срок пользования 40 лет;
- работа без шума;
- нет сервисного обслуживания.
Особое устройство индукционного котла отопления гарантирует ускоренный прогрев теплоносителя – субстанция прогревается до нужных температур в течение 5 минут. Если хозяин выбирает качественный вид котла от надежного производителя, то риск утечки сведен к нулю, это агрегаты монолитного типа, поэтому утечка явно заводской брак, а такие котлы можно обменять.
Минусы тоже есть, но их мало:
- Требования к теплоносителю достаточно высокие, поэтому необходимо дополнить систему полипропиленовым фильтром с показателем не менее 5 мкр. Также нужно позаботиться о хороших воздухоотводчиках.
- Высокая вероятность завоздушивания системы из-за контакта теплоносителя с магнитным полем. Чтобы устранить проблему, на всех радиаторах следует ставить краны спуска (Маевского).
Если в доме с индукционным котлом отопления плохо работают мобильные телефоны, прерывается Wi-Fi, то это следствие магнитного поля, лучше предусмотреть установку экранирующих устройств. Массивность изделий и высокая цена агрегатов с инвертором – минусы, но они нивелируются широким списком достоинств приборов.
Частые поломки и ремонт индукционных котлов
Следует знать, что ремонт индукционных котлов поручается только специалистам, проводить работы самостоятельно крайне не рекомендуется. Ввиду особых сложностей с доступом к некоторым деталям, мастеру без опыта легко нарушить схему и в этом случае придется покупать новый котел.
Список типичных неполадок указывается производителем в техпаспорте прибора, например, это поломки нагревательных элементов, контролирующих схем и систем управления. Заменять придется электроды или тепловой нагреватель. Чаще всего это заводской брак или следствие неверно выбранной схемы подключения, неправильной эксплуатации оборудования.
Важно! Тестовая проверка системы перед запуском в постоянную работу при наступлении холодов, визуальное обследование целостности оборудования, чистка фильтров продлят срок использования котлов без ремонта и замены деталей.
Индукционное отопление дома. Как Вам вешают лапшу. Отзыв эксперта
Сегодня поговорим с Вами про индукционное отопление. Многие пытаются преподнести индукционные котлы, как нечто инновационное, которое якобы позволит сэкономить наши деньги и обеспечит существование нашей системы отопления. А что на самом деле?
На самом деле индукционные котлы – агрегаты весьма дорогостоящие, габаритные, неудобные в использовании и не наделённые достаточным количеством свойств и качеств, которые необходимы для нормальной работы современного электрического котла отопления.
Те люди, которые эти котлы изобретают и пытаются вам их продать, об этих сторонах своей продукции потребителю ничего не рассказывают, а выставляют на свет одни только положительные качества. Мы же здесь отобразим все плюсы и недостатки индукционного отопления дома
Что говорят производители индукционного отопления?
Чаще всего производители индукционные котлы отопления сравнивают с традиционными, а традиционные – это 99% всех электрических котлов на рынке.
Сравнивают котлы всегда по такой схеме: выделяются мнимые недоработки котлов тэновых и положительные качества индукционного отопления дома.
Например, такие показатели:
- Весьма много элементов нагрева;
- Что якобы может один или даже несколько тэнов выти из строя;
- Утверждают, что котёл может потерять свою рабочую способность;
- Особое внимание они уделяют накипи, которая может появится в виде отложения прямо на самой поверхности элементов нагрева;
- Сложность и громоздкость конструкции обусловлена достаточно большим количеством электрических контактов;
- Создатели индукционных котлов утверждают, что их котлы служат больший срок за счёт того, что могут умягчать воду;
- Абсолютно необоснованное и голословное утверждение, что требуется периодическая замена прокладок, тэнов и ристеров.
Критика неправильных котлов отопления
Указывают, что в качественном индукционном котле отопления никаких нагревательных элементов нет. Конечно же это не так, потому что без нагревательного элемента нам не чем было бы нагревать воду, то есть он всегда есть в любом котле!
В подавляющем большинстве устанавливаемых электрических котлов тэн не выходит из строя практически весь срок службы котла.
Если тэн всё-таки выйдет из строя, то мы сможем его легко поменять, так как он под фланцем или на резьбе. Если вдруг ни с того ни с сего поломается агрегат при индукционном отопления , то заменить его практически невозможно.
Теперь о накипи. Она существует в чайнике, а в системах домашнего отопления она не существует, потому что там вода совсем не кипит, отложения же присутствуют всегда и везде, в любых системах: на котлах газовых, дизельных, дровяных, электрических, тэновых, электронных, индукционных. Никакого значения не имеет какой котёл. Отложения всегда будут присутствовать, так как это отложения, которые всегда присутствуют в воде. Это не недостаток и не преимущество, а данность.
Про электрические контакты. Производители пишут, что в индукционном котле отопления нет электрических контактов. Но на самом деле электрические контакты есть всегда и везде. И если говорить о тэновых котлах, то электрические контакты, кам клемные. там много лет отсутствуют. Есть электрические контакты, находящиеся под винтовыми соединениями, которые не требуют подтяжки, и есть пружинные зажимы обслуживать которые тоже не стоит.
По поводу срока службы тэна и цифр, аргументирующих этот срок. Не понятно откуда взяты эти цифры и чем они подтверждаются. Кроме того, здесь авторы путают системы водоснабжения и отопления. В системе отопления нет столько примесей, сколько есть в системе водоснабжения. Умягчения воды носителя системы тепло отопления не требуется.
Надо заметить, что в индукционном котле отопления замена узлов практически вообще не возможна, потому что всё находится в герметичной колбе и её нужно разрезать для того, чтобы что-то оттуда вытащить.
Раскрываем главный миф индукционного отопления
Последнее время уже перестали говорить, что КПД при индукционном отоплении выше, чем КПД тэнового котла 2-3 раза. Но сторонники индукционного котла утверждают, что тэновый котёл быстро теряет свои свойства и выходит из эксплуатации, потому что на нём вырастает накипь!
Утверждают, что в течение года мощность тэнового котла уменьшается на 15-20%. Так ли это на самом деле?
Да, отложения не тэне действительно присутствуют, но никогда нельзя путать систему отопления и систему водоснабжения. Например, в системе водоснабжения действительно образуется накипь, точно также, как она образуется в чайнике, который мы видим на кухне каждое утро. Никогда нам это не мешает в трудовой деятельности, мы знаем, и это не подлежит сомнению, что в чайнике вода закипает в любом случае.
Напротив, в известной для нас системе отопления примеси нечасто поступают в воду. Слой отложения очень тонкий и не является сколько-нибудь значимым препятствием для передачи тепла.
Если энергия куда-то ушла из сети, никуда она полностью не исчезает. Она превращается в абсолютное тепло и нагревается теплоноситель, который, в свою очередь, нагревается точно с одним и тем же КПД, как он нагревался раньше и как он будет нагреваться всегда. Если бы было не так, то тэн разорвало бы излишками энергии.
Как только появляется накипь, теплообмен совершается при более высокой температуре. Ни о каком снижении КПД речи быть не может, какая бы температура ни была в тэне.
Стоимость и содержание индукционных котлов отопления
Стоят индукционные котлы отопления в 2 раза дороже тэновых котлов. Несмотря на то, что они качественно ниже, как мы увидели из критического разбора их так называемых «преимуществ».
Весят тоже в 2 раза больше тэновых котлов, имеют большие громоздкие габариты, и вся электронная начинка находится снаружи. В то время, как в тэновых котлах она спрятана в самом котле. А здесь есть дополнительная коробка, которую иногда негде разместить, особенно, когда речь идёт об очень небольшом помещении для котельной.
В индукционных котлах нет автоматического выбора мощности, то есть только тэновый котёл может сам выбирать на какой мощности ему надо в данный момент работать.
При индукционном отоплении дома постоянно будут скачки напряжения и перенагрузка, а в тэновых котлах очень тихо работает реле. И Вы его сможете заметить лишь, как тихие щелчки, находясь рядом с работающим котлом.
Ещё в индукционных котлах полностью отсутствует термозащита по перегреву и по замерзанию, имеющаяся в тэновых котлах.
В индукционных котлах отопления нет датчиков низкого давления воды. Там нет индикации ошибок, которые позволяют точно установить неисправность, из-за которой он встал (на дисплее тэнового котла будет моргать соответствующий показатель).
Но самое главное, чего нет в индукционных котлах, это возможность подключения бойлера!
Покупать или не покупать индукционный котёл отопления?
Вы, конечно, сами должны принять для себя решение, какой именно котёл вам следует купить: качественный тэновый или же всё-таки более громоздкий, менее эффективный и дорогой индукционный котёл.
Но вы должны учитывать следующее: индукционный котёл – это агрегат не для систем отопления, тем более, если они индивидуальны и не требуют больших мощностей. Разумеется, без индукционного отопления в некоторых индустриальных областях технического производства обойтись невозможно, но это касается производственных задач.
Всё-таки тащить в свой дом сложный тяжёлый и дорогостоящий агрегат не за чем. Можно обойтись более изящным решением – тэновым котлом.
Производители индукционных котлов отопления дают заведомо не полную информацию о своей продукции, что вводит в заблуждение тех, кто делает выбор в сторону того или другого котла. Здесь важно говорить правду и показывать свой продукт со всех сторон, чтобы люди знали, что они покупают.
Отзыв эксперта об индукционном котле отопления
Один из ведущих российских экспертов в сфере установки и обслуживания котлов в России Владимир Сухоруков в одной из своих передач на YouTube «Индукционный котел — большое недоразумение», вышедшей 12 декабря 2017 г., обстоятельно и подробно доказал, что индукционные котлы отопления проигрывают традиционным тэновым котлам.
Владимир Сухоруков не нашел ни одной причины для использования индукционного котла в котельной. Более того, он настоятельно советует ни при каких обстоятельствах не покупать индукционные котлы, когда есть качественные тэновые котлы, работающие стабильно и слаженно.
Возможно, надо прислушаться к совету эксперта.
Читайте так же:
Индукционные котлы для подключения частного дома и помещении
Автор newwebpower На чтение 9 мин. Просмотров 243 Опубликовано
Обновлено
Благодаря развивающимся технологиям электрические водонагреватели постоянно совершенствуются, и для нагрева воды в частном доме теперь нередко используются инженерные решения, которые до этого успешно применялись в промышленных масштабах. Ярким примером такой конверсии технологий является индукционный котел отопления, в котором используется явление электромагнитной индукции тока в проводниках.
Чтобы понять принцип действия индукционного котла отопления, нужно освежить школьные знания об электромагнитной индукции и ознакомиться с работой индукторной печи.
Вспоминая школьные знания
Электрический ток, пропускаемый через катушку индуктивности, создает вокруг электромагнитное поле. При помещении магнитного материала вовнутрь катушки, силовые линии магнитного поля будут проходить сквозь материал. При переменном токе полюса электромагнита будут изменяться соответственно частоте подведенного напряжения.
Идентичность магнитного поля катушки и постоянного магнита
При быстром перемагничивании магнитных диполей (атомов и молекул) они будут менять свое направление, то есть совершать тепловые колебания. К тому же, переменное магнитное поле индуцирует вихревые токи в сердечнике, которые тоже разогревают проводник согласно закону Джоуля-Ленца.
В трансформаторах и электродвигателях переменного тока данный эффект является негативным, и с вихревыми токами борются, набирая магнитопровод из шихтованных пластин, изолированных друг от друга.
Изолированные пластины шихтованного магнитопровода трансформатора
В индукторе печи, или в индукционном котле наоборот — данный эффект имеет положительное значение. По сути, наблюдается принцип трансформации тока – на первичную катушку подается переменное напряжение, возбуждающее электромагнитные колебания и вихревые токи в короткозамкнутом сердечнике.
Описание принципа действия индукционного нагрева
Интенсивность колебания магнитных диполей и наведенные токи в замкнутом сердечнике способны разогревать и плавить металл в индукционной печи за весьма короткое время, в зависимости от напряженности и частоты переменного электромагнитного поля.
Нагрев части сердечника индуктивным методом
Очевидно, что если пропускать через сердечник воду, или другой теплоноситель, то тепло будет передаваться жидкости, нагревая ее. Данный принцип используется в индукционных бытовых электроплитах, водонагревателях и котлах.
Наглядность работы индукционной печи
Принцип действия индукционной печи основывается на вихревых токах Фуко и быстром перемагничивании металла, что достигается переменным магнитным полем высокой частоты, порядка 100 кГц. Наглядно оценить эффективность индуктора (печи, индукционного нагревателя) можно посмотрев видео ниже.
Благодаря одному витку, повернутому в обратную сторону, заготовка не выталкивается магнитным полем. Данная конструкция является демонстрационным стендом, иллюстрирующим возможности индукционного нагрева.
Очевидно, что таким способом можно плавить драгоценные и редко встречающиеся металлы в атмосфере инертных газов без контакта расплава со стенками печи, что успешно применяется в производственных и лабораторных установках.
Бесконтактная индукционная плавка металлов
Также разновидностью индукционной печи является нагрев кузнечных заготовок при помощи индукции. Благодаря внутренней схеме устройства происходит подстройка частоты в зависимости от изменения индуктивности катушки, которое происходит при помещении в нее заготовки. Пример промышленной установки на видео:
Возрастающая популярность индукционных котлов
Разумеется, для разогрева кузнечных заготовок потребуется значительное количество энергии, а для работы промышленной плавильной печи требуется мощность, исчисляемая мегаваттами, но в отношении частного дома, для нагрева небольших объемов воды, потребление электроэнергии и сила тока, необходимая для электромагнитной индукции, будет сопоставима с энергопотреблением других мощных домашних электроприборов.
Индукционный котел в системе отопления
Поэтому индукционные электрические котлы уверенно завоевывают свою нишу на рынке, благодаря очевидным преимуществам по сравнению с другими типами электронагревателей для дома или квартиры:
- Компактность. Поскольку сердечником индуктора, как правило, является металлическая труба ненамного большего диаметра, чем трубопроводы системы отопления, а размеры катушки, слоя изоляции и защитного кожуха также незначительны, то общие габариты водонагревателя выгодно отличаются от других типов котлов.
Компактный индукционный водонагреватель в ванной комнате
- Долговечность. По сравнению с ТЭНами, площадь теплообмена внутренней стенки нагревающейся трубы (сердечника) индукционного котла в десятки раз больше. Это означает что слой накипи, распределенный по значительной поверхности, будет мизерным, и не влияющим на эффективность теплопередачи. Тогда как в отношении ТЭНов, загрязненность рабочей поверхности часто имеет критическое значение при недостаточном охлаждении и перегреве внутренней спирали, что приводит к выходу из строя электронагревателя.
Чрезвычайно обильная накипь на рабочей поверхности ТЭНаСердечник индукционного водонагревателя имеет свойство самоочищения от накипи из-за кавитации (теплового расширения-сжатия) и вибрации из-за переменного магнитного поля.
