Железо проводит электричество: Проводит ли железо тепло и электро проводность
ФPAГMEHT УЧЕБНИКА (…) Мы уже знаем, что в пространственной решётке металлических кристаллов находятся положительно заряженные атомы металлов — ионы. Они более или менее прочно удерживаются на своих местах. Вокруг ионов беспорядочно движутся свободные электроны. Их можно представить в виде «электронного газа», омывающего кристаллическую решётку. Свободные электроны легко перемещаются внутри решётки и служат хорошими переносчиками тепловой энергии от нагретых слоёв металла к холодным. |
Серебро, Медь, Алюминий, Железо, Золото, Никель, Вольфрам, Ртуть.
Автор: Серков Павел
- 1. Проводники: Серебро, Медь, Алюминий, Железо, Золото, Никель, Вольфрам, Ртуть.
- 2. Проводники: Углерод, нихромы, термостабильные сплавы, припои, прозрачные проводники.
- 3. Неорганические диэлектрики: Фарфор, стекло, слюда, керамики, асбест, элегаз и вода
- 4. Органические полусинтетические диэлектрики.
- 5. Синтетические диэлектрики на базе фенолформальдегидных смол.
- 6. Пластики. История использования пластиков.
- 7. Изоляционные ленты и трубки
Проводники
Двадцатый век — век пластмасс. До появления широкого спектра синтетических полимерных материалов, человек использовал в конструировании металлы и материалы природного происхождения — дерево, кожу и т.д. Сегодня мы завалены пластмассовыми изделиями, начиная от одноразовой посуды, заканчивая тяжелонагруженными деталями двигателей автомобилей. Пластмассы во многом превосходят металлы, но никогда не вытеснят их полностью, поэтому рассказ начнется с металлов. Металлам посвящены сотни книг, дисциплина, посвященная им, называется «металловедение».
Нас интересуют металлы с точки зрения электронной техники. Как проводники, как часть электронных приборов. Все остальные применения — например такие, как конструкционные материалы, в данное пособие пока не вошли.
Главное для электронной техники свойство металлов — это способность хорошо проводить электрический ток. Посмотрим на таблицу удельного сопротивления различных чистых металлов:
Металл | Удельное сопротивление Ом*мм2/м |
Серебро | 0,0159 |
Медь | 0,0157 |
Золото | 0,023 |
Алюминий | 0,0244 |
Иридий | 0,0474 |
Вольфрам | 0,053 |
Молибден | 0,054 |
Цинк | 0,059 |
Никель | 0,087 |
Железо | 0,098 |
Платина | 0,107 |
Олово | 0,12 |
Свинец | 0,192 |
Титан | 0,417 |
Висмут | 1,2 |
Видим лидеров нашего списка: Ag, Cu, Au, Al.
Серебро
Ag — Серебро. Драгоценный металл. {Понятие «драгоценный металл» означает в том числе особые условия по работе с металлом, устанавливаемые законодательством.}Серебро — самый дешевый из драгоценных металлов, но, тем не менее, слишком дорог, чтобы массово делать из него провода. На 5% лучшая электропроводность по сравнению смедью, при разнице в цене почти в 100 раз.
Примеры применения
В виде покрытий проводников в СВЧ технике. Ток высокой частоты, из-за скин-эффекта в большей части течет по поверхности проводника, а не в его толще, поэтому тонкое покрытие высокочастотного волновода серебром дает бОльший прирост проводимости, чем покрытие серебром проводника для постоянного тока.
Волновод для СВЧ излучения, покрытый изнутри слоем серебра.
В сплавах контактных групп. Контакты силовых, сигнальных реле, рубильников, выключателей чаще всего изготовлены из сплава с содержанием серебра. Переходное сопротивление такого контакта получается ниже медного, он меньше подвержен окислению. Так как контакт обычно миниатюрен, вклад этой малой добавки серебра в стоимость всего изделия незначителен. Хотя при утилизации большого количества реле, стоимость серебра делает целесообразным работу по отделению контактов в кучку для последующего аффинажа.
Согласно документации производителя контакты содержат серебро и кадмий.
Различные реле. Верхнее реле имеет даже посеребренный корпус с характерной патиной. Содержание драгметаллов в изделиях, выпущенных в СССР было указано в паспортах на изделия.
В качестве присадки в припоях. Качественные припои (как твёрдые так и мягкие) часто содержат серебро.
Проводящие покрытия на диэлектриках. Например, для получения контактной площадки на керамике, на неё наносится суспензия из серебряных частиц с последующим запеканием в печи (метод «вжигания»).
Компонент электропроводящих клеев и красок. Электропроводящие чернила часто содержат суспензию серебряных частиц. По мере высыхания таких чернил, растворитель испаряется, частицы в растворе оказываются всё ближе, слипаясь и создавая проводящие мостики, по которым может протекать ток. Хорошее видео с рецептом по созданию таких чернил.
Недостатки
Несмотря на то, что серебро благородный металл, оно окисляется в среде с содержанием серы:
4Ag,+,2H2S,+,O2,->,2Ag2S,+,2H2O
Образуется темный налет — «патина». Также источником серы может служить резина, поэтому провод в резиновой изоляции и посеребренные контакты — плохое сочетание.
Потемневшее серебро можно очистить химически. В отличии от чистки абразивными пастами (в том числе зубной пастой) это самый нежный способ чистки, не оставляющий царапин.
Медь
Cu — медь. Основной металл проводников тока. Обмотки электродвигателей, провода в изоляции, шины, гибкие проводники — чаще всего это именно медь. Медь нетрудно узнать по характерному красноватому цвету. Медь достаточно устойчива к коррозии.
Примеры применения
Провода. Основное применение меди в чистом виде. Любые добавки снижают электропроводность, поэтому сердцевина проводов обычно чистейшая медь.
Гибкие многожильные провода различного сечения.
Гибкие тоководы. Если проводники для стационарных устройств можно в принципе изготовить из любого металла, то гибкие проводники делают почти всегда только из меди, алюминий для этих целей слишком ломкий. Содержат множество тоненьких медных жилок.
Теплоотводы. Медь не только на 56\% лучше алюминия проводит ток, но ещё имеет почти вдвое лучшую теплопроводность. Из меди изготавливают тепловые трубки, радиаторы, теплораспределяющие пластины. Так как медь дороже алюминия, часто радиаторы делают составными, сердцевина из меди, а остальная часть из более дешевого алюминия.
Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди,он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор сразвитым оребрением уже охлаждает сам стержень.
При изготовлении фольгированных печатных плат. Печатные платы, в любом электронном устройстве изготовлены из пластины диэлектрика, на который наклеена медная фольга. Все соединения между элементами печатной платы выполнены дорожками из медной фольги.
Техника сверхвысокого вакуума. Из металлов и сплавов только нержавеющая сталь и медь пригодны для камер сверхвысокого вакуума в таких приборах, как ускорители элементарных частиц или рентгеновские спектрометры. Все остальные металлы в вакууме слегка испаряются и портят вакуум.
Аноды рентгеновских трубок. В рентгеноструктурном анализе требуется монохроматическое рентгеновское излучение. Его источником зачастую является облучаемая электронами медь (спектральная линия Cu Kα), которая к тому же прекрасно отводит тепло. Если же требуется другое излучение (Co или Fe), его получают от маленького кусочка соответствующего металла на массивном медном теплоотводе. Такие аноды всегда охлаждаются проточной водой.
Интересные факты о меди
Алюминий
Al — Алюминий. «Крылатый металл» четвертый по проводимости после серебра, золота и меди. Алюминий хоть и проводит ток почти в полтора раза хуже меди, но он легче в 3,4 раза и в три раза дешевле. А если посчитать проводимость, то эквивалентный медному проводник из алюминия будет дешевле в 6,5 раз! Алюминий бы вытеснил медь как проводник везде, если бы не пара его противных свойств, но об этом в недостатках.
Чистый алюминий, как и чистое железо, в технике практически не применяется. Любой «алюминиевый» предмет состоит из какого-нибудь сплава алюминия. Сплавы могут содержать кремний, магний, медь, цинк и другие металлы. Их свойства отличаются очень сильно, и это необходимо учитывать при обработке. Ниже перечислены несколько самых распространенных марок алюминия: (Даны марки сплавов согласно номенклатуре Американской Алюминиевой Ассоциации (АА), Первая цифра — серия марок сплава, в зависимости от того, какой легирующей добавки больше, остальные цифры обычно не соотносятся с концентрацией и необходимо обращение к справочнику.)
- 1199. Чистый 99,99% алюминий. Бывает почти исключительно в виде фольги.
- 1050 и 1060. Чистый алюминий 99,5% и 99,6% соответственно. Из-за высокой теплопроводности иногда используется как материал для радиаторов. Мягок, легко гнется. Провода, пищевая фольга, посуда.
- 6061 и 6082. Сплавы: 6061: Si 0,6%, Mg 1,0%, Cu 0,28%, 6082: Si, Mg, Mn. Первый более распространен в США, второй — в Европе. Легко точить, фрезеровать. Наилучший материал для самоделок. Прочен. Легко поддается сварке, паяется твердыми припоями. Легко анодируется. Плохо гнется. Не годится для литья.
- 6060. Состав: Mg, Si. Более мягок, чем 6061 и 6082, при обработке резанием слегка «пластилиновый», за что его не любят токари. Распространен и дешев, других особых преимуществ не имеет. Дешевый алюминиевый профиль из непонятного сплава имеет хорошие шансы оказаться им.
- 5083. Сплав с магнием (>4% Mg). Отличная коррозионная стойкость, устойчив в морской воде. Один из лучших вариантов для деталей, работающих под дождем. Тоже может встретиться в магазине стройматериалов, наряду с другими подобными марками.
- 44400, он же «силумин». Сплав с большим процентом кремния (Si >8%). Литейный. Низкая температура плавления, при пайке твердыми припоями риск расплавить саму деталь. Хрупок, при изгибе ломается. На изломе видны характерные кристаллы.
- 7075. 2,1–2,9% Mg, 5,1–6,1% Zn, 1,2–1,6% Cu. Очень своеобразный сплав, отличается даже цветом (пленка окислов слегка золотистая). Неожиданно твердый для алюминия, по твердости сравним с мягкой сталью. Плохо анодируется. Не паяется вообще. Не предназначен для сварки. Не гнется и не куется вообще. Не годится для литья. Резанием обрабатывается отлично, прекрасно полируется. Хорош для ответственных деталей. Используется для винтов в велосипедах, в оружии (материал многих деталей винтовки M16).
Относительно невысокая температура плавления (660°С у чистого, меньше 600°С у литейных сплавов) алюминия делает возможным отливку деталей в песочные формы в условиях гаража/мастерской. Однако многие марки алюминия не годятся для литья.
Примеры применения
Провода. Алюминий дешев, поэтому толстые силовые кабели, СИП, ЛЭП выгодно делать из алюминия. В старых домах квартирная проводка сделана алюминиевым проводом (с 2001 года ПУЭ запрещает в квартирах использовать алюминиевый провод, только медный, см ниже. (Правила устройства электроустановок, 7-е издание, п. 7.1.34). Также алюминий не используется как проводник в ответственных применениях.
Слева старый алюминиевый провод. Справа алюминиевые кабели различного сечения, пригодные для укладки в грунт. В частности, кабелем справа был подключен к электроэнергии целый этаж здания. Кабель помимо наружной резиновой оболочки имеет бронирующую стальную ленту для защиты нижележащей изоляции от повреждений, к примеру, лопатой при раскопке.
Теплоотводы. Не только домашние батареи делают из алюминия, но и радиаторы у микросхем, процессоров.
Различные алюминиевые радиаторы.
