Отопление водородом своими руками видео: Видео отопление водородом своими руками

Отопление водородом своими руками видео: Видео отопление водородом своими руками

Содержание

Отопление водородом дома, делаем своими руками

Содержание:

1. Что такое водород и как он используется

2. Водородное отопление

3. Преимущества отопления водородом

Разработки новых и новых систем отопления идут полным ходом, и одним из самых последних достижений в этой отрасли является возможность отапливать дома при помощи водорода, используя его как топливо. При необходимости можно сделать отопление дома водородом своими руками. Несмотря на хорошие качества, система еще не успела завоевать популярность, но большинство домовладельцев очень внимательно присматриваются к ней. 

Что такое водород и как он используется

Водород известен людям на протяжении многих столетий. Во времена средневековья проводилось большое количество опытов, и при проведении одного из них был замечен водород: при контакте серной кислоты с металлом выделялись воздушные пузырьки. Водород – это легкий бесцветный газ, не имеющий характерного запаха. При соединении с кислородом может образовать взрывоопасную смесь. Имеет свойство растворяться в этаноле, железе, платине, палладии и никеле. К тому же, водород совершенно не токсичен. 


Процесс получения водорода осуществляется при помощи электричества и воды: применяя метод электролиза, можно расщеплять воду на водород и кислород, что дает возможность использовать эти вещества в своих целях. По статистике, водород является самым распространенным веществом в мире.

Его можно найти практически в любых природных ресурсах. Водород имеет некоторые свойства, которые очень сильно отличают его от собратьев: в жидком виде он является самой легкой жидкостью, а при затвердевании является самым легким веществом. Все это обуславливается очень маленькими габаритами атомов водорода. 

Водород активно применяется при производстве различных веществ и материалов, например, для получения аммиака или жидких жиров. Ценность водорода для пищевой промышленности тоже обуславливается его уникальными характеристиками.

Этот элемент используется и в технологиях: например, кислородно-водородная горелка позволяет создать температуру выше двух тысяч градусов, что позволяет плавить кварц. Использовать водород можно даже в домашних условиях: практически в каждой домашней аптечке хранится перекись водорода. Для хранения такого топлива, как водород, используются специальные баллоны. 

Водородное отопление

Существует довольно большое количество отопительных систем, которые можно установить своими руками. Совсем недавно этот список пополнился еще одной схемой, которая использует экологически чистый и довольно мощный энергоноситель, позволяющий обогревать большие помещения – отоплением на водородном топливе. Основное участие в разработке водородной отопительной системы приняли итальянские разработчики, разработав водородный генератор для отопления частного дома. Процесс работы длился долгих семь лет, но взамен получилась экологически чистая, бесшумная и крайне эффективная система отопления жилых помещений.  

Если говорить в общем, то отопление дома водородом не является революционной идеей. Проблема прежних разработок была в том, что для сжигания водорода требовалась температуры свыше 1,7 тыс. градусов, что было неприемлемо, поскольку обычные материалы не выдерживали такой нагрузки, а использование термостойких веществ многократно удорожило бы систему.

Современная система водородного отопления позволяет сжигать водород при температуре около 300 градусов, что дает возможность создать отопление частного дома водородом без особых проблем. Продукты сгорания в таких устройствах никуда не выводятся, потому что их нет: при горении водорода выделяется исключительно пар, который не оказывает никакого влияния на экологию. Добыча водорода является довольно простым и дешевым процессом, и все затраты при этом будут исключительно на электричество, необходимое для расщепления воды. Используя альтернативные источники электроэнергии, можно минимизировать и этот показатель (прочитайте: «Альтернативное отопление частного дома — выбор достаточно большой»). 


Самый первый разработанный водородный отопительный котел имел мощность в 30 кВт. Это сравнительно немного, но даже такого количества энергии достаточно для отопления здания площадью до 300 квадратных метров.

Самое большое распространение отопление водородом получило в качестве нагревательного элемента для системы теплых полов, и на сегодняшний день существует большое количество конфигураций котлов, которые можно устанавливать самостоятельно. Во многих странах такое отопление активно внедряется, поскольку его использование позволяет существенно экономить природные ресурсы. 

В состав такой систему входят котел и трубы с внутренним сечением от 25 до 32 мм. Трубы других диаметров, как правило, не используются.

При монтаже системы трубопровода необходимо соблюдать следующий алгоритм:

  • первым делом необходимо установить трубу Д32;
  • следующей трубой будет Д25;
  • на очередном разветвлении будет установлена труба Д20;
  • заканчивать установку необходимо трубой Д16. 

Если эта последовательность будет выдерживаться, то система будет функционировать правильно и без перебоев. 

Преимущества отопления водородом

Водородные отопительные котлы обладают рядом преимуществ по сравнению с другими видами обогревателей:

  1. Водород является экологически чистым материалом, поэтому ущерб окружающей среде при использовании водородных систем будет сводиться к нулю. Единственное вещество, которое будет попадать в атмосферу – это пар, являющийся водой в газообразном состоянии.
  2. Открытое пламя в водородных котлах отсутствует, а для выработки тепла используется каталитическая реакция: при соединении водорода с кислородом образуется вода, а сам это процесс сопровождается выделением тепловой энергии, которая и обеспечивает обогрев дома. Практика показывает, что лучше всего водородные системы подходят именно для обустройства теплых полов.
  3. Запасы водорода практически безграничны, поэтому в самом ближайшем будущем можно будет забыть о ставших привычными видах топлива: газе, дровах или нефти. Это окажет положительное влияние на окружающую среду и экономическую обстановку.
  4. Водородные отопительные системы крайне эффективны: при правильном монтаже КПД такого отопления может доходить до 96%. 

Заключение

Сегодня отопление водородом находится в зачаточной стадии, но эти системы развиваются, и работа над их совершенствованием идет. Природные ресурсы в ближайшее время могут просто закончиться, и тогда водород повсеместно придет им на смену, поскольку его можно использовать в неограниченных объемах.


Отопление водородом частного дома своими руками, водородный генератор, фото и видео примеры

Home » Отопление водородом частного дома своими руками, водородный генератор, фото и видео примеры

Отопление водородом частного дома своими руками, водородный генератор, фото и видео примеры

Разработки новых и новых систем отопления идут полным ходом, и одним из самых последних достижений в этой отрасли является возможность отапливать дома при помощи водорода, используя его как топливо. При необходимости можно сделать отопление дома водородом своими руками. Несмотря на хорошие качества, система еще не успела завоевать популярность, но большинство домовладельцев очень внимательно присматриваются к ней. 

Содержание:

Что такое водород и как он используется

Водород известен людям на протяжении многих столетий. Во времена средневековья проводилось большое количество опытов, и при проведении одного из них был замечен водород: при контакте серной кислоты с металлом выделялись воздушные пузырьки. Водород – это легкий бесцветный газ, не имеющий характерного запаха. При соединении с кислородом может образовать взрывоопасную смесь. Имеет свойство растворяться в этаноле, железе, платине, палладии и никеле. К тому же, водород совершенно не токсичен. 

Процесс получения водорода осуществляется при помощи электричества и воды: применяя метод электролиза, можно расщеплять воду на водород и кислород, что дает возможность использовать эти вещества в своих целях. По статистике, водород является самым распространенным веществом в мире.

Его можно найти практически в любых природных ресурсах. Водород имеет некоторые свойства, которые очень сильно отличают его от собратьев: в жидком виде он является самой легкой жидкостью, а при затвердевании является самым легким веществом. Все это обуславливается очень маленькими габаритами атомов водорода. 

Водород активно применяется при производстве различных веществ и материалов, например, для получения аммиака или жидких жиров. Ценность водорода для пищевой промышленности тоже обуславливается его уникальными характеристиками.

Этот элемент используется и в технологиях: например, кислородно-водородная горелка позволяет создать температуру выше двух тысяч градусов, что позволяет плавить кварц. Использовать водород можно даже в домашних условиях: практически в каждой домашней аптечке хранится перекись водорода. Для хранения такого топлива, как водород, используются специальные баллоны. 

Водородное отопление

Существует довольно большое количество отопительных систем, которые можно установить своими руками. Совсем недавно этот список пополнился еще одной схемой, которая использует экологически чистый и довольно мощный энергоноситель, позволяющий обогревать большие помещения – отоплением на водородном топливе. Основное участие в разработке водородной отопительной системы приняли итальянские разработчики, разработав водородный генератор для отопления частного дома. Процесс работы длился долгих семь лет, но взамен получилась экологически чистая, бесшумная и крайне эффективная система отопления жилых помещений. 

Если говорить в общем, то отопление дома водородом не является революционной идеей. Проблема прежних разработок была в том, что для сжигания водорода требовалась температуры свыше 1,7 тыс. градусов, что было неприемлемо, поскольку обычные материалы не выдерживали такой нагрузки, а использование термостойких веществ многократно удорожило бы систему.

Современная система водородного отопления позволяет сжигать водород при температуре около 300 градусов, что дает возможность создать отопление частного дома водородом без особых проблем. Продукты сгорания в таких устройствах никуда не выводятся, потому что их нет: при горении водорода выделяется исключительно пар, который не оказывает никакого влияния на экологию. Добыча водорода является довольно простым и дешевым процессом, и все затраты при этом будут исключительно на электричество, необходимое для расщепления воды. Используя альтернативные источники электроэнергии, можно минимизировать и этот показатель (прочитайте: «

Альтернативное отопление частного дома — выбор достаточно большой

«). 