- Безопасность. Данное преимущество очевидно при сравнении с котлами на базе ТЭНов, в которых частой поломкой является электрический пробой вследствие накипи. В индукционном котле даже обильная накипь, скопившаяся за десятилетия, не повлияет сильно на работоспособность нагревателя. При полной закупорке, или потере теплоносителя вследствие разогрева сердечника его индуктивность изменится, на что должна отреагировать электрическая схема. Сама обмотка индукционного котла надежно изолирована и лишь незначительно нагревается из-за активного сопротивления проводника, а прогорание толстостенной трубы и протечка воды практически исключена.
Металлический лабиринт индукционного котла предотвращает попадание воды на катушку
Мифы и выдумки
Наряду с перечислением достоинств, следует заметить, что имеет место некая мифологизация индукционных котлов, в которой реальные физические факторы дополняются вымыслами недобросовестных менеджеров, подменами понятий, домыслами, и неподтвержденными данными мастеров-любителей.
Существуют, как тенденции преувеличивать достоинства индукционных котлов, так и некоторые предубеждения против их использования.
Например, бытует мнение, что вредное магнитное поле распространяется по трубам водопровода и по воде внутри, оказывая негативное влияние на здоровье человека и работы бытовых приборов дома.
Действительно, интенсивное переменное поле высокой частоты может иметь вредные последствия для организма и влиять на работу различных устройств, но этот недостаток нивелируется экранами индукционного котла (внешними кожухами) и толщиной трубы (сердечника).
Надежная конструкция индукционного котла
Вибрация и гудение в индукционных котлах некачественной сборки также могут создавать неудобства. Учитывая большую индуктивность водонагревателя, его схема должна обеспечивать отсутствие индуктивных всплесков напряжения в сети при включении – выключении котла.
Уловки менеджеров
Но намного чаще можно встретить преувеличенные достоинства индукционных котлов или откровенно неправдивую информацию, направленную на агитацию и увеличение продаж. Например, рекламируется новизна и инновационность данного метода, хотя индукторные печи успешно применяются в металлургии уже почти целое столетие, как и промышленные индукционные котлы.
Промышленный индукционный котел большой мощности
Также, во всех видах рекламы настойчиво муссируется утверждение о небывалой экономичности индукционных котлов (около 30%), в сравнении с водонагревателями для дома, где используются обычные ТЭНы.
С физической точки зрения это в принципе невозможно, так как любой вид энергии, в том числе и электроэнергия, в независимости от принципа преобразования и схемы электронагревателя, в конечном итоге превращается в тепло.
Речь здесь может идти только о качестве теплоизоляции самого водонагревателя и соединительных труб, чтобы тепло не рассеивалось в служебном помещении и полностью направлялось в отопительную систему дома. Учитывая небольшие габариты индукционного котла, можно с уверенностью сказать, что теплопотери будут значительно меньшими, если нагреватель устанавливается где-то вне дома.
Если же индукционных электронагреватель устанавливается внутри отапливаемого помещения, то под экономичностью может подразумеваться только лишь эффективное использование котла при помощи алгоритмов и схем управления.
Компактность и электронный блок индукционного котла действительно увеличивают эффективность системы отопления
То есть, благодаря небольшому объему теплоносителя и большой площади нагревания в индукционном котле, затраты энергии и времени для нагрева воды будут меньшими, после чего включается экономичный режим поддержания необходимой температуры.
Несовершенство приборов учета электроэнергии
Стоит особо упомянуть явление, на котором зиждется утверждение менеджеров о невероятной, с точки зрения термодинамики, экономичности индукционных котлов. Имеется в виду несовершенство электросчетчиков и систем учета потребленной электроэнергии в квартирах и частных домах.
Не углубляясь в электротехническую теорию, следует заметить, что cos α (косинус альфа), часто указываемый в паспортах различных электроприборов, у индукционного котла будет сравнительно небольшим. А это означает, что электроприбор потребляет значительную долю реактивной мощности, которая старыми механическими электросчетчиками с крутящимся диском не учитывалась.
Устаревший дисковый электросчетчик
В этом случае, действительно будет наблюдаться экономия денежных средств, но только вследствие несовершенства схемы учета электроэнергии устаревшими счетчиками. Но современные электрические цифровые счетчики более совершенны и практически лишены подобного недостатка, поэтому, в соответствии с различными нормативными актами, они должны заменить устаревшие аналоги.
Видеосюжет об обязательной замене старых электросчетчиков:
Поскольку технические характеристики современных электросчетчиков, установленных в частных домах, могут различаться в плане учета реактивной мощности, то и счета за одинаковое количество произведенного тепла при помощи индукционных котлов будут варьироваться.
Поэтому, приобретая индукционный водонагреватель для дома с целью получения экономии, необходимо свериться с техническими характеристиками имеющегося электросчетчика, чтобы приблизительно рассчитать, сколько он будет экономить из-за своего несовершенства.
Самодельные индукционные котлы
Будет резонно предположить, что утверждения менеджеров об экономичности их инновационных технологий имеют исторические корни, так как в эпоху распространения механических электросчетчиков многие умельцы делали индукционный котел своими руками, который действительно потреблял значительно меньше электроэнергии, по сравнению с ТЭНами.
Хоть конструкция и схема индукционной печи не является простой, но при наличии деталей, инструментов и навыков, её можно изготовить в домашних условиях, рассчитав сечение, длину, количество витков и диаметр обмотки индуктивности, установив силовые ключи на радиаторы.
Электрическая схема индукционного нагревателя
Катушка индуктивности, в которую помещается сердечник, в совокупности с конденсатором и дросселями являют собой колебательный контур. Через быстродействующие диоды обратной связи сигнал поступает на управляющие выводы силовых ключей, благодаря чему происходит автоматическая генерация высокочастотных колебаний.
На видео ниже мастер объясняет тонкости сборки самодельного индукционного нагревателя и демонстрирует его работу.
При наращивании мощности путем увеличения напряжения и при помощи добавления идентичных модулей, установив в катушки трубку можно добиться приемлемого нагревания потока проточной воды.
Можно найти соответствующие схемы индуктивных котлов в сети, или повторить промышленные образцы. Существуют серийно выпускаемые водонагреватели, которые успешно работают в отопительных системах.
Ознакомиться с обзором различных вариантов самодельного индукционного отопления можно, посмотрев видео внизу.
Первая часть обзора:
Вторая часть
Видео сборки самодельного индукционного котла
2 Простые схемы индукционного нагревателя — плиты-плиты
В этом посте мы узнаем о двух простых в сборке схемах индукционного нагревателя, которые работают с принципами высокочастотной магнитной индукции для генерирования значительного количества тепла на небольшом заданном радиусе.
Обсуждаемые схемы индукционной плиты действительно просты и используют всего несколько активных и пассивных обычных компонентов для требуемых действий.
Обновление: Вы также можете узнать, как спроектировать свою собственную варочную панель индукционного нагревателя:
Проектирование цепи индукционного нагревателя — Учебное пособие
Принцип работы индукционного нагревателя
Индукционный нагреватель — это устройство, которое использует высокочастотное магнитное поле для нагрева железного груза или любого ферромагнитного металла посредством вихревого тока.
Во время этого процесса электроны внутри железа не могут двигаться со скоростью, равной частоте, и это приводит к возникновению в металле обратного тока, называемого вихревым током. Это развитие сильного вихревого тока в конечном итоге вызывает нагрев железа.
Вырабатываемое тепло пропорционально току 2 x сопротивлению металла. Поскольку предполагается, что загружаемый металл состоит из железа, мы рассматриваем сопротивление R для металлического железа.
Тепло = I 2 x R (Железо)
Удельное сопротивление железа составляет: 97 нОм · м
Вышеупомянутое тепло также прямо пропорционально наведенной частоте, поэтому обычные трансформаторы с штамповкой из железа не используются в В приложениях с высокочастотным переключением вместо сердечников используются ферритовые материалы.
Однако здесь вышеупомянутый недостаток используется для получения тепла от высокочастотной магнитной индукции.
Обращаясь к предлагаемым ниже схемам индукционного нагревателя, мы находим концепцию, использующую ZVS или технологию переключения нулевого напряжения для требуемого запуска полевых МОП-транзисторов.
Технология обеспечивает минимальный нагрев устройств, что делает работу очень эффективной и действенной.
Кроме того, цепь, являющаяся саморезонансной по своей природе, автоматически настраивается на резонансную частоту присоединенной катушки и конденсатора, вполне идентичных цепи с резервуаром.
Использование генератора Ройера
В схеме в основном используется генератор Ройера, который отличается простотой и саморезонансным принципом работы.
Функционирование схемы можно понять по следующим пунктам:
- При включении питания положительный ток начинает течь от двух половин рабочей катушки к стокам МОП-транзисторов.
- В то же время напряжение питания также достигает ворот МОП-транзисторов, включая их.
- Однако из-за того, что никакие два МОП-транзистора или какие-либо электронные устройства не могут иметь точно одинаковые характеристики электропроводности, оба МОП-транзистора не включаются вместе, скорее, один из них включается первым.
- Давайте представим, что T1 включается первым. Когда это происходит, из-за сильного тока, протекающего через T1, его напряжение стока имеет тенденцию падать до нуля, что, в свою очередь, высасывает напряжение затвора другого МОП-транзистора T2 через присоединенный диод Шоттки.
- Здесь может показаться, что T1 может продолжать вести себя и уничтожать себя.
- Однако именно в этот момент включается контур резервуара L1C1, который играет решающую роль. Внезапное проведение T1 вызывает скачок и коллапс синусоидального импульса на стоке T2. Когда синусоидальный импульс схлопывается, он снижает напряжение затвора T1 и отключает его. Это приводит к повышению напряжения на стоке T1, что позволяет восстановить напряжение затвора для T2. Теперь настала очередь Т2 проводить, Т2 теперь проводит, вызывая повторение, аналогичное тому, которое имело место для Т1.
- Этот цикл теперь продолжается быстро, заставляя контур колебаться на резонансной частоте контура резервуара LC. Резонанс автоматически настраивается на оптимальную точку в зависимости от того, насколько хорошо совпадают значения LC.
Однако основным недостатком конструкции является то, что в ней используется центральная катушка с ответвлениями в качестве трансформатора, что немного усложняет реализацию обмотки. Однако центральный отвод обеспечивает эффективный двухтактный эффект через катушку всего за пару активных устройств, таких как МОП-транзисторы.
Как видно, через затвор / исток каждого МОП-транзистора подключены диоды с быстрым восстановлением или высокоскоростным переключением.
Эти диоды выполняют важную функцию разряда емкости затвора соответствующих МОП-транзисторов во время их непроводящих состояний, тем самым делая операцию переключения быстрой и быстрой.
Как работает ZVS
Как мы обсуждали ранее, эта схема индукционного нагревателя работает по технологии ZVS.
ZVS означает переключение при нулевом напряжении, то есть МОП-транзисторы в цепи включаются, когда на их стоках присутствует минимальная или величина тока, или нулевой ток, мы уже узнали это из объяснения выше.
Это на самом деле помогает МОП-транзисторам безопасно включаться, и, таким образом, эта функция становится очень полезной для устройств.
Эту функцию можно сравнить с проводимостью при переходе через нуль для симисторов в цепях переменного тока.
Благодаря этому свойству МОП-транзисторы в таких саморезонансных цепях ZVS требуют гораздо меньших радиаторов и могут работать даже с массивными нагрузками до 1 кВА.
Поскольку частота контура является резонансной по своей природе, она напрямую зависит от индуктивности рабочей катушки L1 и конденсатора C1.
Частота может быть рассчитана по следующей формуле:
f = 1 / (2π * √ [ L * C] )
Где f — частота, рассчитанная в Hertz
L — это индуктивность основной нагревательной катушки L1, представленная в Henries
, а C — емкость конденсатора C1 в фарадах
МОП-транзисторы
Вы можете использовать IRF540 в качестве МОП-транзисторов, которые рассчитаны на хорошие 110 В, 33 ампера.Для них можно использовать радиаторы, хотя выделяемое тепло не вызывает опасений, но все же лучше укрепить их на теплопоглощающих металлах. Однако можно использовать любые другие N-канальные полевые МОП-транзисторы с соответствующим номиналом, для этого нет никаких особых ограничений.
Индуктор или катушки индуктивности, связанные с катушкой главного нагревателя (рабочей катушкой), представляют собой своего рода дроссель, который помогает исключить любое возможное попадание высокочастотной составляющей в источник питания, а также ограничивает ток до безопасных пределов.
Значение этого индуктора должно быть намного выше по сравнению с рабочей катушкой. Обычно для этой цели вполне достаточно 2 мГн. Однако он должен быть построен с использованием проводов большого сечения, чтобы обеспечить безопасное прохождение через него большого диапазона тока.
Контур резервуара
C1 и L1 составляют здесь контур резервуара для предполагаемой фиксации высокой резонансной частоты. Опять же, они тоже должны быть рассчитаны на то, чтобы выдерживать высокие значения тока и тепла.
Здесь мы видим использование металлизированных полипропиленовых конденсаторов 330 нФ / 400 В.
1) Мощный индукционный нагреватель с использованием концепции драйвера Mazzilli
Первая конструкция, описанная ниже, представляет собой высокоэффективную индукционную концепцию ZVS, основанную на популярной теории драйверов Мазилли.
Он использует одну рабочую катушку и две катушки ограничителя тока. Такая конфигурация исключает необходимость в центральном отводе от основной рабочей катушки, что делает систему чрезвычайно эффективной и обеспечивает быстрый нагрев нагрузки внушительных размеров. Нагревательный змеевик нагревает нагрузку посредством двухтактного механизма полного моста.
Модуль фактически доступен в Интернете и может быть легко куплен по очень разумной цене.
Принципиальная схема этой конструкции представлена ниже:
Исходную схему можно увидеть на следующем изображении:
Принцип работы — та же технология ZVS с использованием двух полевых МОП-транзисторов высокой мощности. Вход питания может быть от 5 В до 12 В, а сила тока от 5 до 20 А в зависимости от используемой нагрузки.
Выходная мощность
Выходная мощность вышеупомянутой конструкции может достигать 1200 Вт при повышении входного напряжения до 48 В и тока до 25 ампер.
На этом уровне тепло, выделяемое рабочим змеевиком, может быть достаточно высоким, чтобы за минуту расплавить болт толщиной 1 см.
Размеры рабочей катушки
Видео-демонстрация
2) Индукционный нагреватель с использованием рабочей катушки с центральным отводом
Эта вторая концепция также является индукционным нагревателем ZVS, но для работы используется центральное разветвление катушка, которая может быть немного менее эффективной по сравнению с предыдущей конструкцией.L1, который является наиболее важным элементом всей схемы. Он должен быть построен с использованием очень толстых медных проводов, чтобы выдерживать высокие температуры во время индукционных операций.
Конденсатор, как описано выше, в идеале должен быть подключен как можно ближе к клеммам L1. Это важно для поддержания резонансной частоты на указанной частоте 200 кГц.
Характеристики первичной рабочей катушки
Для катушки индукционного нагревателя L1 можно намотать несколько медных проводов диаметром 1 мм параллельно или бифилярно, чтобы более эффективно рассеивать ток, вызывая меньшее тепловыделение в катушке.
Даже после этого катушка может подвергаться сильному нагреву и деформироваться из-за этого, поэтому можно попробовать альтернативный метод намотки.