Корпуса приборов. Корпус жёсткого диска в вашем компьютере отлит из алюминиевого сплава. Небольшая добавка кремния улучшает прочностные качества алюминия, сплав силумин: это корпуса жёстких дисков, бытовых приборов, редукторов и т. д. Анодированный алюминий (алюминий, у которого электрохимическим путем окисная
пленка на поверхности сделана потолще и прочнее) хорошо окрашивается и просто красив. Окисная пленка (Al2O3 — из того же вещества состоят драгоценные
камни рубины и сапфиры) достаточно твёрдая и износостойкая, но, к сожалению, алюминий под ней мягок, и при сильном воздействии ломается как лёд на воде.
Экраны. Электромагнитное экранирование часто делается из алюминиевой фольги или тонкой алюминиевой жести. Можете провести простой эксперимент, мобильный телефон завернутый в фольгу потеряет сеть — он будет заэкранирован.
Отражающее покрытие у зеркал. Тонкая пленка алюминия на стекле отражает 89% (значения примерные, точное значение зависит от длины волны и типа покрытия) падающего света (Серебро 98%, но на воздухе темнеет из-за сернистых соединений). Любой лазерный принтер содержит вращающееся зеркало, покрытое тонким слоем алюминия.
Зеркала от оптической системы планшетного сканера. Обратите внимание, оптические зеркала имеют металлизацию стекла снаружи, в отличии от привычных бытовых зеркал, где отражающее покрытие для защиты за стеклом. Бытовые зеркала дают двойное отражение — от поверхности стекла и от отражающего покрытия, что не так критично в быту, как защищенность отражающего покрытия.
Электроды обкладок конденсаторов. Алюминиевая фольга, разделенная слоем диэлектрика и туго свернутая в цилиндр — часть электрических конденсаторов (впрочем, для уменьшения габаритов конденсаторов фольгу заменяют алюминиевым напылением). Тот факт, что пленка оксида алюминия тонкая, прочная и не проводит ток, используется
в электролитических конденсаторах, обладающими огромными для своих габаритов электрическими емкостями.
Микропровод. Тончайшей проволокой из алюминия подключают кристаллы микросхемы к выводам корпуса. Также может использоваться медная и золотая проволока.
Недостатки
Алюминий — металл активный, но на воздухе покрывается оксидной пленкой, которая предохраняет металл от разрушения и скрывает его активную натуру. Если не дать алюминию формировать стабильную защитную пленку, например капелькой ртути, алюминий активно реагирует с водой. В щелочной среде алюминий растворяется, попробуйте залить алюминиевую фольгу средством для прочистки труб — реакция будет бурная, с выделением взрывоопасного водорода. Химическая активность алюминия, в паре с большой
разницей в электроотрицательности с медью делает невозможным прямое соединение проводов из этих двух металлов. В присутствии влаги (а она в воздухе есть почти всегда)
начинает протекать гальваническая коррозия с разрушением алюминия.
Два идентичных трансформатора от микроволновых печей. Левый вышел из строя по причине алюминиевых обмоток — отгорел провод от контакта — алюминий плохо паяется мягкими припоями, попытка обеспечить контакт также как и у медного провода привела к поломке.
Алюминий ползуч. Если алюминиевый провод очень сильно сжать, он деформируется и сохранит новую форму — это называется «пластическая деформация». Если сжать его
не так сильно, чтобы он не деформировался, но оставить под нагрузкой надолго — алюминий начнет «ползти» меняя форму постепенно. Это пакостное свойство ведет к тому, что хорошо затянутая клемма с алюминиевым проводом спустя 5–10–20 лет постепенно ослабнет и будет болтаться, не обеспечивая былого электрического контакта. Это одна из причин, почему ПУЭ запрещает тонкий алюминиевый провод для разводки электроэнергии по конечным потребителям в зданиях. (См п. 7.1.34 ПУЭ 7 издания) В промышленности не сложно обеспечить регламент — так называемая «протяжка» щитка, когда электрик периодически (1–2 раза в год) проверяет затяжку всех клемм в щитке. В домашних же условиях, обычно пока розетка с дымом не сгорит — никто и не озаботится качеством контакта. А плохой контакт — причина пожаров.
Алюминий, по сравнению с медью, менее пластичный, риска от ножа на жиле, при сьёме изоляции с провода быстрее приведет к сломавшейся жиле, чем у меди, поэтому изоляцию с алюминиевых проводов надо счищать как с карандаша, под углом, а не в торец.
Интересные факты об алюминии
Еще раз важное замечание. Алюминиевые и медные проводники напрямую соединять нельзя!
Для соединения проводников из меди и алюминия используйте промежуточный металл,
например, стальную клемму.
Источники
В крупных строительных магазинах (OBI, Leroy Merlin, Castorama) обычно есть в наличии алюминиевый профиль разных размеров и форм. Неплохим источником может послужить штампованная алюминиевая посуда — она очень дешева и существует разных форм. Но обратите внимание на марки. Если нужен 6061 и тем более 7075, придется покупать его у фирмы, специализирующейся на продажах металлов.
Железо
Fe — железо. Основной конструкционный материал в промышленности используется также и в электротехнике. Плохая, по сравнению с медью, электропроводность компенсируется очень низкой ценой. И, что важнее в России, меньшей привлекательностью для охотников за металлом, заземление из толстой ржавой трубы простоит без охраны дольше красивой медной шины.
В технике железо применяется почти исключительно в виде сплавов с углеродом — чугуна и сталей. Свойства сталей разных марок весьма различны: от мягких до твердых инструментальных.
Примеры применения
Метизы. Винты, шайбы, гайки из стали изготавливаются огромными количествами на специально разработанном для этого оборудовании. Метизы из других металлов встречаются очень редко и значительно дороже. Поэтому, в большинстве случаев, медный наконечник медного провода будет притянут к медной же шине стальным болтом (или омеднённым). Также важным является высокая прочность стали, медный болт не затянуть с усилием стального. Обратите внимание на цифры на головке болта: они обозначают его прочность. Чем больше число, тем сильнее можно затягивать болт.
Клеммные колодки, соединители. Соединители типа «орех» содержат стальные пластинки с защитным покрытием от коррозии. Также, применение стали необходимо для предотвращения гальванической коррозии при соединении медных и алюминиевых проводов.
Соединитель «орех». Внутри пластиковой оболочки комплект стальных пластин с винтами, позволяет сделать ответвление от жилы кабеля не разрезая саму жилу. Также позволяет перейти от алюминиевой жилы на медную.
Контуры заземления. Требования электробезопасности обязывают предусматривать заземление. Часто, в промышленных условиях, заземляющую шину изготавливают из стального проката, закрепленного по периметру стены. Плохая электропроводность стали компенсируется большим сечением проводника. Во многих случаях правила безопасности и стандарты предписывают делать детали заземления именно из стали по соображениям механической прочности.
Стальная полоса, огибающая колонну — шина заземления.
Широко используются магнитные свойства стали — из стальных пластин собирают сердечники трансформаторов, дросселей.
Недостатки
Коррозия. Железо ржавеет, при этом плотность ржавчины ниже плотности исходного железа, из-за этого конструкция распухает. Поэтому железо покрывают защитными покрытиями — оцинковка, лужение, хромирование, окраска и т.д. Разные марки стали подвержены коррозии в разной степени, причем по закону подлости сильнее всего ржавеют именно те, которые легче всего обрабатываются на станках.
Золото
Au — Золото. Самый бестолковый драгоценный металл. Имеет меньше всего применений в технике из всех драгоценных металлов, но является символом богатства. На удивление дороже платины (2017 г.), что лишено здравого смысла и является лишь результатом спекуляций.
Примеры применения
Покрытия контактов. Благодаря тому, что золото на воздухе не окисляется, контакты покрывают очень тонким слоем золота. В силу мягкости золота покрытие не подходит для контактов много работающих на истирание, в таких случаях подбирают более твердые покрытия (например родиевые), или легируют золото.
Золотое покрытие на различных электронных компонентах: покрытие на контактах платы для установки в слот, покрытие на контактах мембранных кнопок мобильного телефона, покрытие на штырьках процессора.
Защита от коррозии. В некоторых ответственных применениях используется золотое покрытие для защиты проводников от коррозии (в основном — военка). Когда-то покрытие золотом являлось единственным способом защитить детали электроники от коррозии в условиях джунглей, поэтому у многих старых радиодеталей позолочены даже корпуса. А сейчас обычно просто заливают плату компаундом в «кирпич».
Интересные факты о золоте
Золото — один из четырех металлов, имеющий оттенок в не окислившемся состоянии. Все остальные металлы белые (желтоватый цвет имеют золото и цезий,
медь — красноватая и в сплавах золотистая, осмий имеет голубой отлив).
Плотность золота отличается от плотности вольфрама незначительно (19,32 г/см3} у золота, 19,25 г/см3), этим пользуются для подделки золотых слитков, покрывая вольфрамовый слиток слоем золота. Некоторые теории заговора утверждают, что возможно это одна из причин, почему США никому не дают проверить подлинность их золотого
запаса. И, возможно, поэтому они отдали Германии их золото не сразу.
Можно извлечь золото химически из горы старой электроники, но это не всегда экономически целесообразно и преследуется по закону (ст. 191, 192 УК РФ).
Бестолковость золота требует пояснений. Представим добычу благородных металлов в 2016 году.
Из всей добытой платины 64% потребила промышленность. (Здесь и далее цифры примерные, усредненные по нескольким источникам).
Из всего добытого серебра 68% потребила промышленность.
Из всего добытого палладия 96% потребила промышленность.
Из всего добытого золота всего 10% потребила промышленность. Остальное ушло на украшения и на слитки в сейфах.
Никель
Ni — Никель. Замечательный металл, но в электронной технике основное применение в виде покрытий, как в чистом виде, так и в паре с хромом.
Примеры применения
Покрытие контактов. Наносится на медь, пластик для надежного контакта и для декоративных целей. Жадные китайцы иногда вообще делают контакты из пластмассы, покрывая сверху слоем никеля и хрома, внешне выглядит нормальным, даже как то работает, но ни о какой надежности речи не идет.
Различные разъемы, покрытые никелем для надежного контакта.
У разъема справа для экономии металла сердцевина штыря сделана полой с заливкой пластиком. Латунная никелированная трубочка, из которой сделан штырь, не самый худший вариант.
Тоководы у ламп. Сплав Платинит (46% Ni, 0,15% C, остальное — Fe) не содержит платины, но имеет очень близкое к платине значение линейного
температурного расширения (и близкое к стеклу), что позволяет делать из него надежные электроды, проходящие через стекло. Для аналогичных целей используют сплав Ковар (29% Ni, 17% Co, 54% Fe). Такие электроды при изменении температуры не вызывают растрескивания стекла и потерю герметичности. Место сплавления стекла с этими сплавами имеет красноватый оттенок что ошибочно воспринимается за медь.
Промежуточные защитные слои. Для защиты от коррозии, взаимной диффузии металлов при создании покрытий, могут формироваться промежуточные слои из никеля. Например при покрытии меди слоем золота, если не предусмотрен разделительный слой из никеля, золотое покрытие со временем из-за диффузии растворится в меди и потеряет целостность. Жала современных паяльников защищены слоем никеля, так как жало из голой меди медленно растворяется в олове, теряя форму.
Вольфрам
W — Вольфрам. Тугоплавкий металл, температура плавления 3422°С, что определяет основное его использование — нити накала и электроды.
Примеры применения
Нити накала. В лампах накаливания, в галогеновых лампах спираль изготовлена из вольфрама, нагревается электрическим током до белого каления, при этом сохраняя свою форму. Также катоды в радиолампах изготавливаются из вольфрама, но раскаливаются не до таких высоких температур, как осветительные лампы, специальное покрытие на катоде позволяет протекать термоэлектронной эмиссии при невысоких температурах.