Самый первый разработанный водородный отопительный котел имел мощность в 30 кВт. Это сравнительно немного, но даже такого количества энергии достаточно для отопления здания площадью до 300 квадратных метров.

Самое большое распространение отопление водородом получило в качестве нагревательного элемента для системы теплых полов, и на сегодняшний день существует большое количество конфигураций котлов, которые можно устанавливать самостоятельно. Во многих странах такое отопление активно внедряется, поскольку его использование позволяет существенно экономить природные ресурсы. 

В состав такой систему входят котел и трубы с внутренним сечением от 25 до 32 мм. Трубы других диаметров, как правило, не используются.

При монтаже системы трубопровода необходимо соблюдать следующий алгоритм:

  • первым делом необходимо установить трубу Д32;
  • следующей трубой будет Д25;
  • на очередном разветвлении будет установлена труба Д20;
  • заканчивать установку необходимо трубой Д16. 

Если эта последовательность будет выдерживаться, то система будет функционировать правильно и без перебоев. 

Преимущества отопления водородом

Водородные отопительные котлы обладают рядом преимуществ по сравнению с другими видами обогревателей:

  1. Водород является экологически чистым материалом, поэтому ущерб окружающей среде при использовании водородных систем будет сводиться к нулю. Единственное вещество, которое будет попадать в атмосферу – это пар, являющийся водой в газообразном состоянии.
  2. Открытое пламя в водородных котлах отсутствует, а для выработки тепла используется каталитическая реакция: при соединении водорода с кислородом образуется вода, а сам это процесс сопровождается выделением тепловой энергии, которая и обеспечивает обогрев дома. Практика показывает, что лучше всего водородные системы подходят именно для обустройства теплых полов.
  3. Запасы водорода практически безграничны, поэтому в самом ближайшем будущем можно будет забыть о ставших привычными видах топлива: газе, дровах или нефти. Это окажет положительное влияние на окружающую среду и экономическую обстановку.
  4. Водородные отопительные системы крайне эффективны: при правильном монтаже КПД такого отопления может доходить до 96%. 

Заключение

Сегодня отопление водородом находится в зачаточной стадии, но эти системы развиваются, и работа над их совершенствованием идет. Природные ресурсы в ближайшее время могут просто закончиться, и тогда водород повсеместно придет им на смену, поскольку его можно использовать в неограниченных объемах.

Похожие статьи

Электролизер для получения водорода – дешевое отопление дома


Обустройство загородного дома не может считаться полноценным, если вопрос с отоплением в нем остается нерешенным. В настоящее время устроить отопительную систему в частном доме несложно, главное – правильно подобрать вариант обогрева, который будет отвечать назначению сооружения, его функциональности и находиться в рамках бюджета. Так, к одному из самых современных вариантов обогрева можно отнести отопление дома водородом.


Заводской генератор водорода


И, невзирая на то, что этот способ создания комфортных температурных условий в помещения не так популярен, как более традиционные варианты, есть те, которые даже предпочитают делать водородный генератор своими руками. Что это такое и в чем особенности этого оригинального способа – в нашей статье.


Общая информация


Еще несколько веков тому назад Парацельс во время проведения экспериментов, заметил один очень интересный процесс: при взаимодействии металла и серной кислоты образуются пузырьки воздуха. Чуть позже было установлено, что это выделялся не воздух, а водород – бесцветный газ, не имеющий запаха.


Отопление на водороде – хотя и не новый, но относительно непопулярный способ отопления жилья именно по причине приверженности традиций. И если ранее отопление водородом считалось опасным для человека, поскольку слишком высокая температура требуется для сжигания водорода, то сегодня стали применять альтернативные методики. Усовершенствованная система водородного отопления дала возможность сжигать водород при более низкой температуре, что в принципе безопасно.


Как это работает


Для получения одной воды требуется окисление водорода кислородом (экскурс в школьную программу физики 6 класса). При такой химической реакции выделяется объем тепла, троекратно превышающий тот, который выделяется при сгорании газа. При этом водород, в отличие от газа – неисчерпаемый источник энергии. Если проводить аналогию с другим известным химическим элементом гелием, водород является главным и основным строительным материалом на Земле. Как отмечают специалисты, именно за водородным отоплением будущее, тем более, что сейчас не требуется колоссальной энергии для расщепления атомов воды на кислород и водород. На поиск такого простого способа ушло более двух столетий, в конечном итоге именно метод электролиза оказался самым выгодным и оправданным.


ВИДЕО: Водородный генератор – ячейка Стенли Мейера


Отопление водородом частного дома своими руками, водородный генератор, фото и видео примеры

Home » Отопление водородом частного дома своими руками, водородный генератор, фото и видео примеры

Отопление водородом частного дома своими руками, водородный генератор, фото и видео примеры

Разработки новых и новых систем отопления идут полным ходом, и одним из самых последних достижений в этой отрасли является возможность отапливать дома при помощи водорода, используя его как топливо. При необходимости можно сделать отопление дома водородом своими руками. Несмотря на хорошие качества, система еще не успела завоевать популярность, но большинство домовладельцев очень внимательно присматриваются к ней. 

Содержание:

Что такое водород и как он используется

Водород известен людям на протяжении многих столетий. Во времена средневековья проводилось большое количество опытов, и при проведении одного из них был замечен водород: при контакте серной кислоты с металлом выделялись воздушные пузырьки. Водород – это легкий бесцветный газ, не имеющий характерного запаха. При соединении с кислородом может образовать взрывоопасную смесь. Имеет свойство растворяться в этаноле, железе, платине, палладии и никеле. К тому же, водород совершенно не токсичен. 

Процесс получения водорода осуществляется при помощи электричества и воды: применяя метод электролиза, можно расщеплять воду на водород и кислород, что дает возможность использовать эти вещества в своих целях. По статистике, водород является самым распространенным веществом в мире.

Его можно найти практически в любых природных ресурсах. Водород имеет некоторые свойства, которые очень сильно отличают его от собратьев: в жидком виде он является самой легкой жидкостью, а при затвердевании является самым легким веществом. Все это обуславливается очень маленькими габаритами атомов водорода. 

Водород активно применяется при производстве различных веществ и материалов, например, для получения аммиака или жидких жиров. Ценность водорода для пищевой промышленности тоже обуславливается его уникальными характеристиками.

Этот элемент используется и в технологиях: например, кислородно-водородная горелка позволяет создать температуру выше двух тысяч градусов, что позволяет плавить кварц. Использовать водород можно даже в домашних условиях: практически в каждой домашней аптечке хранится перекись водорода. Для хранения такого топлива, как водород, используются специальные баллоны. 

Водородное отопление

Существует довольно большое количество отопительных систем, которые можно установить своими руками. Совсем недавно этот список пополнился еще одной схемой, которая использует экологически чистый и довольно мощный энергоноситель, позволяющий обогревать большие помещения – отоплением на водородном топливе. Основное участие в разработке водородной отопительной системы приняли итальянские разработчики, разработав водородный генератор для отопления частного дома. Процесс работы длился долгих семь лет, но взамен получилась экологически чистая, бесшумная и крайне эффективная система отопления жилых помещений. 

Если говорить в общем, то отопление дома водородом не является революционной идеей. Проблема прежних разработок была в том, что для сжигания водорода требовалась температуры свыше 1,7 тыс. градусов, что было неприемлемо, поскольку обычные материалы не выдерживали такой нагрузки, а использование термостойких веществ многократно удорожило бы систему.

Современная система водородного отопления позволяет сжигать водород при температуре около 300 градусов, что дает возможность создать отопление частного дома водородом без особых проблем. Продукты сгорания в таких устройствах никуда не выводятся, потому что их нет: при горении водорода выделяется исключительно пар, который не оказывает никакого влияния на экологию. Добыча водорода является довольно простым и дешевым процессом, и все затраты при этом будут исключительно на электричество, необходимое для расщепления воды. Используя альтернативные источники электроэнергии, можно минимизировать и этот показатель (прочитайте: «

Альтернативное отопление частного дома — выбор достаточно большой

«). 

Самый первый разработанный водородный отопительный котел имел мощность в 30 кВт. Это сравнительно немного, но даже такого количества энергии достаточно для отопления здания площадью до 300 квадратных метров.

Самое большое распространение отопление водородом получило в качестве нагревательного элемента для системы теплых полов, и на сегодняшний день существует большое количество конфигураций котлов, которые можно устанавливать самостоятельно. Во многих странах такое отопление активно внедряется, поскольку его использование позволяет существенно экономить природные ресурсы. 

В состав такой систему входят котел и трубы с внутренним сечением от 25 до 32 мм. Трубы других диаметров, как правило, не используются.

При монтаже системы трубопровода необходимо соблюдать следующий алгоритм:

  • первым делом необходимо установить трубу Д32;
  • следующей трубой будет Д25;
  • на очередном разветвлении будет установлена труба Д20;
  • заканчивать установку необходимо трубой Д16. 

Если эта последовательность будет выдерживаться, то система будет функционировать правильно и без перебоев. 