В этом методе мы наматываем его в виде двух отдельных катушек, соединенных в центре для получения требуемого центрального отвода.
В этом методе можно попробовать использовать меньшие витки для уменьшения импеданса катушки и, в свою очередь, увеличения ее способности выдерживать ток.
Емкость для этой схемы, напротив, может быть увеличена, чтобы пропорционально понизить резонансную частоту.
Конденсаторы резервуара:
Всего 330 нФ x 6 можно использовать для получения чистой емкости приблизительно 2 мкФ.
Как прикрепить конденсатор к индукционной катушке
На следующем изображении показан точный метод подключения конденсаторов параллельно концевым выводам медной катушки, предпочтительно через печатную плату хорошего размера.
Список деталей для указанной выше цепи индукционного нагревателя или цепи индукционной нагревательной плиты
- R1, R2 = 330 Ом 1/2 Вт
- D1, D2 = FR107 или BA159
- T1, T2 = IRF540
- C1 = 10000 мкФ / 25 В
- C2 = 2 мкФ / 400 В, получено путем параллельного подсоединения показанных ниже конденсаторов 6 nos 330 нФ / 400 В
- D3 —- D6 = 25-амперные диоды
- IC1 = 7812
- L1 = латунная трубка 2 мм намотанный, как показано на следующих рисунках, диаметр может быть где угодно около 30 мм (внутренний диаметр катушек)
- L2 = 2 мГн дроссель, полученный путем наматывания магнитного провода 2 мм на любой подходящий ферритовый стержень
- TR1 = 0-15 В / 20 ампер
- ИСТОЧНИК ПИТАНИЯ: Используйте регулируемый источник питания постоянного тока 15 В, 20 А.
Использование транзисторов BC547 вместо высокоскоростных диодов
На приведенной выше схеме индукционного нагревателя мы можем видеть затворы полевых МОП-транзисторов, состоящих из диодов с быстрым восстановлением, которые могут быть трудно получить в некоторых частях страны.
Простая альтернатива этому может заключаться в транзисторах BC547, подключенных вместо диодов, как показано на следующей диаграмме.
Транзисторы будут выполнять ту же функцию, что и диоды, поскольку BC547 может хорошо работать на частотах около 1 МГц.
Другой простой дизайн DIY
На следующей схеме показан еще один простой дизайн, аналогичный приведенному выше, который можно быстро построить дома для реализации индивидуальной системы индукционного нагрева.
Список деталей
- R1, R4 = 1K 1/4 Вт MFR 1%
- R2, R3 = 10K 1/4 Вт MFR 1%
- D1, D2 = BA159 или FR107
- Z1, Z2 = 12 В, Стабилитрон 1/2 Вт
- Q1, Q2 = МОП-транзистор IRFZ44n на радиаторе
- C1 = 0,33 мкФ / 400 В или 3 н.у.1 мкФ / 400 В параллельно
- L1, L2, как показано на следующих изображениях:
- L2 восстановлен от любого старого блока питания компьютера ATX.
Как устроен L2
Преобразование в посуду с подогревом
Вышеупомянутые разделы помогли нам изучить простую схему индукционного нагревателя с использованием пружинной катушки, однако эту катушку нельзя использовать для приготовления пищи, и она требует некоторых серьезные модификации.
В следующем разделе статьи объясняется, как изложенную выше идею можно изменить и использовать в качестве простой небольшой индукционной цепи нагревателя посуды или индукционной цепи кадай.
Дизайн низкотехнологичный, маломощный и может отличаться от обычных устройств. Схема была запрошена г-ном Дипешом Гуптой
Технические характеристики
Сэр,
Я прочитал вашу статью Простая схема индукционного нагревателя — Схема горячей плиты и был очень рад обнаружить, что есть люди, готовые помочь таким молодым людям, как мы, в сделай что-нибудь ….
Сэр, я пытаюсь понять принцип работы и пытаюсь разработать для себя индукционный кадай… Сэр, пожалуйста, помогите мне разобраться в дизайне, так как я так хорош в электронике
Я хочу разработать индукцию для нагрева кадай диаметром 20 дюймов с частотой 10 кГц по очень низкой цене !!!
Я видел ваши схемы и статью, но немного запутался насчет
- 1. Используемый трансформатор
- 2. Как сделать L2
- 3. И любые другие изменения в схеме для частоты 10-20 кГц при токе 25А
Пожалуйста, помогите мне как можно скорее..Это будет полезно, если вы можете предоставить точную информацию о необходимых компонентах. PlzzИ, наконец, вы упомянули об использовании ИСТОЧНИКА ПИТАНИЯ: Используйте регулируемый источник питания постоянного тока 15 В, 20 А. Где это используется ….
Спасибо
Dipesh gupta
The Design
Предлагаемая конструкция индукционной кадайной цепи, представленная здесь, предназначена только для экспериментальных целей и может не работать как обычные устройства. Его можно использовать для быстрого приготовления чашки чая или омлета, и ничего большего ожидать не стоит.
Указанная схема была первоначально разработана для нагрева таких предметов, как железный стержень, например, головки болта. отвертка металлическая и т. д., однако с некоторыми изменениями эта же схема может быть применена для нагрева металлических кастрюль или сосудов с выпуклым дном типа «кадай».
Для реализации вышеизложенного исходная схема не нуждалась бы в каких-либо изменениях, за исключением основной рабочей катушки, которую нужно будет немного подправить, чтобы сформировать плоскую спираль вместо пружинной конструкции.
В качестве примера, чтобы преобразовать конструкцию в индукционную посуду так, чтобы она поддерживала сосуды с выпуклым дном, такие как кадай, змеевик должен иметь сферически-спиральную форму, как показано на рисунке ниже:
Схема будет такой же, как объяснено в моем предыдущем разделе, который в основном основан на конструкции Ройера, как показано здесь:
Проектирование спиральной рабочей катушки
L1 изготавливается с помощью 5-6 витков 8-миллиметровой медной трубки в сферическую форму. -спиральная форма, как показано выше, для размещения небольшой стальной чаши посередине.
Катушка может быть также плоско сжата в спиральную форму, если небольшая стальная сковорода предназначена для использования в качестве посуды, как показано ниже:
Конструирование ограничителя тока Катушка
L2 может быть изготовлена путем наматывания суперэмалированной пленки толщиной 3 мм. медный провод над толстым ферритовым стержнем, количество витков необходимо экспериментировать, пока на его выводах не будет достигнуто значение 2 мГн.
TR1 может быть трансформатором 20 В 30 ампер или источником питания SMPS.
Фактическая схема индукционного нагревателя довольно проста по своей конструкции и не требует особых объяснений, необходимо позаботиться о следующих вещах:
Резонансный конденсатор должен располагаться относительно ближе к основной рабочей катушке. L1 и должен быть получен путем подключения примерно 10 ноль 0.22 мкФ / 400 В параллельно. Конденсаторы должны быть строго неполярного и металлизированного полиэфирного типа.
Хотя конструкция может выглядеть довольно простой, нахождение центрального отвода в спирально намотанной конструкции может вызвать некоторую головную боль, поскольку спиральная катушка будет иметь несимметричную компоновку, что затруднит определение точного центрального отвода для схемы.
Это можно сделать методом проб и ошибок или с помощью LC-метра.
Неправильно расположенный центральный ответвитель может заставить схему работать ненормально или производить неравномерный нагрев МОП-транзисторов, или вся схема может просто не колебаться в худшей ситуации.
Ссылка: Википедия
Конструкции эффективного индукционного нагрева — Технические статьи
Сковорода, разрезанная пополам, стоит на варочной поверхности с яйцом, аккуратно разбитым в ее центре. Половина на сковороде имеет идеально приготовленную, блестящую белизну, а оставшаяся половина — прозрачная и сырая. Это мощный имидж, который со всей очевидностью демонстрирует, насколько эффективнее индукционные плиты по сравнению с альтернативными технологиями приготовления пищи. Сообщение: индукционный нагрев направляет энергию туда, где она необходима.
Полупроводниковая промышленность отреагировала на спрос на приборы для индукционного нагрева путем непрерывной настройки и совершенствования технологии переключения, необходимой для ее оптимальной реализации. Таким образом, индукционная технология обычно используется также в рисоварках, вспенивателях молока и плитах.
Использование индукционного нагрева в системах отопления
Принципы обычного трансформатора составляют основу приложений индукционного нагрева. Однако, в то время как трансформатор индуцирует ток во вторичной катушке от первичной катушки, индукционный нагреватель использует первичную катушку для индукции тока в самой посуде для приготовления пищи.Это гарантирует, что результирующий эффект нагрева будет сконцентрирован именно там, где это необходимо. Именно вихревые токи индуцируются в материале посуды для приготовления пищи, что приводит к тепловому эффекту, известному как джоулев нагрев. Высокое сопротивление обеспечивают сосуды, изготовленные из магнитных материалов, таких как нержавеющая сталь и железо, в то время как немагнитные материалы, такие как алюминий и медь, обеспечивают меньшее сопротивление.
Из-за используемых высоких частот ток в первичной катушке протекает в основном по поверхности проводника, что называется скин-эффектом.В змеевиках индукционного нагрева используется медная проволока особого типа, известная как литц-проволока, которая состоит из множества тонких отдельных жил. Это приводит к увеличению площади поверхности катушки, тем самым уменьшая сопротивление переменному току.
Выбор топологии и их функции
Существует несколько подходов к выбору топологии, но из-за ценового давления на многих рынках, на которые ориентированы эти приложения, наиболее распространенным выбором является схема одностороннего параллельного резонанса (SEPR) (рис. 1).Эта топология программного переключения использует резонансную сеть резервуаров, состоящую из конденсатора Cr и литц-катушки Lr. БТИЗ, работающий в условиях переключения при нулевом напряжении (ZVS), вместе с параллельным диодом завершают конструкцию. Вместо того, чтобы реализовывать дискретный подход, диод обычно интегрируется в IGBT, причем характеристики диода оптимизируются в соответствии с потребностями схемы этого типа. Частоты переключения 20–30 кГц гарантируют, что любой шум выходит за пределы слышимого диапазона, что делает эту схему подходящей для магнитной посуды.Более высокие частоты также могут использоваться как часть функции плавного пуска.
Рисунок 1: Несимметричный параллельный резонансный контур (SEPR) обычно используется для цепей с резонансным напряжением.
Работа цепи резонанса напряжения разбита на четыре периода времени (рисунок 3) и применима для случая, когда процесс запуска был завершен (т.е. Cr полностью заряжен):
T1 — Цикл начинается с включения Q1, позволяя току течь от Cm через Lr и Q1 и заставляя ток линейно увеличиваться до тех пор, пока он не достигнет желаемого уровня.В это время напряжение на Cr ограничивается напряжением на Cm.
T2 — Следующий Q1 отключается, в результате чего Lr и Cr входят в резонанс. Достигнутое пиковое резонансное напряжение увеличивается пропорционально времени включения T1.
T3 — Резонансный ток изменяет направление, вызывая снижение напряжения над Cr.
T4 — Теперь полярность напряжения на Cr меняется на обратную.Когда оно превышает напряжение на Cm, ток начинает течь через диод, возвращая полярность и напряжение Cr к значению Cm.
Рис. 2: Четыре фазы работы в конструкции с резонансным напряжением SEPR.
Номинал IGBT будет зависеть от пика напряжения, который видит Q1, который для источников питания 100 В переменного тока потребует номинального значения VCES от 900 до 1200 В или от 1350 до 1800 В для источников питания 220 В переменного тока.
По мере увеличения требований к мощности обычно используется подход полумостового токового резонанса с использованием двух IGBT со встроенными диодами (рисунок 3). Такие конструкции могут также поддерживать использование «полностью из металла», где частота переключения от 80 до 100 кГц может даже поддерживать использование немагнитных посуды для приготовления пищи. Резонансный контур реализован в виде последовательной конструкции LC или LCR.
Рисунок 3: Полумостовая схема индукционного нагревателя с токо-резонансным последовательным соединением LC.
Работа этой схемы также может быть описана в четыре этапа (рисунок 4) после завершения процесса запуска следующим образом:
T1 — Верхний переключатель Q1 включается, в результате чего ток течет от конденсатора Cm в цепь резонансного тока Cr-Lr.
T2 — Переключатель Q1 выключается, оставляя Cr заряжаться из-за тока, протекающего от Lr через диод нижнего переключателя.
T3 — Переключатель Q2 включен, позволяя резонансному току течь от Cr через Q2 в Lr. В этот момент VCE Q2 ограничивается прямым напряжением параллельного (или интегрированного) диода, тем самым активируя ZVS.
T4 — Переключатель Q2 выключен, позволяя свободному току течь от Lr через Cr, диод параллельно Q1 и Cm. В этот момент VCE Q1 аналогичным образом ограничивается прямым напряжением параллельного (или интегрированного) диода, обеспечивая ZVS для следующей фазы, T1.
Рис. 4. Четыре фазы работы полумостовой токово-резонансной конструкции.
В результате пиковое напряжение ограничивается суммой пикового входного напряжения переменного тока, что позволяет устанавливать IGBT с VCES от 600 до 650 В для входов 220 В переменного тока. Более высокие токи не позволяют использовать эту конструкцию с входами 100 В переменного тока.
Выбор подходящих IBGT для использования в устройствах индукционного нагрева
Очевидно, что правильное понимание напряжений, генерируемых на VCES, является критическим фактором при выборе IGBT.Напряжение управления затвором, VGES, также требует проверки. Обычно он работает при 18 В, чтобы уменьшить потери мощности в IGBT. Однако колебания в электросети на многих рынках, иногда до 20%, означают, что проектировщикам необходимо убедиться, что в таблице данных указан достаточный запас для этих параметров. Тепловые параметры, такие как Rth (j-c), дают представление о требуемой концепции охлаждения, в то время как следует проводить испытания на электромагнитную совместимость (ЭМС), особенно на отключение при более низких частотах испытаний.
Еще одним важным аспектом для рассмотрения является рейтинг IC (sat), параметр, который важен во время токов короткого замыкания, которые протекают для заряда Cr при начальном включении питания, пока его напряжение не будет соответствовать напряжению на Cm. Наконец, следует проверить максимально допустимый ток коллектора VCE в зоне безопасной эксплуатации с прямым смещением (FBSOA) для различных значений длительности импульса.
Punch-through (PT) IGBT — предпочтительное устройство в таких приложениях, поскольку они поддерживают более высокие частоты переключения, чем не-PT-типы в прошлом.Последние достижения позволили уменьшить толщину слоя коллектора P для создания структур, известных как IGBT с ограничителем поля (FS). Это позволяет создать слой N, чтобы включить корпусный диод с обратной проводимостью (RC), ведущий к RC-IGBT. Благодаря пониженному хвостовому току они хорошо подходят для схем софт-коммутации. Последний RC-IGBT от Toshiba, GT20N135SRA, представляет собой устройство нового поколения с поддержкой 20 А при 100 ° C и 1350 В. Это идеальное решение для устройств индукционного нагрева с питанием 220 В переменного тока для устройств средней мощности мощностью 2200 Вт.