Нить накаливания этой галогеновой лампы изготовлена из вольфрама. Галоген, обычно пары иода, химически связывает испаряющийся с нити вольфрам и возвращает его на нить, что позволяет повысить температуру накала спирали и уменьшить габарит лампы без страха, что вольфрам постепенно осядет на стенках колбы.
Мощная лампа накаливания от проектора. Даже тугоплавкий вольфрам со временем испаряется и оседает на стенках колбы в виде темного налета. Данного недостатка лишены галогеновые лампы.
Электроды дуговых ламп и сварочные электроды. В ксеноновых дуговых лампах, ртутных дуговых лампах, электроды должны выдерживать температуру электрической
дуги, при этом не расплавляясь и не изменяя своей формы, что под силу только вольфраму. Также электроды для сварки неплавящимся электродом изготовлены из вольфрама (TIG сварка).
Аноды рентгеновских трубок. Поток электронов от катода в рентгеновской трубке, разогнанный высоким напряжением тормозится бомбардируя анод, очень сильно нагревая его, поэтому такие аноды, особенно если они не имеют водяного охлаждения, зачастую изготавливаются из вольфрама. Однако в физических лабораториях часто применяют и аноды из меди или кобальта в связи с особенностями спектра рентгеновского излучения от таких анодов.
Источники
Вольфрам — не очень пластичный материал, поэтому спиральку из лампы накаливания
вряд ли удастся выпрямить и использовать по своему разумению. Если вдруг понадобится
вольфрамовый стержень — вам пригодится любой магазин по сварочному делу, электрод для
TIG-горелки без содержания лантана и других присадок. Проволоку для нитей накала самодельной
техники нетрудно купить на eBay.
- Цветовая маркировка электродов:
- Зеленый — чистый вольфрам.
- Красный, оранжевый — вольфрам + торий. Радиоактивно! Не шлифовать, не резать — пыль опасна!
- Голубой — вольфрам + сложная смесь.
- Черный, желтый, синий — вольфрам + лантан.
- Серый — вольфрам + церий.
- Белый — вольфрам + цирконий.
Ртуть
Hg — Ртуть. При комнатной температуре — блестящий, собирающийся в шарики жидкий металл. По экологическим соображениям использование ртути сокращается, но она широко использовалась в старых приборах, поэтому заслуживает упоминания.
Как и большинство металлов, ртуть образует сплавы. Но ртуть, будучи жидкой при комнатной температуре, способна сплавляться с металлами без дополнительного нагревания, растворять их. Растворенный в ртути металл, сплав металла с ртутью называется «амальгама».
Примеры применения
Жидкий контакт в датчиках положения, ртутных электроконтактных термометрах.
Различные ртутные приборы. Слева — мощный ртутный переключатель, замыкающий/размыкающий цепь при наклоне. Ниже на чёрных платках — аналогичные китайские ртутные переключатели — датчики положения из детского набора с Arduino. Сверху — колба ртутного электроконтактного термометра. В стекло вплавлены проволочки так, что при температуре 70°С столбик ртути в капилляре замыкает цепь (температура указана на корпусе).
В термометрах. Низкая температура замерзания, высокая температура кипения и большой коэффициент теплового расширения делают ртуть одним из самых удобных веществ для лабораторных и медицинских термометров. В бытовых термометрах ртуть уже очень давно не используется.
В манометрах и барометрах. Ртуть тяжелая, поэтому для уравновешивания атмосферного давления достаточно 70–80 см высоты столбика ртути. Хотя ртутные барометры в основном вышли из употребления, единицы измерения давления «миллиметр ртутного столба», а в вакуумной технике — «микрон ртутного столба» и «торр» (округленный вариант мм. рт. ст.) используются и по сей день. Нормальным атмосферным давлением считается 760 мм. рт. ст.
В нормальных элементах. Батарейка (Попытка запитать от такой батарейки самоделку обернется провалом — батарейка имеет большое внутреннее сопротивление (порядка единиц кОм) и не предназначена отдавать токи больше сотых долей микроампера, да и то с перерывами.) с электродами из жидкой ртути, в которой растворены сульфаты ртути и кадмия, имеет ЭДС, известную и стабильную до единиц микровольт (теоретически 1,018636 В при 20°С). Такие элементы до сих пор используются в метрологии в качестве опорных источников напряжения, хотя и вытесняются полупроводниковыми схемами. Сосуд с ртутью в нормальном элементе запаян, однако он стеклянный, и ртути в нем много. Поэтому будьте осторожны, если найдете где-нибудь круглую железную банку с бакелитовой крышкой, клеммами и надписью «нормальный элемент» на бакелите. Внутри у нее — стеклянная колба с весьма опасными веществами.
Элемент нормальный насыщенный, НЭ-65, класс точности 0,005. Внешний вид корпуса нормальных элементов может различаться. Справа — содержимое корпуса, видна ртуть в нижней части колб. Такие элементы должны утилизироваться специализированной организацией.
Фото внутренностей Нормального Элемента
В диффузионных вакуумных насосах. Струя ртутного пара, выходящая из сопла с большой скоростью, захватывает молекулы воздуха и вытягивает их из откачиваемого объема. Затем ртутный пар конденсируется за счет охлаждения жидким азотом и используется снова. Насосы такого типа когда-то использовались для откачки радиоламп. Сейчас вместо ртути используются нетоксичные и не требующие жидкого азота силиконовые масла, но в некоторых лабораториях до сих пор можно найти старые ртутные системы.
Пары ртути — рабочий газ люминесцентных ламп. Несмотря на то, что люминесцентная лампа должна содержать небольшое количество ртути, в некоторых лампах ртути добавлено от души, и видно, как в колбе перекатывается шарик ртути. Пары ртути при возбуждении их электрическим током излучают яркий свет, преимущественно в синей и ультрафиолетовой области. Помимо них в спектре ртути есть яркие желтый и зеленый дублеты, по наличию которых ртутную лампу легко отличить от любой другой, посмотрев на нее через призму или отражение в компакт-диске. Специальная ртутная лампа в лабораториях используется как источник зеленого света с известной длиной волны.
В мощных тиратронах и ртутных выпрямителях. Используется так же, как и в ртутных лампах. Мощные ртутные вентили широко использовались для питания локомотивов на железных дорогах и в других подобных задачах до появления полупроводниковых приборов.
Как растворитель для металлов при выделении золота и платины из сырья амальгамацией и в производстве зеркал. Ртуть выпаривается, металл остается. Иногда этот процесс неправильно называют «аффинаж», путая его с совершенно другим способом очистки драгметаллов.
В ртутных счетчиках времени наработки. В старой технике ртутный капиллярный кулономер использовался как счетчик часов, которые проработал прибор. Гениальная по простоте и надёжности конструкция.
Ртутный счетчик времени наработки от осцилографа. В углу показан крупным планом разрыв столбика ртути в капилляре каплей электролита. Ртуть под действием тока растворяется на одном конце капли и восстанавливается на другом, в результате этот разрыв движется по капилляру на расстояние, пропорциональное пропущенному через капилляр количеству электричества. Благодарю Александра @Talion_amur за предоставленный образец.
В амальгамных зубных пломбах. Встречаются и по сей день, особенно в США.
Токсичность
Все изделия, содержащие ртуть, должны утилизироваться специализированной службой. Недопустимо выбрасывать их с бытовым мусором во избежание скопления ртути на свалке.
Все разливы ртути должны быть собраны, а поверхности демеркуризованы. Ртуть хорошо испаряется при комнатной температуре, поэтому закатившийся в щель шарик ртути долгое время будет отравлять воздух.
Демеркуризация:
Если у вас разбилось изделие с ртутью, то предпринимайте следующие действия:
1. Откройте форточки и обеспечьте проветривание.
2. Вызовите специализированную службу демеркуризации в вашем городе. Профессионалы не только грамотно уберут ртуть, но также и произведут замеры концентрации паров ртути в помещении.
Если вдруг в вашем городе не оказалось службы демеркуризации, вы находитесь вдали от цивилизации то процесс демеркуризации придется продолжить самостоятельно.
3. Соберите видимые шарики ртути в герметичную тару. Их удобно собирать вместе при помощи двух хорошо обрезанных листов бумаги, сливая шарики в подготовленную тару. Мельчайшие шарики ртути из щелей можно вытянуть при помощи спиринцовки, или щетки из металла, которые смачивает ртуть (например медь). Разумеется после использования такой «инструмент» окажется загрязнен ртутью и подлежит утилизации.
Затем при помощи химических средств оставшаяся, не видимая глазу ртуть переводится в нелетучие, но по прежнему ядовитые соли, которые спокойно можно удалить с поверхности моющими средствами. Для этого используются 0,2% водный раствор перманганата натрия («марганцовка») подкисленный добавлением 0,5% соляной кислоты или 20% раствор хлорного железа (того, которым платы травят). Вопреки указаниям в старых книгах, засыпание места разлива порошком серы не эффективно.
4. Тщательно промыть обработанные площади водой с моющим средством.
5. Всю собранную ртуть и загрязненные предметы герметично упаковать и сдать в специализированную организацию.
Что однозначно не стоит делать при разливе ртути:
1. Паниковать и спешить. Иногда, при небольших авариях больше вреда наносит паника и спешка, чем сама авария. Вспоминается байка, записанная Ю.А.Золотовым:
Однажды, когда профессор МГУ Алексей Николаевич Кост вел практикум по органической
химии, у одного из студентов разбилась колба с эфиром и его пары вспыхнули.
Началась паника, кто-то прибежал с углекислотным огнетушителем и с трудом погасил
пожар. Все это время Кост совершенно невозмутимо сидел за своим столом и с
кем-то разговаривал. Потом, когда все успокоились, подошел к месту происшествия и приказал:— Спички!
Ему дали коробок, он чиркнул спичкой и бросил ее в еще не просохшую эфирную
лужу. Огонь вспыхнул вновь, все оторопели. А Кост, не суетясь, взял противопожарное
одеяло, ловко накрыл им пламя и изрек:— Гореть надо умеючи!
2. Пытаться собрать ртуть пылесосом, пылесос только в турборежиме раздробит и испарит шарики ртути, в итоге все помещение и сам пылесос окажутся загрязнены ртутью. Аналогично не стоит использовать для сбора ртути веники, щетки — они только раскидывают и дробят шарики ртути.
3. Сливать ртуть в раковину или унитаз. Ртуть значительно тяжелее воды, поэтому навсегда осядет в первом попавшемся изгибе трубы — в гидрозатворе или колене.
Пара слов о токсикологии ртути.
Некоторые в детстве играли шариками ртути, и «с ними ничего не было». Действительно, вопреки распространенному мнению металлическая ртуть при кратковременном контакте малоопасна. Причина малой токсичности металлической ртути — в ее плохой биодоступности. Нерастворимая в воде и химически инертная, почти как благородные металлы, она не может быстро попасть в организм.
Опасно вдыхание паров ртути, и это практически единственный путь поступления ее в организм. Касание ртути пальцами никакой дополнительной опасности не добавляет. Более того, дажепроглатывание ртути обычно проходит без последствий для здоровья. Ртуть химически достаточно инертна и выходит из организма естественным путем. Поэтому она является причиной не острых отравлений, а вялотекущих хронических, проявляющихся в медленном постепенном ухудшении здоровья и не всегда вовремя диагностируемых врачами. Именно этим ртуть и коварна: маленький шарик, закатившийся под плинтус, будет годами испаряться и отравлять воздух в квартире, а жильцы не будут понимать, чем и почему они болеют. Порча здоровья от контакта со ртутью в течение нескольких дней может быть необратима.