Преимущества отопления водородом

Водородные отопительные котлы обладают рядом преимуществ по сравнению с другими видами обогревателей:

  1. Водород является экологически чистым материалом, поэтому ущерб окружающей среде при использовании водородных систем будет сводиться к нулю. Единственное вещество, которое будет попадать в атмосферу – это пар, являющийся водой в газообразном состоянии.
  2. Открытое пламя в водородных котлах отсутствует, а для выработки тепла используется каталитическая реакция: при соединении водорода с кислородом образуется вода, а сам это процесс сопровождается выделением тепловой энергии, которая и обеспечивает обогрев дома. Практика показывает, что лучше всего водородные системы подходят именно для обустройства теплых полов.
  3. Запасы водорода практически безграничны, поэтому в самом ближайшем будущем можно будет забыть о ставших привычными видах топлива: газе, дровах или нефти. Это окажет положительное влияние на окружающую среду и экономическую обстановку.
  4. Водородные отопительные системы крайне эффективны: при правильном монтаже КПД такого отопления может доходить до 96%. 

Заключение

Сегодня отопление водородом находится в зачаточной стадии, но эти системы развиваются, и работа над их совершенствованием идет. Природные ресурсы в ближайшее время могут просто закончиться, и тогда водород повсеместно придет им на смену, поскольку его можно использовать в неограниченных объемах.

Похожие статьи

Электролизер для получения водорода – дешевое отопление дома


Обустройство загородного дома не может считаться полноценным, если вопрос с отоплением в нем остается нерешенным. В настоящее время устроить отопительную систему в частном доме несложно, главное – правильно подобрать вариант обогрева, который будет отвечать назначению сооружения, его функциональности и находиться в рамках бюджета. Так, к одному из самых современных вариантов обогрева можно отнести отопление дома водородом.


Заводской генератор водорода


И, невзирая на то, что этот способ создания комфортных температурных условий в помещения не так популярен, как более традиционные варианты, есть те, которые даже предпочитают делать водородный генератор своими руками. Что это такое и в чем особенности этого оригинального способа – в нашей статье.


Общая информация


Еще несколько веков тому назад Парацельс во время проведения экспериментов, заметил один очень интересный процесс: при взаимодействии металла и серной кислоты образуются пузырьки воздуха. Чуть позже было установлено, что это выделялся не воздух, а водород – бесцветный газ, не имеющий запаха.


Отопление на водороде – хотя и не новый, но относительно непопулярный способ отопления жилья именно по причине приверженности традиций. И если ранее отопление водородом считалось опасным для человека, поскольку слишком высокая температура требуется для сжигания водорода, то сегодня стали применять альтернативные методики. Усовершенствованная система водородного отопления дала возможность сжигать водород при более низкой температуре, что в принципе безопасно.


Как это работает


Для получения одной воды требуется окисление водорода кислородом (экскурс в школьную программу физики 6 класса). При такой химической реакции выделяется объем тепла, троекратно превышающий тот, который выделяется при сгорании газа. При этом водород, в отличие от газа – неисчерпаемый источник энергии. Если проводить аналогию с другим известным химическим элементом гелием, водород является главным и основным строительным материалом на Земле. Как отмечают специалисты, именно за водородным отоплением будущее, тем более, что сейчас не требуется колоссальной энергии для расщепления атомов воды на кислород и водород. На поиск такого простого способа ушло более двух столетий, в конечном итоге именно метод электролиза оказался самым выгодным и оправданным.


ВИДЕО: Водородный генератор – ячейка Стенли Мейера



Стенли Мейер предложил уникальное решение, которое было способно полностью избавить мир от нефтяной «иглы», за что, собственно и был убит, а труды его бесследно пропали. Были найдены лишь отдельные фрагменты, записки и очерки ученого, на основании которых частично была восстановлена технология, впоследствии названная ячейкой Мейера.


Метод электролиза


Для получения водорода были использованы металлические пластины на небольшом удалении друг от друга, находящиеся под высоким напряжением. При подаче энергии на пластины молекулы воды (Н2О) буквально разрываются на части, высвобождая 2 молекулы водорода и 1 одну молекулу кислорода. В этот момент происходит выделение тепла, равное 121 МДж на 1 кг. Этот газ носит название Брауна, что означает гремучий (Browns Gas), и главная его особенность заключается в том, что газ одноатомный, то есть на одну молекулу приходится один атом. Вместе с тем, газ не случайно назван гремучим, так как соединение водорода с кислородом требуется отдельных мер осторожности.


Схема установки для расщепления воды и получения газа Брауна


Применение водорода в системах отопления


В век технического прогресса существует огромное количество способов обустройства отопительной системы в частном доме. И, вне зависимости от того, что любой из нас имеет огромный выбор обогревательных блоков, некоторые все же умудряются собственноручно собирать тепловые установки, экономя тем самым на этом немало финансовых ресурсов. Так, отопление водородом своими руками может собрать сегодня практически каждый, кто хочет обустроить свое жилье экономно выгодным источником теплоэнергии.


Схема работы электролизера – агрегата для расщепления атомов воды


Водородное отопление частного дома – это экологичный, и вместе с тем, достаточно мощный теплоисточник, позволяющий обогреть здание с большой площадью.


Что же касается покупных обогревательных блоков, то самый первый водородный котел отопления был разработан итальянской компанией. Тогда эти блоки, равно как и сейчас, работали практически бесшумно и не выделяли абсолютно никаких токсичных веществ. Именно по этой причине водородное отопление дома, цена которого во многом зависит от марки оборудования, признано экологически чистым, эффективным и бесшумным способом обогрева жилья.


В силу того, что ученые смогли разработать такой метод сжигания водорода, когда температура внутри котла достигает 300°С, появилась возможность изготавливать тепловое оборудование из привычных жаропрочных металлов.


Водородный генератор для отопления частного дома, купить который можно на заводах производителях, не нуждается в обустройстве специального механизма вывода отходов горения. Дело в том, что они попросту отсутствуют. А это в очередной раз подтверждает, что подобные установки являются экологически чистыми. Во время эксплуатации такие тепловые блоки выделяют только пар, которые никоим образом не может нанести вред, как человеческому организму, так и окружающей среде.


Чтобы получить водород своими руками, потребуется, как было казано выше, только вода и свет. И если в вашем доме проведена вода из колодца или любого другого источника, за который не нужно платить, то расходы только пойдут на оплату электроэнергии.


Генератор водорода (электролизер), изготовленный своими руками


Если воспользоваться для электролиза этого газа энергией, полученной из солнечных панелей, то по конечному итогу вы получите практически бесплатное отопление дома своими руками.


В большинстве случаев водородные котлы используются для обогрева напольных поверхностей. Сегодня таких систем очень много, остается только определиться с типом и мощностью, которая зависит от площади обогреваемого помещения.


Современные водородные отопительные установки комплектуются двумя функциональными элементами:


  • нагревательный блок;

  • трубопроводная система, диаметр которой может колебаться от 25 до 32 мм.


Трубопровода других диаметральных размеров крайне редко применяются в таких системах.


Выполнять разводку тепловых контуров можно собственноручно, главное – придерживаться одного важного условия: на каждое последующее разветвление берутся трубы меньшего диаметра.


Примерный порядок подбора диаметров – труба Ø32 мм, труба Ø25 мм. После того, как будет выполнено разветвление – труба Ø20 мм, завершающая труба Ø16 мм. И если следовать этой рекомендации, то водородная отопительная горелка будет функционировать на должном уровне.


С этой статьей читают: Как сделать геотермальное отопление дома своими руками


Преимущества водородных обогревательных систем


Несмотря на незначительную популярность этого оборудования в наших регионов, оно все-таки завоевало доверие тех, кто уже успел оборудовать свой загородный дом подобным отопительным блоком. А все потом, что водородные тепловые узлы имеют несколько очень важных преимуществ:


  1. Экологичная чистота системы. В этом случае при работе оборудования происходит выброс всего одного побочного продукта – воды в виде пара. Паровые массы не способны нанести вред ни человеческому организму, ни окружающей среде.

  2. Функционирование этого газа в системе осуществляется без участия огня. Тепловая энергия производится за счет каталитической реакции. При смешивании кислорода и водорода получается вода, во время чего происходит выделение огромного объем теплоэнергии. Дальше осуществляется переход теплового потока в теплообменник. Как правило, температура в системе колеблется в рамках 35-45°С, что вполне приемлемо для устройства систем «теплый пол».


В скором времени водородные обогревательные установки смогут стать отличной и, что немаловажно, экономически выгодной заменой твердотопливных, электрически и газовых котлов.


  1. Высокий коэффициент полезного действия – порядком 96%, что в сравнении с другими методами обогрева очень выгодно.

  2. Возможность собственноручного сбора и монтажа отопительного блока. При наличии всех необходимых комплектующих и подробной инструкции, любой человек, не имеющий специальных навыков и знаний, сможет без особого труда собрать и оборудовать свой дом водородным отопительным блоком.

  3. Минимальное количество исходного сырья для производства топлива. Понадобится электричество и вода. Если же у вас свой источник воды, то от вас потребуется только электроэнергия. А при обустройстве солнечных панелей на участке, можно и вовсе сократить потребление электричества.


Что же касается недостатков, то среди них можно выделить только один – необходимость специального оборудования для гидролиза этого газа. Кроме указанного, минусов у этого оборудования до сегодняшнего дня не обнаружено.


Вот, собственно, и все тонкости устройства водородных отопительных систем. При грамотном подходе затраты на обогрев помещения с помощью таких установок будут минимальными.