По сравнению с устройствами предыдущего поколения, ток короткого замыкания IC (sat) ограничен примерно 150 А при 100 ° C. Во время фазы запуска схемы, когда Cr заряжается, это помогает снизить ток насыщения коллектора и подавить колебания напряжения (рисунок 5). Более широкий FBSOA также означает, что могут протекать более высокие токи, но это должно быть сбалансировано с учетом того, что некоторые потери преобразуются в тепло. GT20N135SRA имеет максимальное значение Rth (j-c) 0,48 ° C / Вт, поэтому, если предположить, что IGBT должен рассеивать 35 Вт в реализации устройства, температура корпуса будет примерно на 6 ° C ниже, чем у устройств предыдущего поколения (GT40RR21 — 0.65 ° C / Вт).
Рисунок 5: Насыщение коллектора короткого замыкания, когда Cr не заряжен, значительно улучшено в GT20N135SRA (справа) по сравнению с IGBT предыдущего поколения (слева) и приводит к уменьшению колебаний (красный кружок)
Улучшенный слой N также привел к снижению прямого напряжения VF на 0,5 В по сравнению с устройствами предыдущего поколения. При заданном типичном значении 1,75 В при 25 ° C это снижает потери и повышает эффективность.Операция выключения IGBT может затруднить соответствие стандарту CISPR, требуя резистора в тракте затвора для снижения скорости переключения. Однако это приводит к увеличению потерь. Теперь без такого резистора в том же настольном приложении с GT20N135SRA достигается запас примерно на 10 дБ на частоте 30 МГц, что обеспечивает лучший компромисс между излучаемыми излучениями и рассеиваемой мощностью (рисунок 6).
Рис. 6. Улучшенное отключение приводит к увеличению запаса по CISPR на 10 дБ на 30 МГц для того же устройства.
Сводка
Хотя индукционные нагревательные приборы обеспечивают большую эффективность и лучший контроль по сравнению со многими альтернативными технологиями, ответственность за их реализацию ложится на инженера-конструктора. Полупроводниковая промышленность ответила на это коммутационными устройствами IGBT, которые на протяжении нескольких поколений продолжали улучшать характеристики, критически важные для оптимальной производительности, от рассеивания тепла и ЭМС до характеристик напряжения и тока, а также улучшенных обратнопроводящих корпусных диодов.
GT20N135SRA, последнее поколение RC-IGBT от Toshiba, упрощает вывод на рынок продуктов, которые проходят испытания на излучение, а также являются более эффективными. Будучи оптимизированными для приложений с резонансным током 220 В переменного тока, будущие продукты будут расширяться, чтобы покрыть более высокие потребности в токе для более крупных кухонных сосудов и более высоких напряжений, возникающих в приборах на 100 В переменного тока.
Эта статья изначально была опубликована в журнале Bodo’s Power Systems.
(PDF) КОНСТРУКЦИЯ РЕЗОНАНСНОГО ИНДУКЦИОННОГО НАГРЕВАТЕЛЯ 500 Вт
Конструкция резонансного индукционного нагревателя мощностью 500 Вт, BS Sazak
Mühendislik Bilimleri Dergisi 1999 5 (1) 871-878 872 Journal of Engineering Sciences 1999 5 (1) 871-878
источников питания с использованием твердотельных устройств в индукционной
нагревательной промышленности значительно увеличилось за последние
лет и хорошо изучено (Okeke, 1978;
Bonert and Lavers, 1994).
Для эффективной работы системы индукционного нагрева
во время операций нагрева или плавления конструкция системы
должна удовлетворять некоторым из следующих требований
:
• Система должна быть способна работать при любой нагрузке
состояние.Пустой, полный, холодный, полный горячий или любая промежуточная ситуация
.
• Гармонические токи, потребляемые от сети
, должны быть низкими.
• Система должна иметь достаточный допуск к
, чтобы выдерживать помехи или колебания входного источника питания
.
• Очень частые запуск и остановка
должны быть возможны без какого-либо вредного воздействия на систему
.
• Прекращение сигналов запуска должно привести к мгновенному отключению системы
.
• Внезапные изменения импеданса нагруженной катушки
значений должны допускаться, например, удаление или вставка нагрузки
или изменение ее формы и размера
.
В литературе имеется ряд переключающих элементов
, примененных к среднечастотной индукционной системе нагрева
, которая способна удовлетворить большинство
этих требований. Использование тиристоров Gate Turn Off
(GTO) или биполярных транзисторов
(IGBT) с изолированным затвором в качестве переключающего элемента дает
более высокую рабочую частоту и хорошую эффективность, но
ограничивает выходную мощность (Malesani and Tenti, 1987;
) Ин и Хойман, 1994).Хотя стоимость на
ампер выше, чем стоимость на 1 ампер высокочастотного тиристора
, также можно спроектировать
в диапазоне частот от 10 кГц до 25 кГц, используя высокочастотные модули транзисторов Дарлингтона
в качестве коммутирующих модулей
. устройства (Mauch, 1986; Деде, 1991).
Тем не менее, за последние 20 лет тиристорный инвертор
стал основным источником энергии средней частоты
для приложений индукционного нагрева,
заменил комплект двигатель-генератор.
широко применяется в диапазонах частот от
1 кГц до 10 кГц (Чудновский и др., 1996),
из-за его способности выдерживать большие токи.
Преимущество предложенной топологии резонансного инвертора с одним переключателем
состоит в том, что выключение тиристора
происходит при нулевом токе, и, следовательно,
снижает коммутационные потери в силовых устройствах.
Дополнительным преимуществом предложенной топологии инвертора
является то, что он требует небольшого количества компонентов
и имеет более низкую стоимость по сравнению с
другими альтернативными топологиями.
2. ПРИНЦИП РАБОТЫ
Принципиальная схема предлагаемого резонансного инвертора с одним переключателем
, который обеспечивает переменный ток
через катушку индукционного нагревателя, приведена на рисунке
1. Этот переменный ток, протекающий в витках индукционная катушка
создает переменное электромагнитное поле
для заготовки.
Рисунок 1. Принципиальная схема предлагаемой индукционной системы нагрева
На рисунке 2 показаны формы сигналов предлагаемого однокнопочного резонансного инвертора
.Каждый цикл переключения
делится на три различных режима. Соответствующие эквивалентные схемы
показаны на рисунке 3.
Рисунок 2. Рабочие формы сигналов для одиночного переключающего резонансного инвертора
. (В
GS
— Импульс затвора тиристора
, В
CrL
— Напряжение на резонансном конденсаторе нагрузки
, I
S
— Ток тиристора, I
D —
ток,
В
LrL
— Напряжение нагрузки)
Индукционный нагрев: удивительный поворот технологии
Что такое индукционный нагрев?
Индукционный нагрев основан на существовании вихревых токов , открытых Леоном Фуко в 1855 году.Вкратце, когда изменяющееся магнитное поле проходит через любой проводящий объект, в объекте индуцируется ток. Этот ток создает вторичное электрическое поле в проводнике. Вторичное электрическое поле, в свою очередь, создает другой поток тока, известный как вихревой ток, названный так потому, что он течет по круговой схеме, подобно тому, как вода может закручиваться в медленно движущемся потоке, когда сталкивается с препятствием. Двухтактное взаимодействие между этими полями — буквально, кинетическая энергия, вызванная перемещением электронов вперед и назад — производит тепло в проводнике.
Это использование вихревых токов позволяет не только готовить еду; он может плавить сталь и другие металлы.
Применение индукционного нагрева
Индукционный нагрев используется для производства таких конечных изделий, как бульдозеры, космические корабли, краны и герметичные пластиковые крышки на бутылках с фармацевтическими препаратами. Основная конструкция устройства индукционного нагрева использует катушку с проволокой и переменный ток для создания изменяющегося магнитного поля в нагреваемом элементе — заготовке. Катушка может иметь диаметр всего несколько сантиметров или любой другой размер, подходящий для выполняемой работы.
Заготовка помещается внутрь магнитного поля, создаваемого катушкой, но не в контакте с ней, а затем нагревается до желаемого уровня вихревыми токами. В зависимости от нагреваемого материала может быть достигнута температура до 2200 ° F (1200 ° C).
Индукционный нагрев чистый, не требует ископаемого топлива. Детали, подвергаемые индукционному нагреву, просто нагреваются, поэтому после этого не нужно проводить очистку и не беспокоиться о загрязнении заготовки. Это также быстро. Например, производители труб и трубчатых каналов используют индукционный нагрев для сварки шва по продольному размеру труб, проходящих с высокой скоростью по конвейеру.
Некоторые другие процессы, в которых используется индукционный нагрев, включают:
- Индукционная закалка и отпуск, которые изменяют физические характеристики материалов в соответствии с потребностями различных областей применения.
- Индукционная плавка может использоваться для плавления любых черных и цветных металлов, включая ядерные материалы и различные сплавы, используемые в медицине и стоматологии.
- Металлические и углеродные волокнистые материалы можно соединить друг с другом, нагревая их, тем самым отверждая клеи, помещенные между двумя поверхностями.
- Пайка, пайка и сварка — все это естественные области применения индукционного нагрева, где важны точный контроль температуры и точное удержание тепла в желаемой области.
Индукционный нагрев решает реальные проблемы
Так называемые убийства тайленола произошли в Чикаго в 1982 году, когда кто-то, так и не идентифицированный, залил флаконы с тайленолом цианидом. Последующие события привели к общенациональному отзыву продукции Tylenol. Отравление также вынудило всю безрецептурную фармацевтическую промышленность упаковывать свою продукцию в защищенные от несанкционированного доступа контейнеры.
Алюминиевая фольга, которая обычно используется для запечатывания безрецептурных лекарств, является частью отраслевого решения и использует индукционный нагрев. Процесс начинается с помещения в колпачок фольги, которая является электропроводящей. Колпачок завинчивается, затем вся упаковка помещается в катушку индукционного нагрева. По мере того, как фольга нагревается, клей по краю прикрепляет ее к краю бутылки.
Разработчики оборудования для индукционной герметизации крышек должны учитывать несколько факторов. Физические размеры индукционного нагревателя должны быть адаптированы к герметичным контейнерам.Электромагнитное поле должно иметь глубину, подходящую для нагрева фольги. Нагрев должен происходить как можно быстрее из соображений производительности. Эффективность индукционного нагревателя должна достигать определенного уровня производительности.
Эти и другие конструктивные ограничения могут быть значительно уменьшены, если проволока, используемая для изготовления катушки, изготавливается по индивидуальному заказу. Компания New England Wire Technology, давний поставщик на рынок индукционного нагрева, предлагает проволоку, специально изготовленную для решения таких конструктивных проблем.
Например, NEWT может поставлять провода круглого, квадратного и прямоугольного сечения. Их точный размер может быть адаптирован специально для используемого переменного тока и частоты. А поскольку эффективность может быть оптимизирована в самой проволоке, инженер-проектировщик индукционных колпачков имеет гораздо большую гибкость в выборе расстояния, формы и размера уплотнительной головки. Фактически, такая же гибкость приносит пользу разработчикам любого устройства индукционного нагрева.
Корпус для Litz Wire
Индукционные нагреватели могут работать от сети переменного тока в диапазоне от нескольких герц до 500 кГц и выше.Выбранная частота определяет глубину проникновения тепла, при этом более низкие частоты проникают глубже. Частоты для индукционных нагревателей выбираются на этапе проектирования в соответствии с конкретной работой, которую необходимо выполнить. Например, приложение, которое требует упрочнения и глубокого проникновения, использует низкую частоту. Другое приложение, которое требует только поверхностного нагрева, будет использовать высокую частоту.
Более высокие частоты, проходящие через провод, вызывают скин-эффект , когда большая часть электрического тока проходит по внешней стороне провода, увеличивая его сопротивление переменному току и создавая нежелательное тепло.Использование уникального Litz-провода NEWT для создания катушки практически устраняет скин-эффект, делая катушку более эффективной и позволяя создавать более скромные и недорогие источники питания. (Подробнее о лицевом проводе).
Тем не менее, проблемы все же возникают
Поскольку индукционный нагрев используется во многих приложениях, преобразование потребностей заказчика в подходящую проволоку Litz включает множество факторов. По словам инженеров NEWT, «Практически каждый проект индукционного нагрева требует индивидуальной работы.Хотя создание проводов и кабелей в соответствии со спецификациями клиентов кажется простым, количество переменных, которые входят в надежную конструкцию, может быть большим ».
Например, размер провода можно отрегулировать в соответствии с частотой переменного тока, чтобы избежать скин-эффекта и других потерь в катушке. Затем можно выбрать общее количество проводников в лицевом проводе, чтобы обеспечить максимальный ток. Проводники, составляющие лицевую проволоку, изолированы пленкой, которая должна выдерживать определенные температуры. Показательный пример: индукционная катушка, используемая для нагрева большого стального чана, должна работать в гораздо более горячей среде, чем катушка, используемая для запечатывания бутылок с аспирином.Точно так же внешняя изоляция должна защищать от часто используемых высоких напряжений, а также от условий окружающей среды.
Услуги нестандартного дизайна на помощь
Решение этих проблем лежит в персонале службы индивидуального дизайна NEWT. Эта команда, состоящая из квалифицированного торгового персонала, поддерживаемого инженерами-конструкторами и инженерами-производителями, помогла клиентам по всему миру найти лучшие решения. Обязательно свяжитесь с нами, чтобы обсудить ваш следующий проект индукционного нагрева.
Высокочастотный индукционный нагрев
Высокочастотный индукционный нагрев
Введение
Индукционный нагрев — это процесс бесконтактного нагрева.Он использует высокочастотное электричество для нагрева материалов, которые являются электропроводными. Поскольку процесс нагрева бесконтактный, он не загрязняет нагреваемый материал. Это также очень эффективно, поскольку тепло фактически генерируется внутри детали. Это можно противопоставить другим методам нагрева, когда тепло генерируется в пламени или нагревательном элементе, который затем прикладывается к заготовке. По этим причинам индукционный нагрев находит уникальное применение в промышленности.
Как работает индукционный нагрев?
Источник высокочастотного электричества используется для пропускания большого переменного тока через катушку.Эта катушка известна как рабочая катушка. Смотрите картинку напротив. Прохождение тока через эту катушку создает очень интенсивное и быстро меняющееся магнитное поле в пространстве внутри рабочей катушки. Обогреваемая деталь помещается в это интенсивное переменное магнитное поле. В зависимости от материала заготовки происходит ряд вещей … | |
Переменное магнитное поле индуцирует ток в проводящей детали.Расположение рабочей катушки и заготовки можно рассматривать как электрический трансформатор. Рабочая катушка похожа на первичную обмотку, в которую подается электроэнергия, а заготовка похожа на однооборотную вторичную обмотку, которая замкнута накоротко. Это вызывает протекание огромных токов через заготовку. Они известны как вихревые токи. В дополнение к этому высокая частота, используемая в приложениях индукционного нагрева, вызывает явление, называемое скин-эффектом. Этот скин-эффект заставляет переменный ток тонким слоем течь к поверхности заготовки.Скин-эффект увеличивает эффективное сопротивление металла прохождению большого тока. Следовательно, он значительно увеличивает эффект нагрева, вызванный током, индуцированным в заготовке. |
(Хотя нагрев из-за вихревых токов желателен в этом приложении, интересно отметить, что производители трансформаторов делают все возможное, чтобы избежать этого явления в своих трансформаторах. Используются ламинированные сердечники трансформаторов, сердечники из порошкового железа и ферриты. для предотвращения протекания вихревых токов внутри сердечников трансформатора.Внутри трансформатора прохождение вихревых токов крайне нежелательно, поскольку оно вызывает нагрев магнитопровода и представляет собой потерянную мощность.)