Растворимые соединения ртути намного опаснее, и именно они образуются, когда ртуть так или иначе попадает в организм человека, животных или в растений. Рекорд по токсичности принадлежит диметилртути — это ужасно токсичное из известных человечеству веществ, настолько токсичное, что при первой возможности ищут менее опасную альтернативу если предстоит работа с ней. Капля диметилртути способна убить человека сквозь резиновые перчатки, причем первые симптомы отравления могут появиться только на следующий день.
Если вы выкинув ртуть подальше от дома думаете, что проблема устранена — то вы серьезно ошибаетесь. Ртуть — яд кумулятивный, способный к накоплению в живых организмах
и передаче дальше по пищевой цепочке. Примером отравления человека ртутью является болезнь Минамата. Ртуть из выброшенной люминесцентной лампы отравит если не вас, то ваших потомков.
Дополнительные сведения
Если вы нашли где-нибудь ртуть, не пытайтесь ее продать. Ртуть и ее соли считаются сильнодействующими ядовитыми веществами (ст. 234 УК РФ). На содержащие ртуть приборы заводского производства, соответствующие официальным стандартам, запрет не распространяется. Найденную ртуть и неисправные ртутьсодержащие приборы, следует сдавать на переработку в специализированные службы в вашем городе. Единственный широко доступный источник ртути (если вдруг понадобится в научной работе) — медицинские термометры.
Какие вещества проводят электрический ток? вещества которые
Из школьного курса физики известно, что электрический ток представляет собой упорядоченное движение заряженных частиц. При этом должно соблюдаться как минимум два условия — это наличие свободных носителей заряда и присутствие электрического поля. Рассмотрим более подробно какие вещества проводят электрический ток, и какие условия для этого должны быть созданы.
Общим для всех вариантов будет обязательное наличие поля, только в этом случае возможно создание силы, которая будет приложена к заряду для его перемещения от одного электрода к другому.
Способность различных веществ проводить электрический ток
Если не принимать во внимание физическое состояние, то все материалы можно условно разделить на три группы по степени проводимости электричества:
- проводники;
- полупроводники;
- диэлектрики.
Рассмотрим каждый случай более подробно.
Проводники
К этой группе можно отнести вещества, которые проводят электрический ток великолепно. Это – металлы, электролиты и ионизированные газы.
Металлы как проводники электрического тока
Первая подгруппа веществ имеет кристаллическую решетку и отличается большим наличием свободных электронов, которые и являются носителями заряда при создании соответствующих условий, в частности электрического поля. Их расплавы проводят электрический ток не хуже, чем в твердой фазе. Не стоит забывать, что металлы могут быть и в жидком состоянии, примером чего является ртуть. Но наибольшее распространение, в качестве проводников, получили твердые фазы этих веществ. При взаимодействии с кислородом металл образуют оксиды, которые проводят электрический ток только при определенных условиях и по своей сути являются полупроводниками. Речь о них пойдет ниже. Из металлов отличной электропроводностью обладают медь, алюминий, железо, серебро и др.
Жидкие проводники электрического тока
Под жидкими проводниками понимают кислоты, растворы, электролиты, которые проводят электрический ток. Носителем заряда в данных случаях являются ионы. Необходимо отметить, распространенное убеждение что вода является проводником, в корне неверно. Когда Н2О находиться в чистом состоянии, свободные ионы в ней отсутствуют. Если при помещении в воду электродов наблюдается протекание электрического тока, то это говорит только о том, что в данном случае мы имеем дело с раствором какого-либо вещества.
Полупроводники
Это особая группа веществ, которая проводит электрический ток при создании определенных условий. В кристаллической решетке полупроводников наблюдается крайне ограниченное наличие свободных носителей зарядов. Но при создании соответствующих условий, например, при воздействии света, понижении или повышении температуры, или каких-либо специфических факторов количество освобожденных носителей возрастает.
Вещества, которые проводят электрический ток и относятся к группе полупроводников обладают одной особенностью – под воздействием внешних факторов связанные электроны покидают свое место, и образуют т.н. «дырку». Она имеет положительный заряд. При создании электрического поля электроны и «дырки» двигаются навстречу друг другу, образуя электрический ток. Такая особенность называется электронно-дырочной проводимостью. Наиболее распространенными полупроводниками считаются кремний, германий, селен, галлий, теллур и т.д.
Диэлектрики
В диэлектриках свободные носители заряда отсутствуют. Протекание электрического тока в таких веществах невозможно при стандартных внешних условиях. Наиболее популярными материалами, которые не проводят электрический ток является слюда, керамика, резина и каучуки.
Также к ним можно отнести воздух и определенные виды газов, но для них, определяющим будет являться степень загрязнения. При наличии достаточного количества свободных ионов, диэлектрические свойства они утрачивают. Таким образом нельзя слепо полагаться что какое-либо вещество является абсолютным диэлектриком и не проводит электричество. При определенных обстоятельства большая часть веществ, заведомо считающихся диэлектриками могут приобретать свойства полупроводников.
Так, например, оксид железа, который в обычных условиях препятствует протеканию электрического тока, при повышении давления и температуры переходит в состояние проводимости, при этом внутренняя его структура не нарушается.
Подводя итоги, отметим что качественное различие веществ, пропускающих или препятствующих протеканию электрического тока является их проводящее состояние. Для металлов оно является постоянным, а для диэлектриков и полупроводников возбужденной фазой. Количественное определение проводимости выражается через удельное электрическое сопротивление.
АО «Атомредметзолото» — Физические свойства
Мы используем куки-файлы (cookies) на нашем сайте для того, чтобы улучшить его работу.
Что такое куки-файлы?
Куки-файлы представляют собой небольшие текстовые файлы, которые пересылаются на ваш компьютер (или мобильное устройство), когда вы впервые посещаете сайт. Они помогают опознать вас (ваше устройство), когда вы в следующий раз посетите сайт; помогают вам быстрее справляться с формами для заполнения, а также рекомендовать определенный контент, исходя из вашего предыдущего поведения на сайте. Термин cookies применяется по отношению ко всем файлам, которые собирают информацию подобным образом.
Некоторые куки-файлы содержат личную информацию. Например, если вы кликнете на «напомнить мне» при загрузке, такой файл запомнит ваше имя пользователя. Но большинство куки-файлов не собирает информацию, по которой можно идентифицировать конкретно вас, вместо этого они собирают более общую информацию (местоположение, географическая зона и пр.).
Какими куки-файлами пользуется Урановый холдинг «АРМЗ»?
В общих чертах, наши куки-файлы выполняют четыре различные функции:
Основные куки-файлы
Такие куки-файлы позволяют идентифицировать подписчиков и гарантировать, что они заходят только на страницы, на которые подписались. Если подписчик выберет вариант отмены этих куки-файлов, то он не сможет получить доступ ко всему содержанию, которое обеспечено ему подпиской.
Оперативные куки-файлы
Куки-файлы этого типа используются для анализа того, как вы пользуетесь нашим сайтом, для мониторинга его показателей. Это позволяет нам предоставлять высококачественные услуги за счет предоставления быстрого доступа к наиболее популярным страницам.
Функциональные куки-файлы
Подобные куки-файлы используются, чтобы запоминать предпочтения пользователей. К примеру, они помогают сберечь ваше время при заполнении различных форм, для сохранения указанных вами в качестве предпочтительных настроек.
Другие куки-файлы
Определенные куки-файлы используются для сбора статистики, мониторинга трафика на сайте (например, при работе с программами «Яндекс. Метрика» и Google Analytics), улучшения функциональности сайта, а также выявления использования ботов (роботов).
Больше информацииИногда куки-файлы используются рекламодателями для того, чтобы показывать пользователям рекламу, исходя из их предпочтений. Если вы – резидент Европейского Союза и хотите узнать больше о том, как куки-файлы используются в таких целях или выбрать отказ от них, пожалуйста, посетите www.youronlinechoices.eu. Помните, что если вы выберете отключение использования куки-файлов, вы можете обнаружить, что некоторые разделы сайтов не будут работать привычным для вас образом.
Более подробно о том, как юридические лица могут использовать куки-файлы, рассказано на www.allaboutcookies.org.
Если у вас есть вопросы по поводу использования куки-файлов, пожалуйста, свяжитесь с нашим контактным лицом по эл. почте: [email protected].
Почему удар молнии не опасен для самолета, в котором вы летите
- Крис Баранюк
- BBC Future
Автор фото, Thinkstock
Сотрудник аэропорта в столице Исландии недавно сумел запечатлеть на фото драматическую картину: как большая молния попадает в пассажирский самолет. Как авиалайнерам удается уцелеть после таких ударов?
Даже находясь в офисе, Халлдор Гудмундссон почувствовал силу вспышки молнии, осветившей всё вокруг. Он подошел к окну, вынул смартфон, открыл фотоприложение и нажал на кнопку «Запись» в надежде на то, что сумеет запечатлеть еще одну молнию.
Этот момент не заставил себя ждать. Однако за секунду перед этим в видоискатель смартфона попал самолет, только что вылетевший из исландского международного аэропорта Кефлавик.
И тут же Гудмундссон стал свидетелем необычного и пугающего зрелища — в авиалайнер ударила молния!
Однако ничего страшного не произошло — самолет как ни в чем не бывало продолжил свой полет сквозь сильный дождь.
«Смотреть на это было и страшно, и здорово», — вспоминает Гудмундссон, из видеозаписи которого и получилась эта потрясающая фотография.
Автор фото, Halldor Gudmundsson
Случилось это 3 октября. Рейс авиакомпании Wow Air из столицы Исландии Рейкьявика в Париж завершился вполне благополучно, и представительница компании заверила корреспондента Би-би-си, что никаких повреждений лайнер не получил.
По ее словам, нет ничего необычного в том, что в самолет попала молния. Но как авиалайнеру удается остаться целым и невредимым после такого внезапного электрошока, энергия которого исчисляется примерно в 1 млрд джоулей — эквивалент взрыва четверти тонны тротила?
Дело в том, что оболочка, предохраняющая кабину и салон пассажирского самолета, устроена так, что проводит электричество, но не пропускает разряд к экипажу, пассажирам и электронике лайнера, объясняет Крис Хаммонд, член британского профсоюза пилотов гражданской авиации (Balpa), ныне вышедший на пенсию.
«В оболочке самолета — металлическая экранирующая сетка, — рассказывает он. — Что-то вроде электропроводной марли, которой укрыт весь лайнер».
Таким образом все находящиеся внутри самолета летят словно в так называемой клетке Фарадея, экранированной камере.
В дополнение к этому вся электроника, структурные соединения и баки с горючим имеют дополнительную, очень мощную защиту от внешних электрических разрядов.
Перед тем как авиалайнер вводится в эксплуатацию, всё это тщательнейшим образом проверяется, причем процесс проверки включает в себя симуляцию ударов молнии.
По словам Хаммонда, фотография, которую сделал Гудмундссон, — это иллюстрация того, что в самолете все работает так, как и должно работать.
Молния ударяет самолет в район носа, а затем уходит со стороны хвоста и — частично — крыла. Внутри авиалайнер полностью защищен.
Между тем, пассажиры, находящиеся на борту во время удара молнии, могут кое-что заметить. Например, те, кто летел в двух самолетах, попавших в сильную грозу в апреле над западным Лондоном, рассказывали, что слышали громкие удары, когда молния попадала в их авиалайнер.
Было время, когда пассажирские самолеты не были так хорошо изолированы от грозовых разрядов. Хэммонд вспоминает, как на подлете к аэропорту Сан-Франциско в его самолет попала молния, и «все экраны мгновенно погасли».