ВИДЕО: Отопление дома водородом


Отопление дома на водороде своими руками, газ брауна

Водород — один из источников отопления дома

В средневековье известным ученым Парацельсом в ходе опытов был замечен такой процесс, как выделение пузырьков воздуха при взаимодействии железа и серной кислоты. Однако это был не воздух, а водород. Это легкий газ, который не имеет ни цвета, ни запаха. А если он смешивается с кислородом, то газ является взрывоопасным. Сегодня отопление на водороде своими руками – это распространенное явление. Ведь водород можно получить в любом количестве, где есть вода и электричество.

Под действием электролиза молекулы воды делятся на кислород и водород. Последний обладает массой уникальных свойств. В жидком состоянии при температуре -250 градусов Цельсия это наиболее легкая жидкость, а в твердом состоянии – самое легкое вещество. Атомы водорода являются самыми маленькими. А при смешивании с атмосферным воздухом водород превращается в смесь, которая способна взорваться от даже самой маленькой искры.

Использование водорода в отоплении

В век технологий существует множество вариантов отопить свой дом. Однако любители самостоятельно создавать разные технические приспособления могут сделать отопление дома водородом своими руками. Это экологически чистый, в то же время, очень мощный источник тепла, благодаря которому можно отопить большое помещение.

Рекомендуем к прочтению:

Котел отопления на водороде итальянского производства

Водородное отопление дома было разработано одной из компаний в Италии. Когда такая установка работает, она не производит никаких вредных выбросов. Таким образом, это экологически чистое, эффективное, бесшумное отопление дома.

Ученые разработали способ сжигать водород для отопления дома при такой температуре, как 300 градусов по Цельсию. Благодаря этому появилась возможность производить котлы для отопления из традиционных материалов. Такого типа котлы для функционирования не требуют специальной системы отвода продуктов сгорания в атмосферу, так как здесь таковых продуктов нет. В данном случае выделяется только пар, не вредный для окружающей среды. А получить водород – это доступный процесс. Все, на что будут идти расходы, — это только электроэнергия. А если вы будете, используя водородный генератор для отопления, задействовать еще и солнечные панели, то и затраты на электричество можно минимизировать.

Чаще всего котел на водороде применяется для того чтобы обогревать полы. И такие системы на сегодняшний день можно найти с самой разной мощностью. Монтируются они собственноручно.

Водородная установка для отопления дома состоит из следующих компонентов: котел и трубы, имеющие диаметр 25-32 мм (1-1,25 дюймов). Трубы других размеров используются редко. Трубы можно смонтировать самостоятельно, но здесь следует выполнять одно условие – после каждого разветвления диаметр должен быть меньшим. И порядок уменьшения диаметра следующий – труба D32, труба D25. После разветвления – труба D20, последняя – труба D16. Когда такое правило соблюдается, то водородная горелка для отопления будет работать эффективно и качественно.

Рекомендуем к прочтению:

Преимущества отопления на водороде

Водородное отопление имеет несколько важных достоинств, которые обусловливают распространенность системы:

  • Это экологически чистые системы. И здесь единственным побочным продуктом, выбрасывающимся в атмосферу при работе, является вода в состоянии пара. Этот пар никоим образом не наносит вред окружающей среде.
  • Водород в системе отопления функционирует без применения пламени. Тепло создается в результате каталитической реакции. Когда водород соединяется с кислородом, получается вода. При этом выделяется много тепловой энергии. Поток тепла температуры примерно 40 градусов идет в теплообменник. Для теплых полов – это идеальный температурный режим.
  • Очень скоро водородное отопление своими руками сможет заменить традиционные системы, таким образом, освободив общество от добывания разного топлива – нефти, газа, угля и дров.
  • КПД, который вырабатывает отопление частного дома водородом, может достигнуть 96%.

Еще один вариант – использование газа Брауна

Еще одним способом, в настоящее время довольно спорным, является применение газа Брауна для отопления. Газ брауна для отопления дома является химическим соединением, состоящим из двух атомов водорода и одного атома кислорода. При сгорании такого газа создается практически в 4 раза больше энергии.

Установка для получения газа Брауна

Используется специальный электролизер для отопления дома. Ведь в основе получения такого газа лежит принцип электролиза воды. Чтобы такая технология была применена в отоплении, переделывается обычный котел. В его основании будет электролизер – сюда заливается электролит, состоящий из дистиллированной воды и ускорителя реакции. На пластины из металла или трубки дается переменный ток с заданной частотой. Под его влиянием молекулы кислорода и водорода разъединяются, после чего получается газ брауна отопление.

Отопление водородом частного дома своими руками, водородный генератор, фото и видео примеры — Строительный проект

Отопление водородом дома, делаем собственными руками

Разработки новых и новых отопительных систем идут полным ходом, и одним из очень последних достижений в данной сфере считается возможность обогревать дома с помощью водорода, применяя его как горючее. При надобности можно создать отопление дома водородом собственными руками. Не обращая внимания на замечательные качества, система еще опоздала захватить востребовательность, но очень много домовладельцев наиболее тщательно присматриваются к ней.

Что такое водород и как он применяется

Водород известен людям в течении многих веков. Во время средних веков проводилось немалое количество опытов, и при проведении одного из них был замечен водород: при контакте серной кислоты с металлом выделялись пузырьки воздуха. Водород – это легкий бесцветный газ, не имеющий выраженного аромата. При соединении с кислородом может образовать взрывоопасную смесь. Имеет особенность растворяться в этаноле, железе, платине, палладии и никеле. Стоит еще сказать, что, водород абсолютно не токсичный.

Процесс получения водорода выполняется с помощью электричества и воды: используя метод электролиза, можно расщеплять воду на водород и кислород, что позволяет применять эти вещества в собственных целях. Согласно данным статистики водород считается очень распространенным веществом в мире.

Его можно найти фактически в самых разных природных ресурсах. Водород имеет определенные характеристики, которые слишком сильно выделяют его от собратьев: в жидком виде он признана самой легкой жидкостью, а при затвердевании считается самым легким веществом. Все это вызвано мелкими размерами атомов водорода.

Водород активно используется при изготовлении разных веществ и материалов, к примеру, для получения нашатырного спирта или жидких жиров. Ценность водорода для пищевой промышленности тоже обуславливается его неповторимыми параметрами.

Такой элемент применяется и в технологиях: к примеру, кислородно-водородная горелка дает возможность создать температуру больше 2-ух тысяч градусов, что дает возможность плавить кварц. Применять водород можно даже дома: фактически в каждой домашней аптечке хранится перекись водорода. Для хранения такого топлива, как водород, применяются специализированные балоны.

Водородное отопление

Если говорить в общем, то домашнее отопление водородом не считается революционной идеей. Проблема старых разработок была в том, что для сжигания водорода требовалась температуры более 1,7 тыс. градусов, что было недопустимо, потому как традиционные материалы не выдерживали такой нагрузки, а применение термоустойчивых веществ неоднократно удорожило бы систему.

Современная система водородного отопления позволяет сжигать водород при температуре примерно 300 градусов, что позволяет разработать отопление приватизированного дома водородом очень легко. Газообразные, жидкие и твердые вещества в данных устройствах никуда не выводятся, так как их нет: при возгорании водорода выделяется исключительно пар, который не оказывает никакого воздействия на экологию. Добыча водорода считается очень простым и недорогим процессом, и все расходы при этом будут только на электричество, нужное для расщепления воды. Применяя альтернативные источники электрической энергии, можно уменьшить и данный показатель (прочитайте: «Альтернативное отопление приватизированного дома — выбор очень большой»).

Самый первый разработанный водородный котел отопления имел мощность в 30 кВт. Это мало, однако даже подобного количества энергии достаточно для обогрева строения площадью до 300 метров квадратных.

В состав подобной систему входят котел и трубы с внутренним сечением от 25 до 32 мм. Трубы остальных диаметров, в основном, не применяются.

При монтаже трубопроводные системы нужно віполнять следующий алгоритм:

  • в первую очередь следует установить трубу Д32;
  • следующей трубой будет Д25;
  • на очередном разветвлении будет поставлена труба Д20;
  • завершать установку нужно трубой Д16.

Если эта очередность будет выдерживаться, то система будет работать правильно и без перебоев.

Преимущества отопления водородом

Водородные котлы отопления обладают рядом плюсов если сравнивать с другими видами систем обогрева:

  1. Водород считается безопасным материалом, благодаря этому ущерб внешней среде во время использования водородных систем будет сводиться до нуля. Единственное вещество, какое будет попадать в атмосферу – это пар, который является водой в газообразном состоянии.
  2. Открытое пламя в водородных котлах отсутствует, а для выработки тепла применяется каталитическая реакция: при соединении водорода с кислородом образуется вода, а сам это процесс сопровождается выделением энергии тепла, которая и обеспечивает обогрев дома. Практика показывает, что наиболее целесообразно водородные системы подойдут именно для обустраивания теплых полов.
  3. Залежи водорода фактически не имеют границ, благодаря этому в самом ближайшем будущем можно будет забыть о ставших привычными видах топлива: газе, дровах или нефти. Это окажет положительное воздействие на внешнюю среду и экономическую обстановку.
  4. Водородные системы отопления очень продуктивны: при правильной установке КПД такого отопления может дойти до 96%.