А для черных металлов?
Для черных металлов, таких как железо и некоторые виды стали, существует дополнительный механизм нагрева, который происходит одновременно с вихревыми токами, упомянутыми выше. Интенсивное переменное магнитное поле внутри рабочей катушки многократно намагничивает и демагнетизирует кристаллы железа.Это быстрое переворачивание магнитных доменов вызывает значительное трение и нагрев внутри материала. Нагрев из-за этого механизма известен как потеря гистерезиса и является наибольшим для материалов, которые имеют большую площадь внутри их кривой B-H. Это может быть большим фактором, способствующим выделению тепла во время индукционного нагрева, но происходит только внутри черных металлов. По этой причине материалы из черных металлов легче поддаются индукционному нагреву, чем материалы из цветных металлов.
Интересно отметить, что сталь теряет свои магнитные свойства при нагревании выше примерно 700 ° C.Эта температура известна как температура Кюри. Это означает, что выше 700 ° C не может быть нагрева материала из-за гистерезисных потерь. Дальнейший нагрев материала должен происходить только за счет наведенных вихревых токов. Это делает нагрев стали выше 700 ° C более сложной задачей для систем индукционного нагрева. Тот факт, что медь и алюминий являются немагнитными и очень хорошими электрическими проводниками, также может затруднить эффективное нагревание этих материалов. (Мы увидим, что для этих материалов лучше всего увеличить частоту, чтобы преувеличить потери из-за скин-эффекта.)
Для чего используется индукционный нагрев?
Индукционный нагрев может использоваться для любого применения, где мы хотим нагревать электропроводящий материал чистым, эффективным и контролируемым образом.
Одно из наиболее распространенных применений — запечатывание защитных пломб, приклеенных к верхней части бутылок с лекарствами и напитками. Пленка из фольги, покрытая «термоклеем», вставляется в пластиковую крышку и навинчивается на верхнюю часть каждой бутылки во время производства.Эти уплотнения из фольги затем быстро нагреваются, когда бутылки проходят под индукционным нагревателем на производственной линии. Вырабатываемое тепло расплавляет клей и герметизирует фольгу на крышке бутылки. Когда крышка снята, фольга остается герметичной и предотвращает любое вмешательство или загрязнение содержимого бутылки до тех пор, пока покупатель не проткнет фольгу.
Еще одно распространенное применение — «поджиг геттера» для удаления загрязнений из вакуумированных трубок, таких как телевизионные кинескопы, вакуумные лампы и различные газоразрядные лампы.Кольцо из проводящего материала, называемое «геттером», помещается в вакуумированный стеклянный сосуд. Поскольку индукционный нагрев — это бесконтактный процесс, его можно использовать для нагрева газопоглотителя, который уже запечатан внутри емкости. Индукционная рабочая катушка расположена рядом с геттером на внешней стороне вакуумной лампы, и источник переменного тока включен. В течение нескольких секунд после запуска индукционного нагревателя газопоглотитель нагревается добела, и химические вещества в его покрытии вступают в реакцию с любыми газами в вакууме. В результате геттер поглощает любые последние оставшиеся следы газа внутри вакуумной трубки и увеличивает чистоту вакуума.
Еще одним распространенным применением индукционного нагрева является процесс, называемый зонной очисткой, используемый в промышленности по производству полупроводников. Это процесс, в котором кремний очищается с помощью движущейся зоны расплавленного материала. Поиск в Интернете обязательно найдет более подробную информацию об этом процессе, о котором я мало что знаю.
Другие области применения включают плавку, сварку и пайку металлов. Индукционные варочные панели и рисоварки. Закалка металла боеприпасов, зубьев шестерен, пильных полотен, приводных валов и т. Д. Также является обычным применением, поскольку в процессе индукции поверхность металла нагревается очень быстро.Поэтому его можно использовать для поверхностного упрочнения и упрочнения локализованных участков металлических деталей за счет «опережения» теплопроводности тепла вглубь детали или в окружающие области. Бесконтактный характер индукционного нагрева также означает, что его можно использовать для нагрева материалов в аналитических целях без риска загрязнения образца. Точно так же металлические медицинские инструменты можно стерилизовать, нагревая их до высоких температур, пока они все еще запечатаны в известной стерильной среде, чтобы убить микробы.
Что требуется для индукционного нагрева?
Теоретически для индукционного нагрева необходимы только 3 вещи:
- Источник высокочастотной электроэнергии,
- Рабочая катушка для создания переменного магнитного поля,
- Нагреваемая электрически проводящая деталь,
Сказав это, практические системы индукционного нагрева обычно немного сложнее. Например, между высокочастотным источником и рабочей катушкой часто требуется цепь согласования импеданса, чтобы обеспечить хорошую передачу мощности.Системы водяного охлаждения также распространены в индукционных нагревателях большой мощности для отвода тепла от рабочей катушки, ее согласующей сети и силовой электроники. Наконец, некоторая управляющая электроника обычно используется для управления интенсивностью нагрева и времени цикла нагрева для обеспечения стабильных результатов. Управляющая электроника также защищает систему от повреждений в результате ряда неблагоприятных условий эксплуатации. Однако основной принцип работы любого индукционного нагревателя остается таким же, как описано ранее.
Практическая реализация
На практике рабочая катушка обычно включается в резонансный контур резервуара. Это дает ряд преимуществ. Во-первых, это делает форму волны тока или напряжения синусоидальной. Это сводит к минимуму потери в инверторе, позволяя ему использовать переключение при нулевом напряжении или при нулевом токе, в зависимости от точной выбранной компоновки. Синусоидальная форма волны на рабочей катушке также представляет более чистый сигнал и вызывает меньшие радиочастотные помехи для ближайшего оборудования.Этот более поздний момент становится очень важным в системах с большой мощностью. Мы увидим, что существует ряд резонансных схем, которые разработчик индукционного нагревателя может выбрать для рабочей катушки:
Последовательный резонансный контур резервуара
Рабочая катушка резонирует на заданной рабочей частоте с помощью конденсатора, включенного последовательно с ней. Это приводит к тому, что ток через рабочую катушку становится синусоидальным. Последовательный резонанс также увеличивает напряжение на рабочей катушке, намного превышающее выходное напряжение только инвертора.Инвертор видит синусоидальный ток нагрузки, но он должен нести полный ток, протекающий в рабочей катушке. По этой причине рабочая катушка часто состоит из множества витков провода, через которые протекают всего несколько ампер или десятки ампер. Значительная мощность нагрева достигается за счет разрешения резонансного повышения напряжения на рабочей катушке в последовательно-резонансном расположении при сохранении тока через катушку (и инвертор) на разумном уровне.
Такое расположение обычно используется в рисоварках, где уровень мощности низкий, а инвертор расположен рядом с нагреваемым объектом.Основные недостатки последовательного резонансного устройства заключаются в том, что инвертор должен пропускать тот же ток, который течет в рабочей катушке. В дополнение к этому повышение напряжения из-за последовательного резонанса может стать очень заметным, если в рабочей катушке нет заготовки значительного размера, которая могла бы демпфировать цепь. Это не проблема для таких приложений, как рисоварки, где заготовкой всегда является одна и та же варочная емкость, а ее свойства хорошо известны на момент разработки системы.
Резервуарный конденсатор обычно рассчитан на высокое напряжение из-за повышения резонансного напряжения в последовательно настроенном резонансном контуре.Он также должен пропускать полный ток, переносимый рабочей катушкой, хотя обычно это не проблема в приложениях с низким энергопотреблением.
Параллельный резонансный контур резервуара
Рабочая катушка резонирует на заданной рабочей частоте с помощью конденсатора, размещенного параллельно ей. Это приводит к тому, что ток через рабочую катушку становится синусоидальным. Параллельный резонанс также увеличивает ток через рабочую катушку, намного превышающий допустимый выходной ток только инвертора.Инвертор видит синусоидальный ток нагрузки. Однако в этом случае он должен проводить только ту часть тока нагрузки, которая действительно работает. Инвертор не должен пропускать полный ток, циркулирующий в рабочей катушке. Это очень важно, поскольку коэффициенты мощности при индукционном нагреве обычно невелики. Это свойство параллельного резонансного контура может в десять раз снизить ток, который должен поддерживаться инвертором и проводами, соединяющими его с рабочей катушкой.Потери проводимости обычно пропорциональны квадрату тока, поэтому десятикратное снижение тока нагрузки представляет собой значительную экономию потерь проводимости в инверторе и связанной с ним проводке. Это означает, что рабочую катушку можно разместить в месте, удаленном от инвертора, без значительных потерь в питающих проводах.
Рабочие катушки, использующие эту технику, часто состоят из нескольких витков толстого медного проводника, но протекают большие токи в несколько сотен или тысяч ампер.(Это необходимо, чтобы получить необходимое количество ампер-витков для индукционного нагрева.) Водяное охлаждение является общим для всех систем, кроме самых маленьких. Это необходимо для удаления избыточного тепла, генерируемого прохождением большого высокочастотного тока через рабочую катушку и связанный с ней емкостной конденсатор.
В схеме параллельного резонансного резервуара рабочую катушку можно рассматривать как индуктивную нагрузку с подключенным к ней конденсатором «коррекции коэффициента мощности». Конденсатор PFC обеспечивает протекание реактивного тока, равного и противоположного значительному индуктивному току, потребляемому рабочей катушкой.Главное, что нужно помнить, это то, что этот огромный ток локализован в рабочей катушке и ее конденсаторе и просто представляет собой колебание реактивной мощности между ними. Следовательно, единственный реальный ток, протекающий от инвертора, — это относительно небольшая величина, необходимая для преодоления потерь в конденсаторе «PFC» и рабочей катушке. В этой цепи резервуара всегда есть некоторые потери из-за диэлектрических потерь в конденсаторе и скин-эффекта, вызывающего резистивные потери в конденсаторе и рабочей катушке. Поэтому от инвертора всегда поступает небольшой ток, даже при отсутствии заготовки.Когда деталь с потерями вставляется в рабочую катушку, это гасит параллельный резонансный контур, внося дополнительные потери в систему. Следовательно, ток, потребляемый параллельным резонансным контуром резервуара, увеличивается, когда деталь вводится в катушку.
Согласование импеданса
Или просто «Соответствие». Это относится к электронике, которая находится между источником высокочастотной энергии и рабочей катушкой, которую мы используем для нагрева. Для того, чтобы нагреть твердый кусок металла с помощью индукционного нагрева, нам нужно вызвать УДИВИТЕЛЬНЫЙ ток, протекающий по поверхности металла.Однако это можно отличить от инвертора, который генерирует высокочастотную энергию. Инвертор обычно работает лучше (и конструкция несколько проще), если он работает при достаточно высоком напряжении, но при низком токе. (Обычно проблемы возникают в силовой электронике, когда мы пытаемся включить и выключить большие токи за очень короткое время.) Увеличение напряжения и уменьшение тока позволяет использовать полевые МОП-транзисторы с общим переключателем (или быстрые IGBT). Сравнительно низкие токи делают инвертор менее чувствительным к проблемам компоновки и паразитной индуктивности.Задача согласующей цепи и самой рабочей катушки — преобразовывать высокое напряжение / слабый ток от инвертора в низковольтное / сильноточное, необходимое для эффективного нагрева заготовки.
Мы можем представить себе контур резервуара, включающий рабочую катушку (Lw) и ее конденсатор (Cw), как параллельный резонансный контур. Он имеет сопротивление (R) из-за того, что деталь с потерями, подключенная к рабочей катушке, из-за магнитной связи между двумя проводниками. См. Схему напротив. | |
На практике сопротивление рабочей катушки, сопротивление резервуарного конденсатора и отраженное сопротивление детали — все это вносит потери в контур резервуара и гасит резонанс. Поэтому полезно объединить все эти потери в одно «сопротивление потерь». В случае параллельного резонансного контура это сопротивление потерь проявляется непосредственно в контуре резервуара в нашей модели.Это сопротивление представляет собой единственный компонент, который может потреблять реальную мощность, и поэтому мы можем рассматривать это сопротивление потерь как нагрузку, на которую мы пытаемся эффективно направить мощность. |
При резонансном возбуждении ток, потребляемый емкостным конденсатором и рабочей катушкой, равны по величине и противоположны по фазе и, следовательно, компенсируют друг друга в отношении источника энергии. Это означает, что единственная нагрузка, которую видит источник питания на резонансной частоте, — это сопротивление потерь в контуре резервуара. (Обратите внимание, что при возбуждении по обе стороны от резонансной частоты существует дополнительная «противофазная» составляющая к току, вызванная неполным устранением тока рабочей катушки и тока конденсатора резервуара. Этот реактивный ток увеличивает общая величина тока, потребляемого от источника, но не способствует полезному нагреву детали.)
Задача согласующей цепи — просто преобразовать это относительно большое сопротивление потерь в цепи резервуара до более низкого значения, которое лучше подходит инвертору, пытающемуся его управлять.Существует множество различных способов достижения этого преобразования импеданса, включая отвод рабочей катушки, использование ферритового трансформатора, емкостного делителя вместо емкостного конденсатора или согласующей схемы, такой как L-образная цепь.
В случае L-образной сети он может преобразовать относительно высокое сопротивление нагрузки цепи резервуара до примерно 10 Ом, что лучше подходит для инвертора. Эта цифра типична для того, чтобы инвертор мог работать от нескольких сотен вольт, сохраняя при этом токи на среднем уровне, чтобы можно было использовать стандартные переключаемые полевые МОП-транзисторы для выполнения операции переключения. Сеть L-соответствия состоит из компонентов Lm и Cm, показанных напротив. |
Сеть L-match имеет несколько очень желаемых свойств в этом приложении. Катушка индуктивности на входе в L-образную схему представляет собой постепенно возрастающее индуктивное сопротивление на всех частотах, превышающих резонансную частоту контура резервуара. Это очень важно, когда рабочая катушка должна питаться от инвертора источника напряжения, который генерирует выходное напряжение прямоугольной формы.Вот объяснение, почему это так.
Напряжение прямоугольной формы, генерируемое большинством полумостовых и полномостовых схем, богато высокочастотными гармониками, а также необходимой основной частотой. Прямое подключение такого источника напряжения к параллельному резонансному контуру привело бы к протеканию чрезмерных токов на всех гармониках частоты привода! Это связано с тем, что емкостный конденсатор в параллельном резонансном контуре будет иметь все более низкое емкостное сопротивление к возрастающим частотам.Это потенциально очень опасно для инвертора источника напряжения. Это приводит к большим всплескам тока при переключениях, поскольку инвертор пытается быстро зарядить и разрядить резервуарный конденсатор на нарастающих и спадающих фронтах прямоугольной волны. Включение цепи L-соответствия между инвертором и контуром резервуара устраняет эту проблему. Теперь на выходе инвертора сначала отображается индуктивное реактивное сопротивление Lm в согласующей цепи, а все гармоники формы волны возбуждения видят постепенно возрастающее индуктивное сопротивление.Это означает, что максимальный ток протекает только на заданной частоте, а гармонический ток незначительный, что делает ток нагрузки инвертора плавным.