К счастью, в то время авиалайнеры еще оборудовались аналоговыми средствами управления. И пока компьютеры постепенно возвращались к жизни, Хэммонд сумел благополучно посадить самолет в ручном режиме.
Электричество в животе: кишечные микробы помогут энергетике
Энергетика человеческой цивилизации и энергетика живой клетки кое в чем похожи. Люди чаще всего используют для передачи энергии на расстояние и перевод ее из одного вида в другой универсальную валюту — электричество, хотя не брезгуют и тем, чтобы перегонять по трубам носитель химической энергии — углеводороды. Живая клетка почти всегда полагается на химическую энергию, но пользуется и электричеством: перенос заряженных частиц — непременный атрибут производства главного клеточного топлива, молекул АТФ.
Молекулы АТФ производятся в разных биохимических реакциях, но наиболее эффективная из них — дыхание. При этом процессе электрон отнимается у «съедобной» органической молекулы — к примеру, сахара — и передается по цепочке все дальше и дальше, по пути приводя в движение разные молекулярные машины.
В том варианте дыхания, который более всего привычен нам, людям (а также подавляющему большинству земных организмов) конечный пункт назначения электронов — это атомы кислорода, всегда готовые заполнить ими свою внешнюю электронную оболочку. Однако некоторые микроорганизмы привыкли обходиться в этом деле без кислорода: они передают электрон каким-нибудь неорганическим молекулам, вроде оксида железа. А поскольку такие минералы часто нерастворимы, бактерии не могут использовать их внутри клетки, а вместо этого транспортируют электроны наружу. Для этого у них предусмотрен механизм внеклеточного переноса электронов (ВПЭ).
Идея использовать такие бактерии для производства электроэнергии возникла довольно давно. Соответствующая технология называется «микробной топливной ячейкой»: расположенные между двумя электродами бактерии окисляют органику, выталкивают наружу электроны и создают разность потенциалов. Считалось, однако, что на такое способна лишь небольшая группа бактерий из весьма экзотических природных ниш: таких, где нужные минералы в изобилии, а кислорода нет. А главное, там нету органического сырья для альтернативного способа произвести АТФ — брожения. Хитрый фокус с транспортом электронов в такой ситуации — единственный способ как-то выживать.
Дэниел Портной и его коллеги из Университета Калифорнии в Беркли занимались совсем другой бактерией по имени «листерия»: этот кишечный патоген проводит свою активную жизнь в пищеварительной системе человека. Кислорода там нет, зато вполне достаточно питательных веществ, которые можно сбраживать. Тем не менее, когда этих бактерий помещали в электрохимическую камеру, они генерировали электрический ток. О листерии и раньше было известно, что она умеет восстанавливать трехвалентное железо до двухвалентного, и вместе эти факты однозначно свидетельствуют, что обитатель наших кишок зачем-то занимается внеклеточным переносом электронов, без которого прекрасно мог бы обойтись. Эту загадку и разгадали калифорнийские биохимики, о чем и сообщили в журнале Nature.
Ученые охарактеризовали все гены и белки, участвующие в процессе. Оказалось, что начальные стадии очень похожи на то, что происходит в клетках узких специалистов, полагающихся на ВПЭ ради выживания. Однако дальше происходит нечто другое: электрон подхватывают органические молекулы — флавины — которые и несут его наружу. Дальнейшая судьба электрона неизвестна, но флавины легко могут передать его минеральным частицам почвы, некоторым компонентам белков или даже другим бактериям.
Реклама на Forbes
Авторы показали, что описанный механизм присутствует не только у листерии, но и у самых разных обитателей человеческого кишечника, включая молочнокислую бактерию лактобациллу. По своему устройству он гораздо проще, чем система ВПЭ у минерал-зависимых анаэробов, поскольку флавины, как правило, присутствуют в изобилии. Возможно, именно в этом и состоит ответ на вопрос, зачем бактериям прибегать к таким изыскам в условиях избытка органики для сбраживания: «изыски» оказались не так уж сложны. Если минерал-зависимые анаэробы прибегают к этому способу получения энергии, потому что у них нет другого выхода, обитатели наших кишок занимаются этим просто потому, что это удобно.
То, что удобно бактериям, может оказаться удобным и для человечества. Бактерии, которые до сих пор пытались применить в микробных топливных ячейках, были очень капризны и не слишком конкурентоспособны в условиях реальной жизни, да и ВПЭ в их исполнении был громоздким и не слишком эффективным процессом. Не исключено, что более привычных нам бактерий удастся обучить выполнять этот трюк гораздо непринужденнее. Никто не знает, где именно произойдет прорыв в «зеленую энергетику» будущего, но каждая новая возможность повышает шансы, что он произойдет в ближайшие десятилетия.
Другой аспект этой работы — более глубокое понимание процессов, происходящих, если можно так выразиться, в сокровенных недрах человека. Информация о том, что там, в таинственной тьме, кроме всего прочего еще и вырабатывается электричество, не может не волновать. Не исключено, что медицина сделает из этого факта и более практичные выводы.
Урок 9. коррозия металлов и её предупреждение — Химия — 11 класс
Химия, 11 класс
Урок № 9. Коррозия металлов и её предупреждение
Перечень вопросов, рассматриваемых в теме: урок посвящён изучению видов коррозии, особенностям химической и электрохимической коррозии, методам защиты металлических изделий от коррозионного разрушения.
Глоссарий
Анодное покрытие – способ защиты металлического изделия от коррозии, когда защищаемый металл покрывается металлическим покрытием из более активного металла.
Газовая коррозия – разрушение металла в среде агрессивных газов (кислорода, оксида серы, хлороводорода) обычно при высоких температурах.
Гальванокоррозия – вид электрохимической коррозии, при которой два контактирующих металла в среде электролита образуют коррозионный гальванический элемент с возникновением электрического тока между металлами.
Жидкостная коррозия – разрушение металла в жидкостях, не проводящих электрический ток (органические растворители, нефтепродукты).
Ингибиторы – вещества, вводимые в коррозионную среду, в результате чего снижается её окисляющая способность.
Катодная защита – способ защиты металла от коррозии, когда защищаемое металлическое изделие подсоединяется к отрицательному полюсу внешнего источника электрического тока.
Катодное покрытие – способ защиты металла от коррозии, когда металлическое изделие покрывается тонким слоем из менее активного металла.
Коррозия – разрушение металла в результате окислительно-восстановительных реакций между металлом и окружающей средой
Осушение – удаление из окружающей среды влаги для предотвращения возникновения коррозии.
Протекторная защита – способ защиты металла от коррозии, когда к защищаемому металлическому изделию присоединяют кусок другого, более активного металла.
Химическая коррозия – разрушение металла в среде, не проводящей электрический ток.
Электрокоррозия – вид электрохимической коррозии, возникающей в среде электролита под действием внешнего электрического поля.
Электрохимическая коррозия – разрушение металла в среде электролита при контакте двух металлов с образованием коррозионного элемента и возникновением электрического тока.
Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.
Дополнительная литература:
1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.
2. Рудзитис, Г.Е. Химия. 10 класс: учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение. – 2018. – 352 с.
Открытые электронные ресурсы:
- Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).
ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ
Коррозия и её виды
Коррозия металлов – процесс разрушения металлического изделия в результате окислительно-восстановительной реакции металла с окружающей средой. В зависимости от механизма различают два вида коррозии: химическую и электрохимическую. Химическая коррозия происходит в среде, не проводящей электрический ток. К этому виду коррозии относится газовая коррозия, в результате которой металл разрушается под действием агрессивных газов: кислорода, оксида серы, хлороводорода. Газовая коррозия обычно происходит при высоких температурах. Другой вид химической коррозии – жидкостная коррозия, которая возникает в агрессивных жидкостях, не проводящих электрический ток, например, в органических растворителях или нефтепродуктах.
Электрохимическая коррозия происходит в среде электролитов, которые хорошо проводят электрический ток. Различают два вида электрохимической коррозии: гальванокоррозия и электрокоррозия. Гальванокоррозия возникает в месте контакта двух металлов, наличия в металле примесей, разной температуры на соседних участках металлов, разной концентрации электролитов в среде, контактирующей с металлом и в случае разной концентрации кислорода на соседних участках металла. Например, в чугуне примеси углерода и карбида железа играют роль катода, на котором происходит восстановление молекулярного кислорода в присутствии паров воды: 2Н2О + О2 + 4е → 4ОН-, а железо становится анодом и окисляется.
Fe0 – 2e → Fe2+. В результате среда становится щелочной, образуется сначала «белая» ржавчина Fe(ОН)2: Fe2+ + 2OH— → Fe(ОН)2↓, которая окисляется кислородом воздуха во влажной среде до трёхвалентного гидроксида железа.
4Fe(ОН)2↓ + 2Н2О + О2 → 4Fe(ОН)3↓, Fe(OH)3 + nh3O → Fe2O3·xh3O (ржавчина).
Если в атмосфере присутствует большое количество кислых газов (СО2, SO2, NO2), то при растворении их в воде образуются кислоты. В кислой среде коррозия идет ещё интенсивнее. В присутствии кислорода на катоде образуется вода, а в бескислородной среде выделяется водород.
На аноде: Fe0 – 2е → Fe2+;
На катоде: О2 + 4Н+ + 4е → 2Н2О
или в бескислородной среде: 2Н+ + 2е → Н20↑.
Ионы железа образуют соли с кислотными остатками образовавшихся при растворении газов кислот. В дальнейшем под действием кислорода воздуха, соли двухвалентного железа окисляются до солей трёхвалентного железа.
Электрокоррозия возникает под действием на металл электрического тока от внешнего источника постоянного тока. Часто она происходит под действием блуждающих токов от рельсов электротранспорта, от плохо изолированных опор линий электропередач. Участок, на который попадает ток от внешнего источника, заряжается отрицательно и становится катодом. На нём происходит восстановление элементов среды. А соседний участок становится анодом, на нём металл окисляется.
Факторы, увеличивающие скорость коррозии
Возникновение коррозионного гальванического элемента увеличивает скорость коррозии. При контакте двух металлов более активный металл отдает электроны менее активному. Возникает электрический ток. Активный металл растворяется и в результате реакции со средой, и за счет передачи электронов менее активному металлу. Принятые электроны менее активный металл отдает в окружающую среду, таким образом, окисление активного металла и восстановление компонентов окружающей среды происходит быстрее. Скорость коррозии зависит от количества кислорода, который контактирует с металлом. Железный гвоздь, погруженный в воду на половину своей длины, разрушается быстрее всего, так как доступу кислорода ничего не препятствует. Гвоздь, полностью погруженный в воду, разрушается медленнее, так как количество кислорода, участвующего в реакции, ограничивается скоростью растворения кислорода в воде. В пробирке, где сверху воды налили масло, коррозия идет медленнее всего, так как масло препятствует поступлению кислорода в воду.
Методы защиты металлов от коррозии
Одним из распространённых методов защиты металлов от коррозии является нанесение защитных покрытий. Покрытия бывают металлическими и неметаллическими. Если металлическое изделие покрыто слоем более активного металла, покрытие называют анодным. Если покрытие изготовлено из менее активного металла, оно называется катодным. Неметаллические покрытия – это различные эмали, лаки, краски, резиновые, битумные и полимерные покрытия. По отношению к железу анодными покрытиями будут цинковые, хромовые, алюминиевые покрытия. Эти покрытия защищают металл даже в случае появления царапин или трещин. Так как покрытие изготовлено из более активного металла, оно является анодом по отношению к защищаемому металлу и будет разрушаться. Защищаемое металлическое изделие разрушаться не будет. Катодные покрытия обычно делают из малоактивных металлов. Это никель, олово, свинец, медь, серебро, золото. Из-за низкой активности такие металлы слабо подвергаются воздействию коррозии, но в случае нарушения покрытия, возникнет коррозионный элемент, в котором анодом станет защищаемое металлическое изделие. Оно начнет разрушаться. Защитные оксидные покрытия на поверхности металла можно создать путем химической обработки концентрированной азотной кислотой (пассивация алюминия, хрома), концентрированным раствором щелочи и горячего масла (воронение), фосфорной кислотой и её кислыми солями (фосфатирование).