Заключение

Сегодня отопление водородом находится в зачаточной стадии, но данные системы развиваются, и работа над их совершенствованием идет. Натуральные ресурсы в скором времени могут просто завершиться, и вот тогда водород везде придёт им на смену, потому как он может применяться в неограниченных объемах.

Tagged : видео / водород / водородный / генератор / отопление / фото

Отопление на водороде, водородная установка и горелка для обогрева дома, сборка своими руками

Для получения тепла в доме можно использовать различные источники энергии. Есть среди них и достаточно необычные варианты – например, водородное топливо. В настоящее время отопление водородом используется отечественными потребителями редко из-за некоторых сложностей в получении сырья.

Однако метод этот все равно считается самым экологически чистым и обеспечивает нагрев больших помещений. А расходы на такое отопление будут хотя и большими по сравнению с использованием в качестве энергоносителя газа, однако заметно меньшими по сравнению с эксплуатацией твердотопливных и электрических котлов.

Особенности водородного отопления

Впервые отопление дома на водороде было разработано итальянскими изобретателями. Созданный ими прибор практически не создавал шума и не выбрасывал в атмосферу вредные вещества. При этом температура внутри котлов была невысокой, и оборудование можно было делать не из чугуна или жаропрочной стали, а из обычного металла и даже пластика.

«Классическим», низкотемпературным вариантом отопления на водороде является выделение тепла в процессе образования воды из водорода и кислорода. Хотя существует и методика, предусматривающая обратный процесс – расщепление водных молекул для создания водородного топлива, сгорающего в котлах.

Котлам, работающим на водороде, не нужна специальная система отвода в атмосферу продуктов сгорания. Ведь в процессе выделяется только пар, безвредный для окружающей среды. А получение сырья практически не представляет особой проблемы, в отличие от таких энергоносителей, как газ, дизтопливо и пеллеты.

Расходы при использовании отопления на водороде будут идти только на электроэнергию для генератора.

Преимущества и недостатки

Распространению системы водородного отопления способствует целый ряд достоинств такого метода:

  1. Экологическая чистота выбросов.
  2. Работа без применения огня (только для обычных низкотемпературных систем). Так как тепло получается не при сгорании, а в результате химической реакции. Соединение водорода и кислорода приводит к получению воды, а выделившаяся при этом энергия идет в теплообменник. Температура теплоносителя при этом не превышает 40 градусов, что является практически идеальным режимом для системы «теплых полов».
  3. Использование водородного топлива экономит средства владельца частного дома.

Единственный более выгодный способ в плане эксплуатации – газовое отопление, далеко не всегда доступное для загородного жилья.

Также использование водорода снижает затраты углеводородов типа нефти и газа, представляющих собой невозобновляемые ресурсы.

Правда, имеются у методики и недостатки. Во-первых, водород является достаточно взрывоопасным и, за счет этого, трудно транспортируемым веществом, хотя эта проблема существует только для низкотемпературного варианта.

Во-вторых, специалистов, способных на правильную установку таких котлов и сертификацию водородных баллонов, в нашей стране немного.

Принцип и устройство

Работа отопления на водороде основана на выделении значительного объема тепловой энергии, получаемой в результате взаимодействия кислородных и водородных молекул. Процесс характеризуется большими размерами необходимой для его протекания емкости и высоким КПД (>80%). Для правильного функционирования оборудования необходимо:

  • подключение к источнику жидкости, роль которого чаще всего выполняет водородная система;
  • наличие электропитания, без которого невозможно поддерживать электролиз;
  • периодическая замена катализатора, частота зависит от производительности и конструкции котла;
  • соблюдение требований безопасности )хотя по сравнению с газовым отоплением их намного меньше за счет протекания всех реакций внутри котла, и от пользователя необходим только визуальный контроль процесса).

Впрочем, учитывая, что создать своими руками такое оборудование, как низкотемпературная водородная установка для отопления дома, вряд ли получится, чаще всего используют альтернативный метод – получение водорода и использование его в качестве энергоносителя. Такой вариант будет доступнее по цене и обеспечит большую температуру теплоносителя в отопительной системе (такую же, как и газ).

Сборка системы

В состав систем водородного отопления входят водородные генераторы, горелки и котлы. Первый необходим для разложения жидкости на составляющие (с использованием катализаторов для ускорения процесса или без них). Горелка создает открытое пламя, а котел служит теплообменным устройством. Все это можно приобрести в соответствующих магазинах, однако та же система, созданная своими руками, как правило, работает эффективнее.

Сборку генератора водорода можно осуществить несколькими способами. Для его изготовления понадобится несколько стальных трубок, бак для расположения конструкции, широтно-импульсный генератор мощностью от 30А и выше или другой источник питания. Кроме того, при сборке не обойтись без посуды для дистиллированной воды.

Подача жидкости, из которой будет выделяться водород, осуществляется внутрь герметичной конструкции, где находятся пластины из нержавеющей стали (чем их больше, тем больше получается водорода, хотя тратится и дополнительная электроэнергия), примыкающие друг к другу.

В емкости под действием тока происходит процесс расщепления молекул воды на кислород и водород, после чего последний подается в котел, где установлена горелка. Если же ток подается не от сети, а от ШИМ-генератора, эффективность системы увеличивается.

Применяемые материалы

В системе отопления применяется, как правило, дистиллированная вода, в которую добавляют гидроксид натрия в пропорции 10 л жидкости на 1 ст. л вещества. При отсутствии или проблематичности получения нужного количества дистиллята разрешается использование и обычной воды из крана, но только в том случае, если в ее составе отсутствуют тяжелые металлы.

В качестве металлов, из которых изготавливают водородные котлы, допустимо использовать любые виды нержавеющих сталей – отличным вариантом станет ферримагнитная сталь, к которой не притягиваются лишние частицы. Хотя основным критерием выбора материала все-таки должна быть устойчивость к коррозии и ржавчине.

Для сборки аппарата обычно используются трубки диаметром 1 или 1,25 дюйма. А горелка приобретается в соответствующем магазине или интернет-сервисе.

Если правильно подобрать материалы и тщательно изучить схему отопления, изготовление установки и ее присоединение к котлу не представляет собой ничего сложного.

Целесообразность методики

Причиной установки системы отопления на водороде в частном доме может быть отсутствие в нем природного газа и наличие электроэнергии. При этом расходы на обеспечение здания теплом оказываются меньшими по сравнению с использованием электронагревательных приборов.

Кроме того, отсутствует необходимость в трубах для отвода продуктов сгорания. Получается, что водородная установка вполне может использоваться в загородных домах в качестве самостоятельного или дополнительного отопительного оборудования.

Водородный электролизер. Отопление дома водородом с помощью нно генератора

Удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне. Более всего умельцев – энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения установки для отопления частного дома, заправки авто и в качестве сварочного аппарата.

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.

Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2h4 + O2 → 2h4O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2h4O → 2h4 + O2 — Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Создание опытного образца

Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

Из чего состоит примитивный электролизер:

  • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
  • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
  • второй резервуар играет роль водяного затвора;
  • трубки для отвода газа HHO.

Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

Принцип работы электролизера следующий:

Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:

Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

О водородной ячейке Мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.

Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.

Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.

Принципиальная схема включения электролизера

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10-14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.

Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.

Схема генератора мокрого типа

Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

  1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7-15% раствор гидроокиси калия в воде.
  2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
  3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

Выгодно ли получать водород в домашних условиях

Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:

  • использовать hydrogen в качестве топлива для автомобилей;
  • бездымно сжигать водород в отопительных котлах и печах;
  • применять для газосварочных работ.

Главная проблема, перечеркивающая все преимущества водородного топлива: затраты электричества на выделение чистого вещества превышают количество энергии, получаемое от его сжигания. Что бы ни утверждали приверженцы утопичных теорий, максимальный КПД электролизера достигает 50%. Это значит, что на 1 кВт полученной теплоты затрачивается 2 кВт электроэнергии. Выгода – нулевая, даже отрицательная.

Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.

Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.

Теперь рассмотрим гремучий газ, полученный электролизом в самодельном водородном генераторе, как топливо для вышеперечисленных нужд:

Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь.

Заключение

Водород в составе газа ННО, полученный из самодельного генератора, пригодится для двух целей: экспериментов и газосварки. Даже если отбросить низкий КПД электролизера и затраты на его сборку вместе с потребляемым электричеством, на обогрев здания попросту не хватит производительности. Это касается и бензинового двигателя легковой машины.

otivent.com

электролизер своими руками, чертежи, получение в домашних условиях, для автомобиля

Водородный генератор может отличаться по размерам и качеству материалов, которые применялись при его изготовлении Раньше загородные дома можно было отапливать только одним способом – растапливали печь дровами или углем. Сегодня же для отопления частного дома используют разнообразное топливо: дизель, мазут, природный газ, электричество. Однако с ростом цен на топливо многие владельцы домов стараются найти более дешевый способ отопления. Одним из них является обычная вода, которую использует водородный генератор для образования такого топлива, как водород. Водород является неиссякаемым источником энергии. Его можно применять не только для обогрева помещений, но и для автомобиля.

Генератор водорода: устройство и его принцип работы

Использовать водород для обогрева жилых домов очень выгодно, так как он обладает высокой теплотворной способностью и при этом не происходит выделения вредных веществ. Однако в чистом виде добыча водорода невозможна, большое содержание его находится в реках, морях и океанах. Организм человека даже состоит из 63% водорода.