Наконец, при правильной настройке сеть L-match может обеспечивать небольшую индуктивную нагрузку на инвертор. Этот слегка запаздывающий ток нагрузки инвертора может облегчить переключение при нулевом напряжении (ZVS) полевых МОП-транзисторов в инверторном мосту. Это значительно снижает потери переключения при включении из-за выходной емкости устройства в полевых МОП-транзисторах, работающих при высоких напряжениях.Общий результат — меньший нагрев полупроводников и увеличение срока службы.
Таким образом, включение цепи L-соответствия между инвертором и параллельным резонансным контуром резервуара позволяет добиться двух вещей.
- Согласование импеданса, чтобы необходимое количество энергии могло подаваться от инвертора к заготовке,
- Показано возрастающее индуктивное сопротивление к высокочастотным гармоникам, чтобы инвертор оставался безопасным и счастливым.
Глядя на предыдущую схему выше, мы видим, что конденсатор в согласующей цепи (Cm) и баковый конденсатор (Cw) подключены параллельно.На практике обе эти функции обычно выполняются с помощью специального силового конденсатора. Большую часть его емкости можно представить как находящуюся в параллельном резонансе с рабочей катушкой, при этом небольшая величина обеспечивает действие согласования импеданса с согласующей катушкой индуктивности (Lm). Объединение этих двух емкостей в одну приводит нас к модели LCLR для устройство рабочей катушки, которое обычно используется в промышленности для индукционного нагрева. |
Рабочая катушка LCLR
Эта схема включает рабочую катушку в параллельный резонансный контур и использует схему L-соответствия между контуром резервуара и инвертором.Согласующая цепь используется для того, чтобы контур резервуара выглядел как более подходящая нагрузка для инвертора, и ее происхождение обсуждается в разделе выше.
Рабочая катушка LCLR имеет ряд желаемых свойств:
- В рабочей катушке течет большой ток, но инвертор должен подавать только слабый ток. Большой циркулирующий ток ограничен рабочей катушкой и ее параллельным конденсатором, которые обычно расположены очень близко друг к другу.
- По линии передачи от инвертора к контуру бака течет сравнительно небольшой ток, поэтому можно использовать более легкий кабель.
- Любая паразитная индуктивность линии передачи просто становится частью соответствующей индуктивности сети (Лм). Следовательно, тепловая станция может быть расположена вдали от инвертора.
- Инвертор видит синусоидальный ток нагрузки, поэтому он может использовать ZCS или ZVS для снижения коммутационных потерь и, следовательно, охлаждения.
- Последовательный согласующий индуктор может быть изменен для обслуживания различных нагрузок, размещенных внутри рабочей катушки.
- Цепь резервуара может питаться через несколько согласующих катушек индуктивности от многих инверторов для достижения уровней мощности выше тех, которые достигаются с помощью одного инвертора.Соответствующие катушки индуктивности обеспечивают внутреннее разделение тока нагрузки между инверторами, а также делают систему устойчивой к некоторому рассогласованию моментов переключения параллельно включенных инверторов.
Для получения дополнительной информации о поведении резонансной сети LCLR см. Новый раздел ниже, озаглавленный «Частотная характеристика сети LCLR».
Еще одно преимущество рабочей катушки LCLR состоит в том, что не требуется высокочастотный трансформатор для обеспечения функции согласования импеданса.Ферритовые трансформаторы мощностью несколько киловатт большие, тяжелые и довольно дорогие. В дополнение к этому трансформатор необходимо охладить, чтобы отвести избыточное тепло, выделяемое высокими токами, протекающими в его проводниках. Включение схемы L-match в схему рабочей катушки LCLR устраняет необходимость в трансформаторе для согласования инвертора с рабочей катушкой, что снижает затраты и упрощает конструкцию. Однако разработчик должен понимать, что между инвертором и входом в рабочую катушку LCLR все же может потребоваться разделительный трансформатор 1: 1, если необходима электрическая изоляция от сети.Это зависит от того, важна ли изоляция и обеспечивает ли уже основной блок питания индукционного нагревателя достаточную электрическую изоляцию для удовлетворения этих требований безопасности.
Принципиальная схема
На приведенной ниже схеме системы показан простейший инвертор, приводящий в действие его рабочую катушку LCLR.
Обратите внимание, что эта схема НЕ ПОКАЗЫВАЕТ схему управления затвором и управляющую электронику полевого МОП-транзистора!
Инвертор в этом демонстрационном прототипе представлял собой простой полумост, состоящий из двух полевых МОП-транзисторов MTW14N50, изготовленных мной On-semiconductor (ранее Motorola.Он питается от сглаженного источника постоянного тока с разделительным конденсатором по шинам для поддержки требований инвертора по переменному току. Однако следует понимать, что качество и регулировка источника питания для приложений индукционного нагрева не являются критическими. Двухполупериодная выпрямленная (но несглаженная) сеть может работать так же, как и сглаженный и регулируемый постоянный ток, когда дело доходит до нагрева металла, но пиковые токи выше при той же средней мощности нагрева. Существует множество аргументов в пользу того, чтобы уменьшить размер конденсатора шины постоянного тока до минимума.В частности, он улучшает коэффициент мощности тока, потребляемого от сети через выпрямитель, а также минимизирует запасенную энергию в случае неисправности инвертора.
Конденсатор блокировки постоянного тока используется только для того, чтобы не дать выходному сигналу постоянного тока полумостового инвертора вызвать протекание тока через рабочую катушку. Его размер достаточно велик, чтобы он не участвовал в согласовании импеданса и не влиял отрицательно на работу устройства рабочей катушки LCLR.
В схемах с высокой мощностью обычно используется полный мост (H-мост) из 4 или более переключающих устройств. В таких конструкциях согласующая индуктивность обычно делится поровну между двумя ветвями моста, так что формы волны напряжения возбуждения сбалансированы относительно земли. Конденсатор блокировки постоянного тока также может быть исключен, если используется управление режимом тока, чтобы гарантировать, что чистый постоянный ток не течет между ответвлениями моста. (Если обе ветви H-моста могут управляться независимо, тогда есть возможность для управления пропускной способностью с помощью управления фазовым сдвигом.См. Пункт 6 в разделе «Методы управления мощностью» ниже для получения дополнительной информации.)
При еще более высоких мощностях можно использовать несколько отдельных инверторов, эффективно соединенных параллельно, чтобы удовлетворить высокие требования к току нагрузки. Однако отдельные инверторы не подключаются напрямую параллельно к выходным клеммам их H-мостов. Каждый из распределенных инверторов подключен к удаленной рабочей катушке через свою собственную пару согласующих катушек индуктивности, которые обеспечивают равномерное распределение общей нагрузки между всеми инверторами.
Эти согласующие катушки индуктивности также обеспечивают ряд дополнительных преимуществ при параллельном подключении инверторов таким образом. Во-первых, полное сопротивление между любыми двумя выходами инвертора равно удвоенному значению соответствующей индуктивности. Этот индуктивный импеданс ограничивает ток «пробега между», который протекает между параллельно включенными инверторами, если их моменты переключения не полностью синхронизированы. Во-вторых, это же индуктивное реактивное сопротивление между инверторами ограничивает скорость нарастания тока повреждения, если один из инверторов обнаруживает отказ устройства, что потенциально исключает отказ других устройств.Наконец, поскольку все распределенные инверторы уже подключены через катушки индуктивности, любая дополнительная индуктивность между инверторами просто добавляет к этому импедансу и имеет только эффект небольшого ухудшения распределения тока. Следовательно, распределенные инверторы для индукционного нагрева не обязательно должны располагаться физически близко друг к другу. Если в конструкции включены изолирующие трансформаторы, им даже не нужно питаться от одного источника!
Отказоустойчивость
Устройство рабочей катушки LCLR очень хорошо ведет себя при различных возможных неисправностях.
- Обрыв цепи работы катушки.
- Короткое замыкание рабочей катушки (или емкостного конденсатора).
- Короткое замыкание в рабочей катушке.
- Бачковый конденсатор обрыва цепи.
Все эти отказы приводят к увеличению импеданса инвертора и, следовательно, к соответствующему падению тока, потребляемого инвертором. Автор лично использовал отвертку для короткого замыкания между витками рабочей катушки на несколько сотен ампер. Несмотря на искры, летящие в месте короткого замыкания, нагрузка на инвертор снижается, и система с легкостью выдерживает такое воздействие.
Худшее, что может случиться, — это то, что контур резервуара расстроится так, что его собственная резонансная частота будет чуть выше рабочей частоты инвертора. Поскольку частота привода все еще близка к резонансной, из инвертора все еще течет значительный ток. Но коэффициент мощности уменьшается из-за расстройки, и ток нагрузки инвертора начинает опережать напряжение. Эта ситуация нежелательна, потому что ток нагрузки, воспринимаемый инвертором, меняет направление до изменения приложенного напряжения.Результатом этого является то, что ток принудительно коммутируется между диодами свободного хода и противоположным MOSFET каждый раз, когда MOSFET включается. Это вызывает принудительное обратное восстановление диодов свободного хода, когда они уже несут значительный прямой ток. Это приводит к сильному скачку тока через диод и противоположный MOSFET, который включается.
Хотя это не проблема для специальных выпрямителей с быстрым восстановлением, это принудительное восстановление может вызвать проблемы, если внутренние диоды полевых МОП-транзисторов используются для обеспечения функции диодов свободного хода.Эти большие всплески тока по-прежнему представляют собой значительную потерю мощности и угрозу для надежности. Однако следует понимать, что надлежащий контроль рабочей частоты инвертора должен гарантировать, что он отслеживает резонансную частоту контура резервуара. Следовательно, условие опережающего коэффициента мощности в идеале не должно возникать и определенно не должно сохраняться в течение какого-либо периода времени. Резонансную частоту следует отслеживать до ее предела, а затем отключать систему, если она выходит за пределы допустимого диапазона частот.
Методы регулирования мощности
Часто бывает желательно контролировать количество энергии, обрабатываемой индукционным нагревателем. Это определяет скорость, с которой тепловая энергия передается заготовке. Установкой мощности индукционного нагревателя этого типа можно управлять несколькими способами:
1. Изменение напряжения промежуточного контура.
Мощность, обрабатываемая инвертором, может быть уменьшена путем уменьшения напряжения питания инвертора.Это можно сделать, запустив инвертор от источника постоянного тока с переменным напряжением, такого как управляемый выпрямитель, использующий тиристоры для изменения напряжения постоянного тока, получаемого от сети. Импеданс инвертора в значительной степени постоянен при изменении уровня мощности, поэтому пропускная способность инвертора примерно пропорциональна квадрату напряжения питания. Изменение напряжения промежуточного контура позволяет полностью контролировать мощность от 0% до 100%.
Следует отметить, однако, что точная пропускная способность мощности в киловаттах зависит не только от напряжения постоянного тока, подаваемого на инвертор, но также от нагрузки, которую рабочая катушка представляет инвертору через согласующую сеть.Следовательно, если требуется точное регулирование мощности, необходимо измерить фактическую мощность индукционного нагрева, сравнить с запрошенной «настройкой мощности» от оператора и вернуть сигнал ошибки, чтобы непрерывно регулировать напряжение промежуточного контура в замкнутом контуре, чтобы минимизировать ошибку. . Это необходимо для поддержания постоянной мощности, поскольку сопротивление детали значительно изменяется при нагревании. (Этот аргумент для управления мощностью с обратной связью также применим ко всем методам, которые следуют ниже.)
2.Изменение продолжительности включения устройств в инверторе.
Мощность, обрабатываемая инвертором, может быть уменьшена за счет уменьшения времени включения переключателей в инверторе. Электропитание поступает на рабочую катушку только тогда, когда устройства включены. Затем ток нагрузки свободно проходит через диоды на корпусе устройства в течение мертвого времени, когда оба устройства выключены. Изменение продолжительности включения переключателей позволяет полностью контролировать мощность от 0% до 100%. Однако существенным недостатком этого метода является коммутация больших токов между активными устройствами и их свободными диодами.Принудительное обратное восстановление диодов свободного хода, которое может произойти при значительном уменьшении продолжительности включения. По этой причине регулирование продолжительности включения обычно не используется в инверторах с индукционным нагревом большой мощности.
3. Изменение рабочей частоты инвертора.
Мощность, подаваемая инвертором на рабочую катушку, может быть уменьшена путем отстройки инвертора от собственной резонансной частоты цепи резервуара, включающей рабочую катушку. Поскольку рабочая частота инвертора отодвигается от резонансной частоты контура бака, резонансный рост в контуре бака уменьшается, и ток в рабочей катушке уменьшается.Следовательно, меньше циркулирующего тока индуцируется в заготовке и уменьшается эффект нагрева.
Для уменьшения пропускной способности инвертор обычно расстраивается на стороне высокого напряжения собственной резонансной частоты контуров резервуара. Это приводит к тому, что индуктивное реактивное сопротивление на входе согласующей цепи становится все более доминирующим с увеличением частоты. Поэтому ток, потребляемый от инвертора согласующей цепью, начинает отставать по фазе и уменьшаться по амплитуде.Оба эти фактора способствуют снижению реальной пропускной способности. В дополнение к этому запаздывающий коэффициент мощности гарантирует, что устройства в инверторе все еще включаются с нулевым напряжением на них, и нет проблем с восстановлением диодов свободного хода. (Это можно контрастировать с ситуацией, которая могла бы возникнуть, если бы инвертор был отстроен на нижней стороне резонансной частоты рабочей катушки. ZVS теряется, и диоды свободного хода видят принудительное обратное восстановление при значительном токе нагрузки.)
Этот метод управления уровнем мощности путем отстройки очень прост, поскольку большинство индукционных нагревателей уже контролируют рабочую частоту инвертора, чтобы обслуживать различные детали и рабочие катушки. Обратной стороной является то, что он обеспечивает только ограниченный диапазон управления, поскольку есть предел скорости переключения силовых полупроводников. Это особенно верно в приложениях с высоким энергопотреблением, где устройства могут уже работать со скоростью, близкой к максимальной.Системы большой мощности, использующие этот метод управления мощностью, требуют подробного теплового анализа результатов коммутационных потерь на разных уровнях мощности, чтобы гарантировать, что температура устройств всегда остается в допустимых пределах.
Для получения более подробной информации об управлении мощностью с помощью расстройки см. Новый раздел ниже, озаглавленный «Частотная характеристика сети LCLR».
4. Изменение значения индуктивности в согласующей цепи.