Эффективным, но дорогим методом защиты металлов от коррозии является введение в сплав антикоррозионных легирующих добавок: хрома, никеля, молибдена, титана. Для повышения стойкости к коррозии в кислой среде в сплав добавляют кремний.
К методам электрохимической защиты относятся протекторная и катодная защита. Протекторная защита предусматривает закрепление на защищаемом изделии пластин из активного металла: цинка, алюминия, магния. Попадая в агрессивную среду, протектор становится анодом, начинает разрушаться, а металлическое изделие, являясь катодом, не разрушается до полного разрушения протектора. Катодная защита производится путём подсоединения защищаемого металлического изделия к отрицательному полюсу внешнего источника постоянного электрического тока. В результате защищаемый металл приобретает отрицательный заряд и становится катодом. В качестве анода используют вспомогательный кусок металла (железный лом, старый рельс), который заземляют.
Важным направлением предотвращения коррозии металлов является снижение агрессивности окружающей среды. Для этого проводят осушение почвы, воздуха. В жидкие среды добавляют ингибиторы – вещества, реагирующие с окислительными компонентами среды и снижающие скорость коррозии. Для борьбы с блуждающими токами проводят надёжную изоляцию токопроводящих конструкций, организацию бесстыкового пути.
Предотвращение потерь металла от коррозии позволит не только сберечь тонны металла, но и предотвратить аварии на производстве и транспорте, сберечь человеческие жизни.
ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ
1. Расчёт массы металла, предохраняемого от разрушения за счёт нанесения защитных покрытий
Условие задачи: В результате атмосферной коррозии толщина стального изделия уменьшается на 0,12 мм/год. Потерю какой массы стального изделия плотностью 7750 кг/м3 и площадью 10 м2 можно предотвратить путем нанесения лакокрасочного покрытия, которое сохраняет свои защитные свойства в течение 4 лет? Ответ запишите в виде целого числа в килограммах.
Шаг первый: необходимо перевести скорость коррозии из мм/год в м/год.
Для этого скорость коррозии умножим на 10-3:
0,12·10-3 = 1,2·10-4 (м/год).
Шаг второй: Найдём объём слоя металла, который может быть разрушен коррозией за 1 год. Для этого толщину слоя разрушенного в течение года металла умножим на площадь стального изделия:
1,2·10-4·10 = 1,2·10-3 (м3/год).
Шаг третий: Найдём массу вычисленного объёма металла.
Для этого объём металла умножим на его плотность:
1,2·10-3·7750 = 9,3 (кг/год).
Шаг четвёртый: Найдём массу металла, которая могла бы разрушиться за 4 года. Для этого массу сохранённого за год металла умножим за 4 года:
9,3·4 = 37,2 (кг). Округляем до целого числа, получаем 37 (кг).
Ответ: 37
2. Расчёт массы металла, разрушенного в результате коррозии
Условие задачи: Через железную решётку, предохраняющую от попадания в канализацию крупного мусора, проходит 20 м3 воды в сутки. Содержание кислорода в воде 1 % от объёма воды. Какая масса железа окислится за 6 месяцев использования решётки, если на окисление металла расходуется 60% содержащегося в воде кислорода? Ответ записать в килограммах в виде целого числа.
Шаг первый: найдём объём кислорода, который содержится в 20 м3 воды.
Для этого разделим 20 м3 на 100:
20 : 100 = 0,2 (м3/сутки) = 200 (л/сутки)
Шаг второй: Найдём объём кислорода, который проходит в воде через решётку в течение 6 месяцев.
Для этого объём кислорода, проходящий через решетку в сутки, умножим на 30 дней и на 6 месяцев:
200·30·6 = 36000 (л).
Шаг третий: Найдём объём кислорода, который расходуется на окисление железа. Для этого умножим найденный объём кислорода на 60 и разделим на 100:
(36000·60) : 100 = 21600 (л).
Шаг четвёртый: Запишем уравнение реакции взаимодействия железа с кислородом в нейтральной среде:
2Fe + O2 + 2H2O → 2Fe(OH)2.
Шаг пятый: Найдём массу железа, окисленного 21600 л кислорода.
Для этого составим пропорцию с учётом того, что масса 1 моль железа равна 56 г/моль, а 1 моль газа в нормальных условиях занимает 22,4 л.
2·56 г железа реагирует с 22,4 л кислорода;
х г железа реагирует с 21600 л кислорода.
х = (2·56·21600) : 22,4 = 108000 (г) = 108 кг.
Ответ: 108.
Металлическое соединение и структура железа | 14-16 лет | План урока
В этом упражнении учащиеся решают, верны или ложны ряд утверждений о связи в железе. Это приводит к дальнейшим размышлениям и дискуссиям о связи в металлах.
Это упражнение проверяет неверные представления о том, что:
- Структура железа — пример гигантской молекулы.
- Атомы железа удерживаются вместе ионными связями.
- Железо проводит электричество, потому что атомы железа движутся через твердое тело.
- Железо расширяется при нагревании, потому что атомы становятся больше.
- Металлическое железо — это серебро, потому что атомы железа — это серебро.
Цели обучения
Студенты смогут:
- Опишите связь в железе и используйте ее для объяснения физических свойств металла.
Последовательность действий
Введение
- Дайте каждому учащемуся гвоздь или скрепку для бумаг, чтобы они посмотрели на них и почувствовали их как стимул для сосредоточения их мышления.
- Расскажите ученикам, что они собираются:
- Опишите связь в железе.
- Объясните свойства металла, используя свои представления о склеивании.
Деятельность: этап 1
Дайте каждому студенту вопросник «Металлические соединения и структура железа», который содержит 10 утверждений о структуре и свойствах железа. Попросите их работать индивидуально по телефону:
- Прочтите вопросы.
- Запишите в таблицу, считают ли они эти утверждения верными или ложными.
Активность: этап 2
Разделите учащихся на группы по три человека, чтобы:
- Рассмотрите каждый вопрос по очереди.
- Делитесь своими отзывами и идеями.
- Согласитесь на групповой ответ.
- Запишите каждый ответ.
- Запишите индивидуально, как они изменили свои идеи в результате обсуждения.
Деятельность: этап 3
Выдайте мини-доски и спросите:
- Каждый ученик должен нарисовать картинку, изображающую связь в железе.
- Некоторые студенты делятся своими идеями.
С помощью информационного проектора покажите электронную анимацию структуры металла и того, что с ним происходит при нагревании или при подключении к батарее. Задавайте вопросы:
- Составьте явную картину металлических связей в терминах внешней оболочки электронов, которая может свободно перемещаться через гигантскую решетку положительных ионов.
- Объясните использование этой модели металлической связи для объяснения физических свойств, включая проводимость электричества, расширение при нагревании и внешний вид.
- Распространить представления о связях (и, следовательно, об их физических свойствах) на металлы в целом.
До отделки
Предоставить возможность студентам:
- Добавьте к тому, что уже есть в их «Металлическом соединении и структуре листа вопросов по структуре железа».
- Напишите их имя.
Обратная связь
Просмотрите листы и прокомментируйте, как развивались их идеи, и обратите внимание на пути дальнейшего развития учащегося.
Тактильный стимул помогает учащимся оценить цели занятия.
Работая в группах, учащиеся сравнивают свои идеи с другими, переоценивают свои первоначальные идеи и развивают их, где это необходимо. Вопросы исследования имеют основополагающее значение для того, чтобы убедиться, что заблуждения рассеиваются и на их место приходит правильная модель. На протяжении всего процесса студентам предлагается проверить свое понимание.
Заключительная проверка на этапе обратной связи сопровождается указанием следующих шагов, которые должен предпринять ученик.
Оборудование
Для демонстрации (по возможности):
- Электронная анимация, показывающая структуру металла и то, что с ним происходит, когда металл нагревается или когда он подключается к батарее.
- Информационный проектор.
На каждого студента:
- Гвоздь или скрепка.
- Мини-доска.
Ответы и примечания к ответам
- Железо имеет тип соединения, называемый металлическим соединением.
- ИСТИНА. Железо — это металл, и все металлы имеют тип связи, называемый металлической связью, который отличается от ковалентной или ионной связи. При металлическом соединении внешние оболочки соседних атомов перекрываются, и электроны внешней оболочки могут свободно перемещаться через решетку. Металл состоит из катионов металлов и уравновешивающего количества этих «свободных» электронов.
- Структура железа является примером гигантской молекулы.
- ЛОЖЬ. В железе положительные ионы упакованы вместе в гигантскую решетку, но мы используем слово «молекула», чтобы обозначить, что структура содержит ковалентные связи, которых нет в железе.
- В составе железа есть положительные ионы.
- ИСТИНА. Поскольку электроны во внешней оболочке могут свободно перемещаться через решетку, они оставляют положительные ионы железа.
- Атомы в железе удерживаются вместе ионными связями.
- ЛОЖЬ. Связь в железе — это металлическая связь. Это отличается от ионного связывания, потому что в нем отсутствуют отрицательные анионы.
- В структуре железа некоторые электроны могут двигаться вокруг твердого тела.
- ИСТИНА. Электроны из внешней оболочки атомов могут свободно перемещаться через решетку положительных ионов.
- Если железо нагреть до очень высокой температуры, оно превратится в газ.
- ИСТИНА. Если нагреть железо, оно расплавится. Если расплавленное железо нагреть до достаточно высокой температуры, оно закипит.
- Железо может проводить электричество, потому что атомы железа могут скользить по своим соседям и перемещаться через твердое тело.
- ЛОЖЬ. Катионы железа обычно фиксируются в своих положениях решетки и не могут перемещаться.
- Железо проводит электричество, потому что содержит «море» электронов.
- ИСТИНА. Электроны из внешних оболочек атомов могут перемещаться и проходить через металл, когда он подключен к батарее.
- Железо расширяется при нагревании, потому что атомы железа становятся больше.
- ЛОЖЬ.Когда железо нагревается, положительные катионы вибрируют сильнее и расходятся дальше друг от друга.
- Железо — серебристо-серый металл, потому что атомы железа серебристо-серые.
- ЛОЖЬ. Цвет железа — это свойство расположения катионов и электронов. Отдельный атом не имел бы цвета.
Дополнительная информация
Этот план урока изначально был частью веб-сайта Assessment for Learning, опубликованного в 2008 году.
Оценка
для обучения — это эффективный способ активного вовлечения учащихся в учебу. Каждый план занятия содержит предложения по организации занятий и рабочие листы, которые можно использовать со студентами.
Благодарность
К. Табер, Химические заблуждения — профилактика, диагностика и лечение, Том 2: Классные ресурсы, Железо — металл . Лондон: Королевское химическое общество, 2002.
Какой металл является лучшим дирижером?
Давайте вернемся к периодической таблице, чтобы объяснить, какие металлы лучше всего проводят электричество.Количество валентных электронов в атоме — это то, что делает материал способным проводить электричество. Внешняя оболочка атома — валентность. В большинстве случаев проводники имеют один или два (иногда три) валентных электрона.
Металлы с ОДНИМ валентным электроном — это медь, золото, платина и серебро. Железо имеет два валентных электрона. Хотя алюминий имеет три валентных электрона, он также является отличным проводником. Полупроводник — это материал, который имеет четыре валентных электрона.