Чистый водород можно получать из многих различных химических соединений, например, водорода и кислорода. Самый известный способ получения водорода – это электролиз воды.

Чтобы получить чистый водород необходимо воду расщепить на два атома (НН) водорода и атом кислорода (О). Это и есть принцип работы водяного генератора: получение водорода с помощью электролиза. Газ, который выделяется при этом, назвали в честь великого физика Брауна и он имеет формулу ННО. Такой газ при сгорании не образует вредных веществ и является экологически чистым продуктом. Однако смесь водорода с кислородом образует в итоге горючий газ, который является взрывоопасным. Поэтому используя в домашних условиях электролизер, нужно соблюдать дополнительные меры безопасности.

Водяной двигатель имеет такое устройство:

  • Генератор водородного типа, где и происходит электролиз;
  • Горелка, она устанавливается в самой топке;
  • Котел, он выполняет функцию теплообменника.

На производство такого газа, как браун, используется в четыре раза меньше энергии, чем выделяется при его сгорании. Электричество при этом расходуется очень экономно, а топливо, которое ему необходимо – это обычная вода.

Водородный генератор: его достоинства и недостатки

Сегодня электролизёр является таким же привычным устройством, как например, плазменный резак или ацетиленовый электрогенератор. Такая электролизная установка, работающая на воде (печка), стала достаточно популярной, ее применяют для обогрева частных домов, а так же устанавливают на мотоцикл или авто для экономии топлива.

Водородный генератор является экологически чистым топливом, единственным отходом, который он вырабатывает, есть вода. Она выделяется в газообразном состоянии и известна нам, как водяной пар. А он, в свою очередь, никакого негативного влияния на окружающую среду не оказывает.

Такое устройство обладает и другими положительными достоинствами, но так же и недостатками. Самый важный недостаток – это его взрывоопасность. Однако соблюдая все предосторожности и правила безопасности, можно избежать негативных последствий.

Водородный реактор имеет свои преимущества:

  • Работает на воде;
  • Экономит электричество;
  • Является экологически чистым;
  • Высокий КПД;
  • Простота обслуживания.

Такой прибор HHO можно приобрести в готовом виде в специализированном магазине, стоит он будет, конечно совсем не дешево. Однако можно сделать его и своими руками из доступных деталей, сэкономив при этом приличную сумму. Однако ему нужна защита от воды и отдельный домик для хранения.

Самодельный водородный генератор: пошаговая инструкция

Изготовление водородного генератора можно осуществит в домашних условиях, но для этого будут нужны чертежи и пошаговая инструкция всего процесса. Схема электролизера очень проста (ее можно смотреть в интернете), поэтому каких-либо специфических материалов практически не понадобится.

Для создания самодельного генератора водорода нам понадобятся некоторые инструменты и материалы: пластиковый контейнер или полиэтиленовая канистра с крышкой, прозрачная трубка длиной 1м, с диаметром 8 мм, болты, гайки, силиконовый герметик, лист нержавейки, 3 штуцера, обратный клапан, фильтр, ножовка по металлу, гаечные ключи и нож.

Собрав все это, можно приступать к его изготовлению. Сборка осуществляется по чертежам, которые можно найти в интернете или же заказать у специалиста.

Инструкция изготовления:

  • Из листа нержавейки вырезаем 16 одинаковых пластин.
  • Сверлим отверстие в одном из углов. Угол должен быть одинаковым у всех 16.
  • Противоположный угол обязательно спиливаем.
  • Устанавливаем пластины поочередно на приготовленные болты, изолируя их шайбами и полиэтиленовыми трубками. Они не должны контактировать между собой.
  • Стягиваем всю конструкцию гайками, получается батарея.
  • Крепим данную конструкцию в пластиковую емкость, отверстия смазать герметиком.
  • Просверливаем отверстия в крышке, обрабатываем их так же силиконом, затем вставляем штуцера.

Самодельный кислородный гидролизер готов. Теперь его только нужно проверить на работоспособность. Для этого нужно заполнить емкость водой до болтов крепления и закрыть ее крышкой. Одеваем на один из трех штуцеров шланг из полиэтилена, а второй его коней опускаем в отдельную емкость, заполненную так же водой. К болтам нужно подключить электричество, если на поверхности появились пузырьки, значит, генератор работает и выделяет водород. После такого подключения и проверки, воду сливаем, а затем заливаем в емкость готовый щелочной электролит, чтобы получить больше выделяемого газа.

Электролизер для автомобиля: виды катализаторов

Водородный генератор, при установке, способен снизить расход топлива у легковых или грузовых машин, мотоциклов, а так же сократит выброс в атмосферу вредных веществ. На сегодняшний день, такой генератор для автомобиля приобретает популярность. Процесс электролиза в авто происходит благодаря применению специального катализатора. В конечном итоге получается оксиводород (ННО), который смешиваясь с топливом, что и способствует его полному сгоранию.

Благодаря такой установке можно сэкономить горючее на 50%. А так же, установив данную конструкцию в свой автомобиль, вы не только уменьшите токсичные выхлопы, но и: увеличите эксплуатационный срок двигателя, снизите температуру самого мотора и при этом повысите мощность всего силового агрегата.

Все процессы, которые происходят в водородном генераторе, происходят автоматически по специальной программе. Эта программа вшита в компьютер, который и управляет всем автомобилем. Машина без него попросту не будет работать.

Существует несколько видов катализаторов:

  • Цилиндрические;
  • С открытыми пластинами или их еще называют сухими;
  • С раздельными ячейками.

Самостоятельно водородный генератор можно изготовить, однако специалисты делать этого не рекомендуют, так как это устройство очень сложное по конструкции и при этом еще не безопасно. Если вы все же решили сделать его сами, тогда лучше всего подойдет для этих целей аккумулятор, вышедший из строя.

В настоящее время, водородный генератор – это не просто плод воображения, а действительно реальное устройство, которое поможет эффективно обогреть ваш дом, а так же снизит расходы бензина для автомобиля. Так же водород является безопасным для атмосферы.

Добавить комментарий

teploclass.ru

Изготовляем водородный генератор своими руками: 4 этапа

Детали для водородного генератора можно приобрести в специализированном магазине или в интернете Что собой представляет водородный генератор? Это определенный прибор, который работает с помощью нескольких процессов. Во время своего действия он начинает перерабатывать воду и разлагает ее на водород и кислород. Водородный генератор многие изготавливают самостоятельно. Лучше всего для этого иметь опыт в работе с отопительными системами и изготовлении схожих приборов. В этом случае вы сделаете всё правильно, и не будете волноваться за работу своего генератора.

Как происходит отопление водородом

Отопление водородом – это достаточно практичная вещь. Такое отопление можно встретить внутри автомобиля, в месте, где стоит двигатель. Водород можно получать в больших объёмах. Это делает такой вид отопления всё более и более популярным в условиях, когда надо сберечь деньги и получить отопление в дом максимально эффективно.

Водородный способ отопления был изобретён в компании, которая находится в Италии. Выглядел аппарат как горелка. Получение выглядело иначе, чем сейчас. Способ является экологичным способом получения энергии. К тому же, практически бесшумным. Большое количество водорода сжигается при низкой температуре около 3000 градусов Цельсия. Такая температура поспособствовала изготавливать котлы для отопления водородом из обычных материалов.

Во время отопления водородом, водяной котёл или печь выпускает пар. Пар не приносит вреда человеческой жизни. Он безвредный. Для работы отопления водородом необходима только одна составляющая затрат – электричество. Однако, если поставить солнечные панели, которые будут получать солнечную энергию, то затраты можно снизить до минимальных значений, либо вовсе свести к нулю.

Отопление водородом чаще всего применяются для системы тёплых полов.

Процесс отопления можно представить в виде следующих этапов:

  • Вступление кислорода в реакцию с водородом;
  • Образование водяных молекул;
  • Выделение тепловой энергии;
  • Нагрев пола.

Тепловая энергия, которая выделяется во время реакции, нагревает воду до 40 градусов тепла. Это идеальная температура для технологии теплого пола.

Отопление водородом часто применяется в случаях, когда надо существенно сэкономить на использовании технологий теплого пола. Такой способ позволяет быстро согреть пол без существенных затрат. К тому же, если котёл будет питаться от солнечной энергии, то ваши затраты на обеспечение работы котла приблизятся к нулю.

Можно ли сделать водородный генератор своими руками

Сегодня можно найти в открытых источниках большой пласт информации о создании различных агрегатов. В том числе, и водородного генератора и его принцип работы. Если вы обладаете достаточными знаниями, навыками в конструировании такого рода устройств, то вы можете сделать его своими руками.

Чтобы собрать газогенератор, нужно знать его устройство. Топливные ячейки – это своего рода блок. Для их изготовления следует брать пластины из оргалита или оргстекла.

Представим этапы изготовления генератора:

  • Создание топливных ячеек;
  • Создание отверстий, чтобы дать проход воде;
  • Вырезаем электродные пластины;
  • Обрабатываем нержавеющую сталь наждачкой;
  • Сверлим отверстия для воды между электродами, чтобы отвести газ Брауна;
  • Собираем генератор;
  • Вставляем шпильки и укладываем электроды;
  • Отделяем от реактора пластины нержавейки уплотнительными кольцами;
  • Закрываем генератор оргалитовой стенкой;
  • Скрепляем конструкцию шайбами и гайками;
  • Подключаем генератор шлангами к ёмкости с водой;
  • Соединяем контактные площадки между собой;
  • Подключаем провод питания;
  • Даём напряжение на топливную ячейку.