Мощность, подаваемая инвертором на рабочую катушку, может быть изменена путем изменения значения соответствующих компонентов сети.Схема L-соответствия между инвертором и цепью резервуара технически состоит из индуктивной и емкостной частей. Но емкостная часть параллельна собственному емкостному конденсатору рабочей катушки, и на практике это обычно одна и та же часть. Поэтому единственная часть согласующей цепи, которую можно настроить, — это индуктор.
Согласующая цепь отвечает за преобразование импеданса нагрузки рабочей катушки до подходящего импеданса нагрузки, приводимого в действие инвертором.Изменение индуктивности соответствующей катушки индуктивности регулирует значение, на которое преобразуется импеданс нагрузки. Как правило, уменьшение индуктивности согласующей катушки индуктивности приводит к преобразованию полного сопротивления рабочей катушки до более низкого импеданса. Это более низкое сопротивление нагрузки, передаваемое инвертору, приводит к тому, что инвертор получает больше энергии. И наоборот, увеличение индуктивности согласующей катушки индуктивности вызывает более высокое сопротивление нагрузки, передаваемое инвертору. Эта более легкая нагрузка приводит к меньшему потоку мощности от инвертора к рабочей катушке.
Степень управления мощностью, достижимая путем изменения согласующей катушки индуктивности, умеренная. Также происходит сдвиг резонансной частоты всей системы — это цена, которую приходится платить за объединение емкости L-согласования и емкости резервуара в одну единицу. Схема L-согласования по существу заимствует часть емкости у емкостного конденсатора для выполнения операции согласования, тем самым оставляя баковый контур резонировать на более высокой частоте. По этой причине соответствующий индуктор обычно фиксируется или регулируется грубыми шагами в соответствии с предназначенной нагреваемой заготовкой, а не предоставляет пользователю полностью регулируемую настройку мощности.
5. Трансформатор согласования импеданса.
Мощность, подаваемая инвертором на рабочую катушку, может изменяться грубыми шагами с помощью силового ВЧ трансформатора с ответвлениями для преобразования импеданса. Несмотря на то, что большая часть преимуществ конструкции LCLR заключается в отсутствии громоздкого и дорогого ферритового силового трансформатора, она может учитывать большие изменения в параметрах системы, не зависящие от частоты. Ферритовый силовой трансформатор может также обеспечивать гальваническую развязку, а также выполнять функцию преобразования импеданса для настройки пропускной способности.
Кроме того, если ферритовый силовой трансформатор расположен между выходом инвертора и входом в схему L-согласования, его конструктивные ограничения во многих отношениях ослабляются. Во-первых, размещение трансформатора в этом положении означает, что импедансы на обеих обмотках относительно высоки. т.е. напряжения высокие, а токи сравнительно небольшие. Для этих условий проще сконструировать обычный ферритовый силовой трансформатор. Большой циркулирующий ток в рабочей катушке не попадает в ферритовый трансформатор, что значительно снижает проблемы с охлаждением.Во-вторых, хотя трансформатор воспринимает прямоугольное выходное напряжение инвертора, по его обмоткам проходят токи синусоидальной формы. Отсутствие высокочастотных гармоник снижает нагрев трансформатора из-за скин-эффекта и эффекта близости проводников.
Наконец, конструкция трансформатора должна быть оптимизирована для обеспечения минимальной межобмоточной емкости и хорошей изоляции за счет увеличения индуктивности рассеяния. Причина этого в том, что любая индуктивность рассеяния трансформатора, расположенного в этом положении, просто добавляет к согласующей индуктивности на входе в L-образную схему.Следовательно, индуктивность рассеяния в трансформаторе не так вредна для рабочих характеристик, как межобмоточная емкость.
6. Фазовое управление H-мостом.
Когда рабочая катушка приводится в действие полумостовым (Н-мостовым) инвертором с питанием по напряжению, существует еще один метод управления мощностью. Если моментом переключения обеих ветвей моста можно управлять независимо, это открывает возможность управления пропускной способностью за счет регулировки фазового сдвига между двумя ветвями моста.
Когда обе ветви моста переключаются точно по фазе, они обе выдают одинаковое напряжение. Это означает, что напряжение на рабочей катушке отсутствует, и ток не течет через рабочую катушку. И наоборот, когда обе ветви моста переключаются в противофазе, через рабочую катушку протекает максимальный ток и достигается максимальный нагрев. Уровни мощности от 0% до 100% могут быть достигнуты путем изменения фазового сдвига привода одной половины моста от 0 градусов до 180 градусов по сравнению с приводом другой ветви моста.
Этот метод очень эффективен, поскольку управление мощностью может быть достигнуто на стороне управления меньшей мощностью. Коэффициент мощности, наблюдаемый инвертором, всегда остается хорошим, потому что инвертор не отстроен от резонансной частоты рабочей катушки, поэтому протекание реактивного тока через свободные диоды сводится к минимуму.
Конденсаторы индукционного нагрева
Требования к конденсаторам, используемым в индукционном нагреве большой мощности, пожалуй, самые высокие из всех типов конденсаторов.Конденсаторная батарея, используемая в цепи резервуара индукционного нагревателя, должна пропускать полный ток, протекающий в рабочей катушке в течение продолжительных периодов времени. Этот ток обычно составляет многие сотни ампер при многих десятках или сотнях килогерц. Они также подвергаются повторному 100% -ному изменению напряжения на той же частоте.
и посмотрите полное напряжение, развиваемое на рабочей катушке. Высокая рабочая частота вызывает значительные потери из-за нагрева диэлектрика и скин-эффекта в проводниках. Наконец, паразитная индуктивность должна быть сведена к абсолютному минимуму, чтобы конденсатор выглядел как элемент схемы с сосредоточенными параметрами по сравнению с достаточно низкой индуктивностью рабочей катушки, к которой он подключен.
Правильный выбор диэлектриков и использование расширенных методов изготовления фольги позволяют свести к минимуму количество выделяемого тепла и свести к минимуму эффективную последовательную индуктивность. Однако даже при использовании этих технологий конденсаторы индукционного нагрева по-прежнему демонстрируют значительное рассеивание мощности из-за огромных высокочастотных токов, которые они должны нести. Поэтому важным фактором в их конструкции является возможность эффективного отвода тепла из конденсатора для продления срока службы диэлектрика.
Следующие производители производят специальные компоненты:
High Energy Corp.(Дистрибьютором в Великобритании является AMS Technologies.)
Компоненты Vishay.
Силовые конденсаторы Celem. базируется в Израиле.
Диапазон мощных конденсаторов индукционного нагрева от High Energy Corp.
Слюдяной конденсатор высокой мощности с кондуктивным охлаждением от Celem Power Capacitors. Celem
(изображения любезно предоставлены Стивом Коннером)
Обратите внимание на большую площадь поверхности соединительных пластин на компонентах Celem с кондуктивным охлаждением и номинальную реактивную мощность (KVAR), указанную на паспортной табличке.Изображенные выше силовые агрегаты в алюминиевых корпусах имеют соединения для шлангов водяного охлаждения для отвода тепла, генерируемого внутри.
Частотная характеристика сети LCLR
Сеть LCLR представляет собой резонансную систему 3-го порядка, состоящую из двух катушек индуктивности, одного конденсатора и одного резистора. На приведенном ниже графике Боде показано, как некоторые напряжения и токи в сети изменяются при изменении частоты привода. ЗЕЛЕНЫЕ дорожки представляют ток, проходящий через согласующую катушку индуктивности, и, следовательно, ток нагрузки, воспринимаемый инвертором.КРАСНЫЕ линии представляют собой напряжение на баке конденсатора, которое совпадает с напряжением на рабочей катушке индукционного нагрева. Верхний график показывает величины переменного тока этих двух величин, а нижний график показывает относительную фазу сигналов относительно выходного переменного напряжения инвертора.
Из амплитудной части графика Боде видно, что максимальное напряжение возникает на рабочей катушке (верхняя красная кривая) только на одной частоте. На этой частоте ток через рабочую катушку также максимален, и на этой частоте проявляется наибольший эффект нагрева.Можно видеть, что эта частота соответствует максимальному току нагрузки, потребляемому от инвертора (верхняя зеленая кривая). Стоит отметить, что величина тока нагрузки инвертора имеет нулевое значение на частоте, лишь немного меньшей, чем та, которая дает максимальный нагрев. . Этот график показывает важность точной настройки при использовании индукционного нагрева. Для системы с высокой добротностью эти две частоты очень близки друг к другу. Разница между максимальной мощностью и минимальной мощностью может составлять всего несколько килогерц.
На нижнем графике видно, что для частот ниже точки максимальной мощности напряжение рабочей катушки (зеленый) синфазно с выходным напряжением инвертора. По мере увеличения рабочей частоты фазовый угол напряжения рабочей катушки резко изменяется на 180 градусов (инверсия фазы) прямо в точке, где обрабатывается максимальная мощность. При этом фазовый угол напряжения рабочей катушки остается смещенным на 180 градусов от выходного напряжения инвертора для всех частот выше точки максимальной мощности.
Из нижнего графика мы также можем видеть, что ток нагрузки от инвертора показывает не одно, а два резких изменения фазы по мере постепенного увеличения рабочей частоты. Изначально ток нагрузки инвертора отстает от выходного напряжения инвертора на 90 градусов на низких частотах. Ток нагрузки резко изменяется на 180 градусов до опережения фазы 90 градусов, когда рабочая частота проходит через «нулевую частоту» сети. Инверторный ток остается опережающим на 90 градусов, пока не будет достигнута точка максимальной мощности, где он снова резко поворачивается на 180 градусов и снова возвращается к фазе запаздывания на 90 градусов.
Если учесть, что только ток на выходе инвертора, который синфазен с выходным напряжением, вносит вклад в передачу реальной мощности, мы можем видеть, что эти резкие переходы от -90 градусов до +90 градусов явно нуждаются в более детальном рассмотрении.
График Боде выше более подробно показывает интересующую область вокруг нулевой частоты и точки максимальной мощности. Он также показывает семейство кривых, отображающих поведение контура индукционного нагревателя с различными присутствующими деталями.Это позволяет нам понять, как ведет себя сеть с большой заготовкой с потерями, при отсутствии заготовки вообще и со всеми промежуточными нагрузками.
Без установленной детали потери низкие, а добротность высокая. Это вызывает резкие пики тока и напряжения на верхнем графике и резко изменяющиеся фазовые сдвиги на нижнем графике. Когда вводится деталь с потерями, общая добротность сети LCLR падает. Это вызывает менее резонансный рост тока нагрузки инвертора и напряжения на рабочей катушке.Резонансные пики становятся менее высокими и шире с уменьшением добротности. Точно так же фаза формы волны тока инвертора и напряжение рабочей катушки меняются медленнее при более низких значениях добротности.
Из этих графиков мы можем вывести некоторые значения для любой системы управления, которая должна отслеживать резонансную частоту расположения LCLR и управлять пропускной способностью мощности. Во-первых, когда нет заготовки, в цепи LCLR возникает на больше резонансных колебаний. Следовательно, ток, подаваемый от инвертора, должен быть уменьшен, чтобы предотвратить резкое увеличение токов рабочей катушки и резервуарного конденсатора при отсутствии каких-либо значительных потерь в системе.Во-вторых, ток нагрузки инвертора без нагрузки должен отслеживаться очень точно, если инвертор не должен видеть ни опережающий, ни запаздывающий ток нагрузки, потому что он так быстро нарастает на ноль градусов.
И наоборот, мы можем сказать, что с большой заготовкой с потерями будет меньше резонансного нарастания, присущего расположению LCLR, и инвертор должен будет подавать больший ток нагрузки, чтобы достичь необходимого уровня тока в рабочей катушке. Однако управляющей электронике теперь не нужно так точно отслеживать резонансную частоту, поскольку уменьшенная добротность дает ток нагрузки, который смещает фазу более неторопливо.
Наконец, при рассмотрении стратегии автоматического управления для отслеживания резонансной частоты индукционного нагревателя LCLR следует рассмотреть ряд моментов, которые следует учитывать на графике выше. Для материалов с очень большими потерями (или больших объемов металла, которые приводят к значительным общим потерям) мы можем видеть, что фаза тока нагрузки инвертора (нижний зеленый график) иногда не может перейти через ноль градусов к опережающей фазе. Это означает, что ток нагрузки инвертора при высоких нагрузках не может быть синфазным и всегда отстает на определенную величину.Кроме того, ток нагрузки инвертора не является монотонным при качании частоты. Поэтому прямая обратная связь от трансформатора тока (ТТ) на выходе инвертора не является жизнеспособным вариантом. Хотя может показаться, что он работает нормально без установленной детали или с умеренными нагревательными нагрузками, он не отслеживает правильно резонансную частоту и не сможет работать удовлетворительно при увеличении рабочей нагрузки и падении Q сети! (Прямая обратная связь от выходного тока инвертора с использованием трансформатора тока для формирования автономного генератора мощности приводит к конструкции, которая колеблется при низкой нагрузке, но выходит из автоколебания при увеличении рабочей нагрузки.)
Напротив, мы можем видеть, что фаза напряжения рабочей катушки (и напряжения конденсатора емкости) (нижний красный график) является монотонной с увеличением частоты. Кроме того, он постоянно проходит через точку запаздывания по фазе -90 градусов точно на той частоте, которая дает максимальную мощность, независимо от того, насколько сильно загружена рабочая катушка. Эти два достоинства делают форму волны напряжения емкостного конденсатора отличной регулируемой переменной. В заключение, частота инвертора должна контролироваться таким образом, чтобы обеспечить постоянное запаздывание в 90 градусов между напряжением емкостного конденсатора и выходным напряжением инвертора для достижения максимальной пропускной способности. Теперь мы можем обозначить некоторые интересующие области на диаграмме Боде ниже.
Белая вертикальная линия указывает частоту, при которой напряжение на баке конденсатора (а также напряжение рабочей катушки) отстает от выходного напряжения инвертора на 90 градусов. Это также точка, где на рабочей катушке возникает максимальное напряжение, а через нее протекает максимальный ток. Белая линия — это то место, где вы хотите достичь максимально возможного теплового эффекта в заготовке. Если мы посмотрим на фазу тока нагрузки инвертора (нижний зеленый график), мы увидим, что она всегда находится в диапазоне от 0 градусов до -90 градусов, когда он пересекает белую линию, независимо от того, насколько резко или медленно он поворачивается.Это означает, что инвертор всегда видит ток нагрузки, который либо синфазен, либо, в худшем случае, немного отстает по коэффициенту мощности. Такая ситуация идеальна для поддержки плавного переключения ZVS в инверторе и предотвращения проблем с обратным восстановлением свободного диода.
Справа от белой линии мы видим область, заштрихованную синим цветом, с надписью «Область индуктивной нагрузки». Когда рабочая частота увеличивается выше точки максимальной мощности, напряжение на рабочей катушке уменьшается, и в детали создается меньший эффект нагрева.Ток нагрузки инвертора также падает и начинает отставать по фазе относительно выходного напряжения инвертора. Эти свойства делают область, заштрихованную синим цветом, идеальным местом для работы с целью достижения контроля над мощностью индукционного нагрева. Путем отстройки частоты привода инвертора на сторону высокого значения точки максимальной мощности можно снизить пропускную способность, и инвертор всегда видит запаздывающий коэффициент мощности.