Электропроводность
Металлические связи заставляют металлы проводить электричество.В металлической связи атомы металла окружены постоянно движущимся «морем электронов». Это движущееся море электронов позволяет металлу проводить электричество и свободно перемещаться между ионами.
Большинство металлов в определенной степени проводят электричество. Некоторые металлы обладают большей проводимостью, чем другие. Медь, серебро, алюминий, золото, сталь и латунь являются обычными проводниками электричества. Металлы с самой высокой проводимостью — это серебро, медь и золото.
Порядок электропроводности металлов
Этот список электропроводности включает сплавы, а также чистые элементы.Поскольку размер и форма вещества влияют на его проводимость, в списке предполагается, что все образцы имеют одинаковый размер. Вот основные типы металлов и некоторые распространенные сплавы в порядке убывания проводящих отношений, как и в Metal Detecting World.
От лучшего к худшему — какой металл является лучшим проводником электричества
(одинакового размера)
1 | Серебро (чистое) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | Медь (чистое) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 3 | Золото (чистое) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | Алюминий | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | Цинк | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | Никель | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | Латунь | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Железо (чистое) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | Платина | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | Сталь (карбонизированная) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | Свинец (чистый) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | Нержавеющая сталь Электропроводность «Серебро — лучший проводник электричества, потому что оно содержит большее количество подвижных атомов (свободных электронов).Чтобы материал был хорошим проводником, пропускаемое через него электричество должно перемещать электроны; чем больше в металле свободных электронов, тем выше его проводимость. Однако серебро дороже других материалов и обычно не используется, если только оно не требуется для специального оборудования, такого как спутники или печатные платы », — поясняет Sciencing.com. Медь проводимость«Медь менее проводящая, чем серебро, но дешевле и обычно используется в качестве эффективного проводника в бытовых приборах.Большинство проводов имеют медное покрытие, а сердечники электромагнитов обычно оборачиваются медной проволокой. Медь также легко паять и наматывать на провода, поэтому ее часто используют, когда требуется большое количество проводящего материала », — сообщает Sciencing.com Золото ПроводимостьВ то время как золото является хорошим проводником электричества и не тускнеет, когда на воздухе это слишком дорого для обычного использования. Индивидуальные свойства делают его идеальным для конкретных целей. Алюминий ПроводимостьАлюминий может проводить электричество, но он не проводит электричество так же хорошо, как медь.Алюминий образует электрически стойкую оксидную поверхность в электрических соединениях, что может вызвать их перегрев. В высоковольтных линиях электропередачи, заключенных в стальной корпус для дополнительной защиты, используется алюминий. Цинк ПроводимостьScienceViews.com объясняет, что «Цинк — это сине-серый металлический элемент с атомным номером 30. При комнатной температуре цинк становится хрупким, но становится пластичным при 100 C. Податливость означает, что его можно сгибать. и формируется без разрушения. Цинк — умеренно хороший проводник электричества ». Никель ПроводимостьБольшинство металлов проводят электричество. Никель — это элемент с высокой электропроводностью. Латунь ЭлектропроводностьЛатунь — это металл, работающий на растяжение, используемый для небольших машин, потому что его легко сгибать и формовать в различные детали. Его преимущества перед сталью заключаются в том, что он немного более проводящий, дешевле в приобретении, менее коррозионный, чем сталь, и при этом сохраняет ценность после использования. Латунь — это сплав. Бронза ПроводимостьБронза — это электропроводящий сплав, а не элемент. Железо ПроводимостьЖелезо имеет металлические связи, в которых электроны могут свободно перемещаться вокруг более чем одного атома. Это называется делокализацией. Из-за этого железо — хороший проводник. Платина ПроводимостьПлатина — это элемент с высокой электропроводностью, который более пластичен, чем золото, серебро или медь. Он менее податлив, чем золото. Металл обладает отличной устойчивостью к коррозии, устойчив при высоких температурах и имеет стабильные электрические свойства. Сталь ПроводимостьСталь — это проводник и сплав железа. Сталь обычно используется для оболочки других проводников, потому что это негибкий и очень коррозионный металл при контакте с воздухом. Проводимость свинца«Хотя соединения свинца могут быть хорошими изоляторами, чистый свинец — это металл, который проводит электричество, что делает его плохим изолятором. Удельное сопротивление свинца составляет 22 миллиардных метра. Он находит применение в электрических контактах, потому что, будучи относительно мягким металлом, он легко деформируется при затягивании и обеспечивает прочное соединение.Например, разъемы для автомобильных аккумуляторов обычно делают из свинца. Стартер автомобиля на короткое время потребляет ток более 100 ампер, что требует надежного подключения к батарее », — поясняет сайт Sciencing.com. Нержавеющая сталь ЭлектропроводностьНержавеющая сталь, как и все металлы, является относительно хорошим проводником электричества. Факторы, влияющие на электрическую проводимостьОпределенные факторы могут влиять на то, насколько хорошо материал проводит электричество. ThoughtCo объясняет эти факторы здесь:
Посетите Tampa Steel & Supply для качественной стали и алюминияВам нужны поставки стали? Не ищите ничего, кроме профессионалов Tampa Steel and Supply. У нас есть обширный список стальной продукции для любого проекта, который вам нужен.Мы гордимся тем, что обслуживаем наших клиентов почти четыре десятилетия, и готовы помочь вам с вашими потребностями в стали. Есть вопросы? Позвоните нам сегодня, чтобы узнать больше, или загляните в наш красивый выставочный зал Тампа. Сделайте запрос онлайн Rust Never Sleeps — Berkeley LabОксид железа (ржавчина) является плохим проводником электричества, но электроны в оксиде железа могут использовать тепловую энергию перескакивать с одного атома железа на другой. Эксперимент в лаборатории Беркли теперь показал, что именно происходит с электронами после их переноса на частицу оксида железа.(Изображение любезно предоставлено Бенджамином Гилбертом, лаборатория Беркли) Ржавчина — оксид железа — плохо проводит электричество, поэтому электронное устройство с ржавой батареей обычно не работает. Несмотря на эту плохую проводимость, электрон, переданный частице ржавчины, будет использовать тепловую энергию для непрерывного перемещения или «прыжка» от одного атома железа к другому. Подвижность электронов в оксиде железа может иметь огромное значение для широкого спектра реакций, связанных с окружающей средой и энергией, включая реакции, относящиеся к урану в грунтовых водах, и реакции, относящиеся к недорогим устройствам солнечной энергии.Прогнозирование влияния прыжков электронов на реакции оксидов железа было проблематичным в прошлом, но теперь, впервые, мультиинституциональная группа исследователей во главе с учеными из Министерства энергетики США (DOE) Лоуренсом Беркли Национальная лаборатория (лаборатория Беркли) непосредственно наблюдала, что происходит с электронами после того, как они были перенесены на частицу оксида железа. «Мы считаем, что эта работа является отправной точкой для новой области геохимии с временным разрешением, которая стремится понять механизмы химических реакций, создавая различные виды фильмов, которые в реальном времени изображают движение атомов и электронов во время реакций», — говорит Бенджамин Гилберт. геохимик из отдела наук о Земле лаборатории Беркли и соучредитель Центра наногеологии Беркли, который руководил этим исследованием.«Используя сверхбыструю рентгеновскую спектроскопию с накачкой и зондом, мы смогли измерить скорость, с которой электроны переносятся через спонтанные переходы от железа к железу в окислительно-восстановительных оксидах железа. Наши результаты показали, что скорости зависят от структуры оксида железа, и подтвердили правильность некоторых аспектов нынешней модели прыжков электронов в оксидах железа ». Гилберт — автор статьи в журнале Science , в которой описывается эта работа. Работа называется «Электронные малые поляроны и их подвижность в наночастицах оксигидрооксида железа.Соавторами статьи были Джордан Кац, Сяои Чжан, Клаус Аттенкофер, Карена Чапман, Катрин Франдсен, Петр Заржицки, Кевин Россо, Роджер Фальконе и Гленн Уэйчунас. На макроуровне камни и минералы не кажутся очень реактивными — подумайте о миллионах лет, которые требуются горам, чтобы вступить в реакцию с водой. Однако в наномасштабе многие обычные минералы способны вступать в окислительно-восстановительные реакции — обмениваться одним или несколькими электронами — с другими молекулами в своей среде, воздействуя на почву и воду, морскую воду, а также на пресную.Одной из наиболее важных из этих окислительно-восстановительных реакций является образование или преобразование минералов оксида железа и оксигидроксида посредством процессов переноса заряда, в которых железо циркулирует между двумя его общими состояниями окисления — железом (III) и железом (II). Бенджамин Гилберт, геохимик из Отделения наук о Земле лаборатории Беркли, провел эксперимент, в котором впервые непосредственно наблюдались термически активируемые прыжки электронов в частицах оксида железа. «Поскольку железо (II) значительно более растворимо, чем железо (III), восстановительные превращения оксида железа (III) и оксигидроксидных минералов могут существенно повлиять на химию и минералогию почвы и поверхности», — говорит Гилберт.«В случае оксида железа (III) восстановление до железа (II) может вызвать растворение минералов в очень короткие сроки, что изменяет минералогию и пути потока воды. Также может происходить мобилизация железа в раствор, который может стать важным источником биодоступного железа для живых организмов ». Гилберт также отметил, что многие органические и неорганические загрязнители окружающей среды могут обмениваться электронами с фазами оксида железа. Будь то железо (III) или оксид железа (II), это важный фактор для разложения или изоляции данного загрязнителя.Кроме того, некоторые бактерии могут передавать электроны оксидам железа в рамках своего метаболизма, связывая окислительно-восстановительную реакцию железа с углеродным циклом. Механизмы, которые управляют этими критическими биогеохимическими результатами, остаются неясными, потому что окислительно-восстановительные реакции минералов сложны и включают несколько этапов, которые происходят в пределах нескольких миллиардных долей секунды. До недавнего времени эти реакции нельзя было наблюдать, но все изменилось с появлением средств синхротронного излучения и сверхбыстрой рентгеновской спектроскопии. «Так же, как спортивный фотограф должен использовать камеру с очень короткой выдержкой, чтобы запечатлеть спортсмена в движении без размытия, чтобы иметь возможность наблюдать за движущимися электронами, нам нужно было использовать чрезвычайно короткий и очень яркий (мощный) импульс X — лучи », — говорит Джордан Кац, ведущий автор статьи Science , который сейчас работает в Университете Денисона. «Для этого исследования рентгеновские лучи были произведены в усовершенствованном источнике фотонов Аргоннской национальной лаборатории». В дополнение к коротким ярким импульсам рентгеновского излучения, Кац сказал, что он и его соавторы также должны были разработать экспериментальную систему, в которой они могли бы включать желаемые реакции с помощью сверхбыстрого переключателя. Джордан Кац, ныне работающий в Университете Денисона, разработал экспериментальную систему, которая синхронизировала перенос многих электронов в частицы оксида железа, чтобы можно было отслеживать их совокупное поведение. «Единственный способ сделать это в необходимом масштабе времени — это использовать свет, в данном случае сверхбыстрый лазер», — говорит Кац. «Нам была нужна система, в которой электрон, который мы хотели изучить, мог быть немедленно введен в оксид железа в ответ на поглощение света. Это позволило нам эффективно синхронизировать перенос многих электронов в частицы оксида железа, чтобы мы могли отслеживать их совокупное поведение.” С помощью своей системы спектроскопии с временным разрешением накачки и зонда в сочетании с расчетами ab initio , выполненными соавтором Кевином Россо из Тихоокеанской северо-западной национальной лаборатории, Гилберт, Кац и их коллеги определили, что скорости, с которыми электроны прыгают от одного железа атом к следующему в оксиде железа изменяется от одного прыжка за наносекунду до пяти прыжков за наносекунду, в зависимости от структуры оксида железа. Их наблюдения соответствовали установленной модели описания поведения электронов в таких материалах, как оксиды железа.