При конструировании водородного генератора стоит учитывать, что плоскость электродов должна быть ровной, во избежание короткого замыкания.

Следуя вышеприведённому алгоритму, вы сможете изготовить генератор самостоятельно. И тогда водный генератор будет способен расщепить автоподстройкой частоты необходимые частицы для получения энергии.

Водородный генератор можно сделать самостоятельно. Если у вас есть технические знания и опыт в области конструирования подобных устройств, то сделать генератор для вас будет расплюнуть. Делайте всё согласно схемам, чертежам, смотрите руководство по самостоятельному изготовлению, читайте подробное описание и тогда вы сможете сконструировать самодельный электрогенератор для тепла своими руками из доступных деталей, как для легковых авто, так и для домашнего использования. Электрохимический прибор отлично осуществит обогрев как настоящая печка.

Из чего изготавливается электролизер своими руками: чертежи

Чтобы изготовить электролизер своими руками быстро и без лишних проблем, то стоит воспользоваться чертежами. Они помогут вам точнее понять схему и устройство изделия, чтобы сделать его самостоятельно.

Электролизная часть должна быть изготовлена из нержавеющей стали. Можете даже использовать старый лист стали. Покупать новый лист не стоит. Определим список материалов, которые понадобятся при изготовлении.

Пластины в электролизере должны быть двух видов: положительная и отрицательная.

Для изготовления электролизера вам понадобится несколько деталей:

  • Лист нержавейки;
  • Болты, гайки и шайбы;
  • Труба;
  • Штуцеры;
  • Ёмкость на 1,5 литра;
  • Фильтр для проточной воды;
  • Обратный клапан для воды.

Данные материалы понадобятся вам при изготовлении электролиза. В процессе конструирования изделия, следует чётко придерживаться чертежей. Следует заранее в них разобраться, чтобы знать, где все составляющие элементы конструкции.

Сделать гидролизер самостоятельно можно с помощью разных компонентов, вам может и не потребоваться сварка, конечно если вы не будете делать сварочный или ацетиленовый резак, а вот электронный компонент buz350, аккумулятор и батарея которые вырабатывают достаточное количество Джо. Они, для подключения вам могут понадобиться. Если вам нужно много мощности, то можно использовать аккумулятор, который имеет мотоцикл Питер или Вуд, кстати, очень часто такое приспособление работает на спирту, что упрощает задачу. Так что такая добыча водорода будет упрощенной. Для мощных установок, может быть использована машина употребляющая дизель, а точнее ее ДВС.

Для грамотного изготовления электролиза, используйте чертежи. Они помогут вам сделать установку правильной. Заранее посмотрите список материалов и средств, которые могут вам понадобиться во время создания электролиза. Удачи при изготовлении!

Что такое газ Брауна

Во время работы водородный генератор создаёт водород. Но на выходе мы получаем не чистый водород, а его модификацию. Это и есть газ Брауна. Он необходим для воспроизведения энергии и обозначается как HHO. Часто люди хотят отапливать свой дом, применяя оксиводород.

Газ Брауна или Стенли получают из воды. Это осуществляется с помощью метода электролиза или резонанса. Данное топливо всё чаще пробуют использовать для отопления частного дома и жилых помещений. Формула гремучего газа в чём-то схожа с формулой газа Брауна.

Генераторы, которые выделяют такой газ, можно купить, либо изготовить самостоятельно.

Для самостоятельного получения газа вам необходимо:

  • Трубки из ферросплавной нержавейки;
  • Регулятор для настройки мощности элемента нагрева;
  • Осушитель;
  • Источник питания на 12 В.

Стоит отметить, что трубки из нержавейки должны быть разных диаметров.

Газ Брауна – это модификация водородного газа. Именно его мы получаем на выходе, когда используем водородный генератор в быту. Газ можно применять для технологии теплого пола. Так ваши ноги всегда будут в тепле. При этом, затраты на содержания генератора, крайне малы.

Как выбрать водородный котел

Водородный котёл – это самый необходимый элемент для водородного генератора. Без него ваш агрегат не будет работать. Водородный котел можно сделать самостоятельно. Однако многие владельцы дачных участков и домов, где используются теплые полы, рекомендуют котел покупать.

Чтобы выбрать водородный котел, надо обращать внимание на базовые характеристики:

  • Мощность;
  • Количество контуров;
  • Объём потребляемой энергии.

Также стоит обращать внимание на производство. Чем популярнее марка – тем лучше.

Это три основные параметры, по которым можно определить, насколько перед вами эффективный котёл с высоким КПД.

Если вы собираетесь отапливать весь дом – покупайте самые большие котлы. Если нет, то стоит остановиться на маленьком котле. Подходите к выбору котла внимательно. Это самый важный элемент в водородном генераторе. Выбирайте качественные котлы только популярных марок, и тогда ваш генератор прослужит вам много лет.

Насколько эффективна ячейка Мейера

Ячейка Мейера – это топливная ячейка. Элемент, который тратит малый объём электроэнергии, создавая большое количество водородно-кислородной смеси из обычной воды. Преимущества ячейки очевидны. Именно поэтому её применяют в водородных генераторах.

3 главные преимущества ячейки Майера:

  • Малое потребление;
  • Высокая эффективность от чистой воды;
  • Ячейка остаётся холодной даже после часовом создании газа.

Ячейка Мейера применяется вместо обычного электролиза.

За счёт малого потребления и высокой эффективности, ячейка получила широкое применение в создании водородного генератора в домашних условиях. Установка затрачивается малое количество энергии. При этом, даже от чистой воды, она способна производить огромное количество газа, оставаясь холодной.

Ячейка Мейера гораздо эффективнее электролиза. Она изготавливается из нержавейки, требует мало затрат, но при этом на выходе мы получаем большой объём газа. Для работы её необходимо погружать в воду. Если вы хотите получить большое количество газа, то следует использоваться именно ячейку Мейера.

Авто на воде своими руками: чертежи (видео)

Водородный генератор – это очень полезное устройство для тех, кто хочет сэкономить на электроэнергии и получить максимально эффективный агрегат, с помощью которого можно производить газ для системы теплых полов. При использовании генератора, вы будете обеспечены теплым полом на долгое время.

Добавить комментарий

teploclass.ru

Водородный генератор своими руками для отопления дома, схема

Использование водорода в качестве энергоносителя для обогрева дома – идея весьма заманчивая, ведь его теплотворная способность (33.2 кВт / м3) превышает более чем в 3 раза показатель природного газа (9.3 кВт / м3). Теоретически, чтобы извлечь горючий газ из воды с последующим сжиганием его в котле, можно использовать водородный генератор для отопления. О том, что из этого может получиться и как сделать такое устройство своими руками, будет рассказано в данной статье.

Принцип работы генератора

Как энергоноситель водород действительно не имеет себе равных, а запасы его практически неисчерпаемы. Как мы уже сказали, при сжигании он выделяет огромное количество тепловой энергии, несравнимо большее, нежели любое углеводородное топливо. Вместо вредных соединений, выбрасываемых в атмосферу при использовании природного газа, при горении водорода образуется обычная вода в виде пара. Одна беда: данный химический элемент не встречается в природе в свободном виде, только в соединении с другими веществами.

Одно из таких соединений – обычная вода, представляющая собой полностью окисленный водород. Над ее расщеплением на составные элементы работали многие ученые в течение долгих лет. Нельзя сказать, что безрезультатно, ведь техническое решение по разделению воды все же было найдено. Его суть – в химической реакции электролиза, в результате которой происходит расщепление воды на кислород и водород, полученную смесь назвали гремучим газом или газом Брауна. Ниже показана схема водородного генератора (электролизера), работающего на электричестве:

Электролизеры производятся серийно и предназначены для газопламенных (сварочных) работ. Ток определенной силы и частоты подается на группы металлических пластин, погруженных в воду. В результате протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром. Для его отделения газы пропускаются через сепаратор, после чего подаются на горелку. Дабы избежать обратного удара и взрыва, на подаче устанавливается клапан, пропускающий горючее только в одну сторону.

Для контроля за уровнем воды и своевременной подпитки конструкцией предусмотрен специальный датчик, по сигналу которого производится ее впрыск в рабочее пространство электролизера. За превышением давления внутри сосуда следит аварийный выключатель и сбросной клапан. Обслуживание водородного генератора заключается в периодическом добавлении воды, и на этом все.

Водородное отопление: миф или реальность?

Генератор для сварочных работ – это на данный момент единственное практическое применение электролитическому расщеплению воды. Использовать его для отопления дома нецелесообразно и вот почему. Затраты энергоносителей при газопламенных работах не так важны, главное, что сварщику не нужно таскать тяжеленные баллоны и возиться со шлангами. Другое дело – отопление жилища, где каждая копейка на счету. И тут водород проигрывает всем существующим ныне видам топлива.

Важно. Затраты электроэнергии на выделение горючего из воды методом электролиза будут гораздо выше, нежели гремучий газ сможет выделить при сжигании.