И наоборот, слева от белой линии у нас есть полоса частот, обозначенная как «Область емкостной нагрузки».«По мере того, как рабочая частота снижается ниже точки максимальной мощности, напряжение рабочей катушки также падает и имеет место меньший эффект нагрева. Однако это сопровождается тем, что ток нагрузки инвертора, возможно, переходит в опережающий фазовый угол, когда потери в заготовке низкие. и высокий Q-фактор.Поэтому область емкостной нагрузки не рекомендуется для управления пропускной способностью.
Вертикальная фиолетовая линия отмечает другой конец области емкостной нагрузки, где ток нагрузки инвертора снова переходит в отстающий «индуктивный» ток нагрузки. Эта вторая индуктивная область не представляет особого интереса, поскольку она не обеспечивает значительной пропускной способности мощности и в любом случае не может быть достигнута без прохождения через потенциально опасную область емкостной нагрузки. Когда сеть LCLR управляется напряжением прямоугольного преобразователя, также существует риск значительного протекания тока на гармонике частоты привода.Здесь он отмечен на схеме только для полноты картины.
Примечание: Фаза напряжения на баке конденсатора была предложена в качестве регулирующей переменной и подробно обсуждалась на графиках выше. Это связано с тем, что это напряжение может быть легко измерено с помощью высокочастотного трансформатора напряжения и обеспечивает всю необходимую управляющую информацию. Несмотря на то, что он демонстрирует сдвиг фазы на 90 градусов относительно выходного напряжения инвертора (что на первый взгляд может показаться нежелательным), он по-прежнему является лучшей управляющей переменной, чем попытка измерить ток емкостного конденсатора.Хотя ток резервуарного конденсатора синфазен с выходным сигналом инвертора, этот ток может составлять многие сотни ампер, что делает использование ферритовых трансформаторов тока с закрытым сердечником непрактичным. Кроме того, фазовый сдвиг на 90 градусов формы волны напряжения емкостного конденсатора означает, что его переходы через ноль намеренно смещены во времени в сторону от потенциально шумных моментов переключения инвертора. Этот фазовый сдвиг на -90 градусов сигнала обратной связи по напряжению может быть учтен в конструкции управляющей электроники и является небольшой платой за упрощенное считывание и повышенную помехозащищенность.
Требования к охлаждению
# Добавить сюда комментарий про водяное охлаждение #
Нагревательные картинки
Формы сигналов
Здесь показана форма выходного тока инвертора при возбуждении рабочей катушки LCLR близко к его резонансной частоте.Эта точка соответствует максимальной мощности и, следовательно, максимальному тепловому эффекту. Обратите внимание на то, что ток нагрузки инвертора представляет собой почти чистую синусоиду.
Здесь показана форма выходного тока инвертора при возбуждении рабочей катушки LCLR, значительно превышающей ее собственную резонансную частоту. Эта рабочая точка снижает мощность и тепловой эффект. На частотах выше собственной резонансной частоты рабочей катушки LCLR преобладает индуктивное реактивное сопротивление согласующей цепи, и ток нагрузки инвертора отстает от приложенного напряжения.Обратите внимание на треугольный ток нагрузки, вызванный индуктивной нагрузкой, интегрирующей выходное прямоугольное напряжение инвертора с течением времени.
Показывает напряжение на рабочей катушке при нормальной работе при приближении к резонансу. Обратите внимание, что форма волны напряжения представляет собой чистую синусоиду. Это также верно для формы сигнала тока и сводит к минимуму гармоническое излучение и радиочастотные помехи. В этом случае напряжение на рабочей катушке также выше, чем напряжение шины постоянного тока, подаваемое на инвертор.Оба эти свойства объясняются высокой добротностью контура индукционного нагревателя.
Показывает выходное напряжение инвертора, когда он неправильно настроен на частоту, которая ниже собственной резонансной частоты рабочей катушки. Обратите внимание на очень быстрое время нарастания и спада прямоугольной волны, сопровождающееся чрезмерным выбросом напряжения и звоном. Все это связано с принудительным обратным восстановлением корпусных диодов полевого МОП-транзистора при сохранении этого нежелательного режима работы.(Выбросы и звонки возникают из-за всплесков тока обратного восстановления, возбуждающих ударную паразитную индуктивность в схеме инвертора в паразитные колебания.)
Показывает выходное напряжение инвертора, когда он настроен немного выше собственной резонансной частоты рабочей катушки. Обратите внимание на то, что времена нарастания и спада прямоугольной волны более контролируемы, а выбросы или звонки сравнительно небольшие. Это связано с переключением нулевого напряжения (ZVS), которое происходит, когда инвертор работает в этом благоприятном рабочем режиме.
Показывает выходное напряжение инвертора, когда он точно настроен на резонансную частоту рабочей катушки. Хотя в этой ситуации фактически достигается максимальная пропускная способность, она не совсем обеспечивает переключение при нулевом напряжении полевых МОП-транзисторов. Обратите внимание на маленькие выемки на переднем и заднем фронтах сигнала напряжения. Это происходит из-за того, что средняя точка опоры моста не была полностью коммутирована с противоположной шиной питания в течение мертвого времени перед включением следующего полевого МОП-транзистора.На практике небольшое индуктивное реактивное сопротивление инвертора помогает обеспечить требуемый коммутирующий ток и достичь ZVS. По этой причине ситуация, описанная для предыдущей фотографии, предпочтительнее точной настройки.
Вернуться на главную
Основы технологии индукционного нагрева
Индукционный нагрев
Проще говоря, индукционный нагрев является наиболее чистым, эффективным, рентабельным, точным и повторяемым методом нагрева материалов, доступным на сегодняшний день в отрасли.
Точно разработанные индукционные катушки в сочетании с мощным и гибким индукционным источником питания обеспечивают воспроизводимые результаты нагрева, соответствующие желаемому применению. Индукционные источники питания, разработанные для точной количественной оценки нагрева материала и реагирования на изменения свойств материала во время цикла нагрева, делают реальностью достижение различных профилей нагрева с помощью одного приложения нагрева.
Целью индукционного нагрева может быть упрочнение детали для предотвращения износа; придать металлопластику для ковки или горячей штамповки желаемую форму; спаять или спаять две части вместе; плавить и смешивать ингредиенты, которые входят в жаропрочные сплавы, что делает возможным создание реактивных двигателей; или для любого количества других приложений.
Основы
Индукционный нагрев происходит в электропроводящем объекте (не обязательно из магнитной стали), когда объект находится в переменном магнитном поле. Индукционный нагрев происходит из-за гистерезиса и потерь на вихревые токи.
Гистерезисные потери возникают только в магнитных материалах, таких как сталь, никель и некоторые другие. Потери на гистерезис утверждают, что это вызвано трением между молекулами, когда материал намагничивается сначала в одном направлении, а затем в другом.Молекулы можно рассматривать как небольшие магниты, которые вращаются при каждом изменении направления магнитного поля. Требуется работа (энергия), чтобы перевернуть их. Энергия превращается в тепло. Скорость расхода энергии (мощности) увеличивается с увеличением скорости реверсирования (частоты).
Вихретоковые потери возникают в любом проводящем материале в переменном магнитном поле. Это вызывает заголовок, даже если материалы не обладают какими-либо магнитными свойствами, обычно присущими железу и стали.Примерами являются медь, латунь, алюминий, цирконий, немагнитная нержавеющая сталь и уран. Вихревые токи — это электрические токи, индуцируемые в материале действием трансформатора. Как следует из их названия, кажется, что они движутся вихрями на водоворотах внутри твердой массы материала. Вихретоковые потери намного важнее гистерезисных потерь при индукционном нагреве. Обратите внимание, что индукционный нагрев применяется к немагнитным материалам, в которых отсутствуют гистерезисные потери.
Для нагрева стали для закалки, ковки, плавки или любых других целей, требующих температуры выше температуры Кюри, мы не можем полагаться на гистерезис.Сталь теряет свои магнитные свойства выше этой температуры. Когда сталь нагревается ниже точки Кюри, вклад гистерезиса обычно настолько мал, что им можно пренебречь. Для всех практических целей вихревые токи I 2 R — это единственный способ, которым электрическая энергия может быть преобразована в тепло для целей индукционного нагрева.
Две основные вещи для индукционного нагрева:
- Изменяющееся магнитное поле
- Электропроводящий материал, помещенный в магнитное поле
Преимущества индукционного нагрева
Индукционный нагрев особенно полезен при выполнении повторяющихся операций.После того, как машина индукционного нагрева правильно отрегулирована, часть за частью нагревается с одинаковыми результатами. Возможность индукционного нагрева для одинакового нагрева следующих друг за другом деталей означает, что процесс можно адаптировать к полностью автоматическому режиму, когда детали загружаются и разгружаются механически.
Индукционный нагрев позволил выполнять такие операции, как закалка, на производственных линиях вместе с другими станками, а не в удаленных отдельных отделах. Это экономит время на транспортировку деталей из одной части завода в другую.Индукционный нагрев чистый. Не сбрасывает неприятный жар. Условия работы вокруг машин индукционного нагрева хорошие. Они не выделяют дым и грязь, которые иногда бывают в цехах термообработки и кузнечных цехах.
Другой желательной характеристикой индукционного нагрева является его способность нагревать только небольшую часть заготовки, что дает преимущества там, где нет необходимости нагревать всю деталь. Это преимущество имеет решающее значение для основных деталей с несколькими локализованными участками повышенного износа при нормальной эксплуатации.Раньше требовался более качественный и более дорогой материал, чтобы выдерживать эксплуатационный износ. С помощью индукции можно обрабатывать менее дорогие материалы на месте для достижения требуемой долговечности.
Индукционный нагрев быстрый. Правильно настроенная машина индукционного нагрева может обрабатывать большие объемы деталей в минуту за счет использования эффективной конструкции змеевика и обращения с деталями. Поскольку машины индукционного нагрева хорошо подходят для автоматизации, их можно легко интегрировать с существующими линиями по производству деталей.В отличие от решений для лучистого отопления, индукционный нагрев нагревает только часть внутри змеевика, не тратя энергию на ненужный нагрев.
Индукционный нагрев чистый. Без операций с пламенем, которые оставляют сажу или иным образом требуют очистки после нагрева, индукция является выбором для деталей, требующих чистого нагрева, например, при пайке. Поскольку в индукционном нагреве используются магнитные поля, проницаемые через стекло или другие материалы, возможен контролируемый индукционный нагрев атмосферы.
История индукционного нагрева
Фарадей (1791-1867) был знаком с фундаментальными принципами, лежащими в основе индукции. Сначала акцент был сделан на нежелательных последствиях явления. Большое внимание было уделено поиску методов уменьшения влияния индукции, чтобы такие устройства, как трансформаторы, двигатели и генераторы, могли стать более эффективными.
Майклу Фарадею (1791-1867) приписывают открытие фундаментальных принципов, лежащих в основе индукционного нагрева в 1831 году.Тем не менее, исследования индукции были сосредоточены на поиске методов уменьшения влияния индукции, чтобы такие устройства, как трансформаторы, двигатели и генераторы, поначалу могли стать более эффективными.
Интерес к возможности плавления металлов индукцией возник в 1916 году. Одним из первых коммерческих приложений было плавление небольших зарядов с использованием генераторов искрового разрядника. Еще одним ранним применением было нагревание металлических элементов вакуумных трубок для отвода поглощенных газов перед герметизацией.
За несколько лет до Второй мировой войны ряд компаний, более или менее независимо друг от друга, начали понимать, что индукция является решением для широкого спектра специализированных нагревательных приложений. Хотя индукция не стала промышленным процессом еще долго после ее теоретического открытия, ее рост был быстрым во время Второй мировой войны, когда возникла немедленная потребность в производстве большого количества деталей с минимальными трудозатратами.
Сегодня индукция заняла свое место в нашей промышленной экономике как средство ускорения производства деталей, снижения производственных затрат и достижения качественных результатов.
Нажмите, чтобы узнать об истории Радин
Будущее индукции
С наступлением эры высокотехнологичных материалов, альтернативных источников энергии и необходимости расширения возможностей развивающихся стран уникальные возможности индукции предлагают инженерам и конструкторам будущего быстрый, эффективный и точный метод нагрева.
Как технология выбора для быстрого, чистого, повторяемого, точного и эффективного нагрева, индукция прочно зарекомендовала себя в будущем производства как краеугольный камень отрасли.Быстрое развитие Induction с момента своего открытия принесло ей репутацию передовой технологии, критически важной для открытия новых, более эффективных процессов. Сегодня индукция является синонимом новаторских решений, открывающих путь к новой парадигме в производственных технологиях.
Технология Radyne находится на переднем крае индукционного нагрева, вводя новшества в новых способах дальнейшего развития методов и процессов индукционного нагрева на новых, ранее заброшенных территориях. Мы являемся ведущим мировым производителем и пионером в разработке передового оборудования для индукционного нагрева и нагрева с регулируемой атмосферой.Щелкните здесь, чтобы узнать больше о блоке питания TFD.
Дополнительная литература
Дальнейшее обсуждение темы основ индукционного нагрева можно найти, продолжив нашу статью о передовых концепциях индукционного нагрева, охватывающую темы, которые лежат в основе теории индукционного нагрева, установленной здесь. Для еще большего количества ресурсов индукционного нагрева Radyne предоставляет несколько ресурсов для вашего удобства, позволяющих использовать теорию индукции для осознанной работы: в том числе плакаты для справки с общими лабораторными и производственными таблицами и справочники по основам индукции.
Китай производитель оборудования для индукционного нагрева, машина для индукционной пайки, поставщик оборудования для сквозного нагрева
Zhengzhou Kechuang Electronic Co., Ltd. — высокотехнологичное предприятие, специализирующееся на оборудовании для индукционного нагрева и связанном с ним комплексном оборудовании. Это пионер и пилот в индустрии индукционного нагрева в Китае. Продукция широко используется в машиностроении, авиакосмической, нефтехимической, металлургической, микроэлектронной, легкой, электроэнергетической, научных исследованиях и других областях.
…
Zhengzhou Kechuang Electronic Co., Ltd. — высокотехнологичное предприятие, специализирующееся на оборудовании для индукционного нагрева и связанном с ним комплексном оборудовании. Это пионер и пилот в индустрии индукционного нагрева в Китае. Продукция широко используется в машиностроении, авиакосмической, нефтехимической, металлургической, микроэлектронной, легкой, электроэнергетической, научных исследованиях и других областях.
С момента основания компании, она всегда стремилась предоставлять пользователям превосходные продукты и услуги и рассматривала «научные и технологические инновации» как движущую силу развития предприятия, почти 20 лет, чтобы сосредоточиться на исследованиях технологии индукционных источников питания и ее применении в в области нагрева металла, последовательно получил более 60 национальных патентов и авторских прав на программное обеспечение, выиграл несколько национальных и провинциальных наград в области науки и технологий, разработал сотни высокопроизводительных, высокоточных, высокоэффективных и энергосберегающих, безопасных и надежных интеллектуальных продуктов, благодаря система менеджмента качества ISO9000 и европейская сертификация продукции CE.