В этой модели электроны, введенные в оксид железа, соединяются с фононами (колебаниями атомов в кристаллической решетке) для искажения структуры решетки и создания небольших энергетических ям или ямок, известных как поляроны. «Эти маленькие электронные поляроны эффективно образуют локализованный участок металла с более низкой валентностью, а проводимость происходит за счет термически активируемого перескока электронов от одного участка металла к другому», — говорит Гилберт. «Измеряя скорость перескока электронов, мы смогли экспериментально продемонстрировать, что отрыв железа (II) от кристалла ограничивает скорость реакции растворения в целом.Мы также смогли показать, что прыжки электронов в оксидах железа не являются узким местом для роста микробов, которые используют эти минералы в качестве акцепторов электронов. Скорость переноса электронов от белка к минералу ниже ». Кац взволнован применением этих результатов для поиска способов использования оксида железа для сбора и преобразования солнечной энергии. «Оксид железа — это распространенный, стабильный и экологически чистый полупроводник, обладающий оптимальными свойствами для поглощения солнечного света», — говорит он.«Однако, чтобы использовать оксид железа для сбора и преобразования солнечной энергии, важно понимать, как электроны переносятся внутри материала, который при использовании в традиционной конструкции не обладает высокой проводимостью. Подобные эксперименты помогут нам разрабатывать новые системы с новой наноструктурированной архитектурой, которая способствует желаемым окислительно-восстановительным реакциям и подавляет вредные реакции, чтобы повысить эффективность нашего устройства ». Гилберт добавляет: «Также важна демонстрация того, что очень быстрые стадии геохимических реакций, такие как прыжки электронов, могут быть измерены с помощью сверхбыстрых методов накачки и зонда.” Это исследование было поддержано Управлением науки Министерства энергетики США, которое также поддерживает усовершенствованный источник фотонов. # # Национальная лаборатория Лоуренса Беркли решает самые насущные научные проблемы мира, продвигая устойчивую энергетику, защищая здоровье человека, создавая новые материалы и раскрывая происхождение и судьбу Вселенной. Научный опыт Berkeley Lab был основан в 1931 году и отмечен 13 Нобелевскими премиями.Калифорнийский университет управляет лабораторией Беркли в Управлении науки Министерства энергетики США. Для получения дополнительной информации посетите www.lbl.gov. Управление науки Министерства энергетики США является крупнейшим спонсором фундаментальных исследований в области физических наук в Соединенных Штатах и работает над решением некоторых из самых насущных проблем нашего времени. Для получения дополнительной информации посетите веб-сайт Управления науки по адресу science.energy.gov/. Дополнительная информация Подробнее об исследованиях Бенджамина Гилберта можно узнать здесь Более подробную информацию об исследованиях Джордана Каца можно найти здесь Для получения дополнительной информации об усовершенствованном источнике фотонов перейдите сюда Чтобы прочитать новость об этой работе из Аргоннской национальной лаборатории, перейдите сюда Какой металл лучше всего проводит электричество?Электропроводность — это движение электрически заряженных частиц.Все металлы в определенной степени проводят электричество, но некоторые металлы обладают большей проводимостью. Металлы с самой высокой проводимостью — это серебро, медь и золото. Медь, например, обладает высокой проводимостью и обычно используется в металлической проводке. Латунь, с другой стороны, содержит медь, но другие материалы в ее составе снижают проводимость. Чистое серебро — самый проводящий из всех металлов. В этом списке показан порядок проводимости некоторых обычно используемых металлов и сплавов при одинаковых размерах.
Почему серебро занимает первое место в списке? Наличие валентных электронов определяет проводимость металла. Валентные электроны — это «свободные электроны», которые позволяют металлам проводить электрический ток.Свободные электроны движутся сквозь металл, как бильярдные шары, передавая энергию при столкновении друг с другом. Серебро и медь — это металлы с одиночными свободно движущимися валентными электронами. Балдахин перемещается по металлу с небольшим сопротивлением, делая эти металлы более проводящими. Полупроводниковые металлы имеют несколько валентных электронов, что снижает реакцию отталкивания. Подумайте об этом восьмерке снова: когда он ударяет по одному мячу, он ударяет его дальше, чем если бы он мягко сталкивался с несколькими шарами.Однако полупроводники могут стать более эффективными электрическими проводниками при нагревании или в сочетании с другими элементами. Сопротивление полупроводников зависит от наличия примесей в металле. Помимо примесей, другие факторы, которые могут повлиять на то, как металл проводит электричество, включают частоту, электромагнитные поля и температуру. Серебро имеет самую высокую проводимость среди всех металлов, но также имеет высокую цену и может потускнеть, что сделает поверхность менее проводящей.Золото более устойчиво к коррозии. Высокая проводимость и доступность меди делают ее более привлекательным выбором. Электропроводность металловЭлектропроводность металлов — это результат движения электрически заряженных частиц. Атомы металлических элементов характеризуются наличием валентных электронов, которые представляют собой электроны во внешней оболочке атома, которые могут свободно перемещаться. Именно эти «свободные электроны» позволяют металлам проводить электрический ток. Поскольку валентные электроны могут свободно перемещаться, они могут перемещаться через решетку, которая формирует физическую структуру металла. Под действием электрического поля свободные электроны движутся через металл так же, как бильярдные шары, ударяясь друг о друга, передавая электрический заряд во время движения. Передача энергииПередача энергии наиболее сильна при небольшом сопротивлении. На бильярдном столе это происходит, когда шар ударяется о другой шар, передавая большую часть своей энергии следующему шару.Если один шар ударяет несколько других шаров, каждый из них будет нести лишь часть энергии. Точно так же наиболее эффективными проводниками электричества являются металлы, которые имеют единственный валентный электрон, который может свободно перемещаться и вызывает сильную реакцию отталкивания в других электронах. Так обстоит дело с наиболее проводящими металлами, такими как серебро, золото и медь. У каждого есть один валентный электрон, который движется с небольшим сопротивлением и вызывает сильную реакцию отталкивания. Полупроводниковые металлы (или металлоиды) имеют большее количество валентных электронов (обычно четыре или более). Таким образом, хотя они могут проводить электричество, они неэффективны в этой задаче. Однако при нагревании или добавлении других элементов полупроводники, такие как кремний и германий, могут стать чрезвычайно эффективными проводниками электричества. Проводимость металлаЭлектропроводность в металлах должна соответствовать закону Ома, который гласит, что ток прямо пропорционален электрическому полю, приложенному к металлу.Закон, названный в честь немецкого физика Георга Ома, появился в 1827 году в опубликованной статье, в которой излагалось, как ток и напряжение измеряются в электрических цепях. Ключевой переменной при применении закона Ома является удельное сопротивление металла. Удельное сопротивление противоположно электрической проводимости, оценивая, насколько сильно металл противодействует прохождению электрического тока. Обычно это значение измеряется на противоположных гранях куба материала длиной один метр и описывается как омметр (Ом · м). Удельное сопротивление часто обозначают греческой буквой ро (ρ). Электропроводность, с другой стороны, обычно измеряется в сименсах на метр (См -1 ) и обозначается греческой буквой сигма (σ). Один сименс равен одному ому, обратному величине. Электропроводность, удельное сопротивление металлов
* Примечание. Удельное сопротивление полупроводников (металлоидов) сильно зависит от наличия примесей в материале. Какие материалы проводят электричество? — Scientific American Ключевые концепции Введение Фон Электричество требует полного «контура» для прохождения тока.Это называется замкнутым контуром. Вот почему у настенных розеток есть два контакта, а у батарей два конца (положительный и отрицательный), а не один. Вы подключаете их обоих к цепи, и это создает полный цикл. Если контур вообще разорван, он становится разомкнутым, и ток не течет. В этом проекте вы построите свою простую схему, разобрав фонарик (разумеется, с разрешения). Вы будете использовать свою схему в качестве тестера, чтобы определить, являются ли домашние материалы проводниками или изоляторами.Когда вы подключаете цепь к проводнику, вы создаете замкнутую цепь и лампочка фонарика включается. Если вы подключите цепь к изолятору, у вас все равно будет разрыв, поэтому лампочка останется выключенной. Материалы
Препарат
Процедура
Наблюдения и результаты Иногда бывает трудно найти неметаллические проводящие материалы. К некоторым фонарикам подойдет графитовый стержень карандаша. Но графит имеет очень высокое сопротивление по сравнению с металлами, поэтому лампа может казаться очень тусклой или вообще не загораться. Очистка Больше для изучения Это мероприятие предоставлено вам в сотрудничестве с Science Buddies Почему металлы так хорошо проводят тепло и электричество?Структура металлов Структуры чистых металлов описать просто, поскольку атомы, образующие эти металлы, можно рассматривать как идентичные совершенные сферы.Более конкретно, металлическая структура состоит из «выровненных положительных ионов» (катионов) в «море» делокализованных электронов. Это означает, что электроны могут свободно перемещаться по структуре и обуславливают такие свойства, как проводимость. Какие бывают виды облигаций? Ковалентные облигации Ковалентная связь — это связь, которая образуется, когда два атома разделяют электроны. Примерами соединений с ковалентными связями являются вода, сахар и диоксид углерода. Ионные связи Ионная связь — это полный перенос валентных электронов между металлом и неметаллом. Это приводит к тому, что два противоположно заряженных иона притягиваются друг к другу. В ионных связях металл теряет электроны, чтобы стать положительно заряженным катионом, тогда как неметалл принимает эти электроны, чтобы стать отрицательно заряженным анионом. Примером ионной связи может быть соль (NaCl). Связки металлические Металлическое соединение является результатом электростатической силы притяжения, которая возникает между электронами проводимости (в форме электронного облака делокализованных электронов) и положительно заряженными ионами металлов.Это можно описать как разделение свободных электронов между решеткой положительно заряженных ионов (катионов). Металлическое соединение определяет многие физические свойства металлов, такие как прочность, пластичность, термическое и электрическое сопротивление и проводимость, непрозрачность и блеск. Делокализованные движущиеся электроны в металлах — Именно свободное движение электронов в металлах придает им проводимость. Электропроводность Металлы содержат свободно движущиеся делокализованные электроны.При приложении электрического напряжения электрическое поле внутри металла вызывает движение электронов, заставляя их перемещаться от одного конца проводника к другому. Электроны будут двигаться в положительную сторону.
Теплопроводность Металл хорошо проводит тепло.Проводимость возникает, когда вещество нагревается, частицы получают больше энергии и больше вибрируют. Затем эти молекулы сталкиваются с соседними частицами и передают им часть своей энергии. Затем это продолжается и передает энергию от горячего конца к более холодному концу вещества. Почему металлы так хорошо проводят тепло? Электроны в металле — это делокализованные электроны и свободно движущиеся электроны, поэтому, когда они получают энергию (тепло), они вибрируют быстрее и могут перемещаться, это означает, что они могут быстрее передавать энергию. Какие металлы проводят лучше всего? Вверху: Электронные оболочки Золото (au), Серебро (Ag), Медь (Cu) и цинк (Zn).
Серебро имеет больший атомный радиус (160 мкм), чем золото (135 мкм), несмотря на то, что у золота больше электронов, чем у серебра! Причину этого см. В комментарии ниже.
ВЫБОР ИСТОЧНИКОВ И ЧИТАТЕЛЕЙ — Структура и физические свойства металлов Почему одни металлы проводят тепло лучше, чем другие? Как передается тепло? Теплопроводность металлов . |