Серийные сварочные генераторы стоят немалых денег, поскольку в них используются катализаторы процесса электролиза, в состав которых входит платина. Можно сделать водородный генератор своими руками, но его эффективность будет еще ниже, чем у заводского. Получить горючий газ вам точно удастся, но вряд ли его хватит на обогрев хотя бы одной большой комнаты, не то что целого дома. А если и хватит, то придется оплачивать баснословные счета за электричество.

Чем тратить время и усилия на получение бесплатного топлива, которого не существует априори, проще смастерить своими руками простой электродный котел. Можете быть уверены, что так вы израсходуете гораздо меньше энергии с большей пользой. Впрочем, домашние мастера – энтузиасты всегда могут попробовать свои силы и собрать дома электролизер, с целью провести эксперименты и убедиться во всем самолично. Один из подобных экспериментов показан на видео:

Как изготовить генератор

Масса интернет-ресурсов публикуют самые разные схемы и чертежи генератора для получения водорода, но все они действуют по одному принципу. Мы предложим вашему вниманию чертеж простого устройства, взятый из научно-популярной литературы:

Здесь электролизер представляет собой группу металлических пластин, стянутых между собой болтами. Между ними установлены изоляционные прокладки, крайние толстые обкладки тоже изготовлены из диэлектрика. От штуцера, вмонтированного в одну из обкладок, идет трубка для подачи газа в сосуд с водой, а из него – во второй. Задача емкостей – отделять паровую составляющую и накапливать смесь водорода с кислородом, чтобы подавать его под давлением.

Совет. Электролитические пластины для генератора надо делать из нержавеющей стали, легированной титаном. Он послужит дополнительным катализатором реакции расщепления.

Пластины, что служат электродами, могут быть произвольного размера. Но надо понимать, что производительность аппарата зависит от их площади поверхности. Чем большее число электродов удастся задействовать в процессе, тем лучше. Но при этом и потребляемый ток будет выше, это следует учитывать. К концам пластин припаиваются провода, ведущие к источнику электричества. Здесь тоже есть поле для экспериментов: можно подавать на электролизер разное напряжение с помощью регулируемого блока питания.

В качестве электролизера можно применить пластиковый контейнер от водяного фильтра, поместив в него электроды из нержавеющих трубок. Изделие удобно тем, что его легко герметизировать от окружающей среды, выводя трубку и провода через отверстия в крышке. Другое дело, что этот самодельный водородный генератор обладает невысокой производительностью из-за малой площади электродов.

Заключение

На данный момент не существует надежной и эффективной технологии, позволяющей реализовать водородное отопление частного дома. Те генераторы, что имеются в продаже, могут успешно применяться для обработки металлов, но не для производства горючего для котла. Попытки организовать подобный обогрев приведут к перерасходу электроэнергии, не считая затрат на оборудование.

cotlix.com

Изготовление самодельного генератора сухого водорода по схеме

Генераторы водорода, которые в настоящее время используются в автомобилях для экономии энергии, бывают двух видов: «мокрый» электролизер и «сухой». У каждого из них есть свои преимущества и недостатки, но сухой электролизер является разработкой второго поколения устройств, вырабатывающих водород для авто, так как в нем устранены значительные недостатки мокрого предшественника.

При экспериментах своими руками с генерированием водорода следует предельно осторожно соблюдать технику безопасности! Необходимо сначала изучить опыт других исследователей и практиков. Ссылки на ресурсы по данной теме с практическими примерами в конце статьи.

Всякие генераторы и устройства в этом китайском магазине.

На видео показана схема сухого генератора. Подробнее, как его сделать — на втором ролике.

Подробное описание

Для изготовления «сухих батарей» вам понадобится перфорированная нержавеющая сталь марки 316L или 316T. Толщина листа 0,4 мм, или 0,5 мм, не толще,с диаметром отверстий 2 мм, или 3 мм. Шаг отверстий в шахматном порядке, как это показано на картинке. Каждый лист слегка зашкурьте грубой наждачкой так, чтоб поверхность была покрыта царапинами. Это увеличит площадь соприкосновения стали с водой.

В изготовлении «сухих батарей» для автомобиля вам понадобится 20 листов перфорированной стали 10X10 см, с выступом 3X3 см, для электрического контакта; 19 прокладок, толщиной 2 мм, и 2 прокладки, толщиной 10 мм. Их можно вырезать из камер для автомобилей, или листов резины. Нужны также два листа из пластика 16X16 см. Лучше всего изготовить их из стенок ёмкости аккумулятора, отработавшего свой ресурс. Остальные детали вы увидите в видео-показе модели многополярной «сухой батареи». Первая и последняя прокладки 10 мм толщиной, нужны для того, чтобы пластиковые детали для поступления и выхода воды в системе батарей не упирались плотно в первый и последний стальные листы. В стальных пластинах, в выступах для электрических контактов, просверлите отверстие такого диаметра, чтобы болт в них входил как по резьбе, то есть плотно! Пластины должны чередоваться контактами. Одна пластина контактами на правый болт; другая — контактом на левый болт. И так далее.

Система электролиза

Система электролиза состоит из следующих частей: Аккумулятор. «Сухая батарея». Первая ёмкость для дистиллированной воды с примесью гидроксида калия. Гидроксид калия должен иметь 95% насыщенности!. Вторая ёмкость с обычной, чистой водой для очистки газа. Прибор давления. Клапан, предотвращающий возврат газа обратно к системе.

Подсоединение от аккумулятора плюсового и минусового кабеля к «сухой батарее». Поступление воды, с примесью гидроксида калия в батарею. Образующийся газ с остатками воды выходит из батареи и поступает в ёмкость. Затем, через фильтр, предотвращающий выход воды, газ из первой ёмкости поступает во вторую емкость, для очистки через воду. Для этого используется длинная трубка, идущая почти к самому дну второй ёмкости. В первую и вторую емкости можно поверх воды уложить устойчивый к кислотам, не тонущий и пористый материал для предотвращения всплесков воды при качке, тряске и наклонах автомобиля во время езды. Затем через фильтр, предотвращающий выход воды очищенный газ из второй емкости проходит через прибор, показывающий давление газа.

Из прибора давления газ проходит через клапан, который предотвращает возврат газа обратно по системе. Клапан состоит из медной трубки с герметично закручивающимися крышками по оба конца. В крышках устанавливаются ниппеля, пропускающие воздух в одном направлении, то-есть из системы электролиза наружу. А в медную трубку плотно набивается «стальная шерсть» марки 0000. Без этого клапана система электролиза будет взрывоопасна!

Сухие батареи» собираются и разбираются легко. Предложенные параметры стальных пластин избавят вас от головной боли вычислений. Если «сухая батарея», при мощности аккумулятора вашего авто, мало эффективна, тогда снизьте число пластин поровну на плюс и минус. Если же батарея сильно греется, тогда добавьте число пластин также поровну, одна на плюс, другая на минус и так далее. Первую и вторую ёмкости, в системе электролиза, делайте той площадью и формы, чтобы удобней их можно было разместить под капотом. Для надёжности, сделайте к ним и к «сухой батарее» стальные кожухи. Газ подаётся в двигатель через воздухозаборную систему. При этом надо снизить впрыск топлива. Марок автомобилей много, поэтому здесь подход нужен индивидуальный. В общем, думайте, экспериментируйте.

На этом сайте вы найдёте видео и чертежи водного инжектора и высоковольтного реле зажигания. А на этом русскоязычном сайте vodorod-na-avto.com много полезной информации с подробностями и испытаниями генераторов водорода для машин.

izobreteniya.net

Самодельная водородная горелка |

Одним из самых удобных и практичных способов получения водорода, и его дальнейшего, разумного применения является водородный генератор, так называемая водородная горелка. Но получение водорода в домашних условиях довольно опасное занятие потому прислушайтесь к описанному совету.

Самодельный водородный генератор:

Основу водородной горелки составляет водородный генератор, который представляет собою своеобразную ёмкость с водой и пластинами из нержавеющей стали. Конструкция и подробное описание водородного генератора можно без особых усилий найти на других сайтах, потому я не стану тратить печатные символы на это. Я хочу передать весьма важные тонкости, которые будут вам очень полезны, если вы соберётесь делать водородную горелку своими руками.

Рисунок №1 – Структурная схема водородной горелки

Суть водородной горелки заключается в получении водорода путём электролиза воды. Вы должны понимать, что в электролизёр (емкость с водой и электродами) и потому, нельзя наливать туда что попало, я рекомендую использовать дистиллированную воду, однако читал, что для более эффективного электролиза добавляют ещё каустическую соду (пропорций не знаю).

Мой электролизёр собран из нержавеющих пластин, резиновых прокладок, и двух толстых пластин оргстекла, и внешне всё это выглядит так:

Рисунок №2 – Электролизёр

Электролизёр необходимо заполнять водою ровно наполовину для соблюдения техники безопасности, следите за уровнем жидкости, так как с его снижением меняются электрические параметры и интенсивность выделения водорода!

Но прежде чем потратить кучу времени и материалов на сборку электролизёра, позаботитесь о блоке питания к нему. Мой электролизёр, к примеру, потребляет ток около 6А, при напряжении 8В.

Металлические пластины (электроды) соединены при помощи припаянной к ним толстой медной проволоки, и толстых медных проводов (около 4мм сечение).

Рисунок №3 – Как подсоединить провода

Так же вы должны понимать, что всё должно быть герметично соединено и хорошо заизолировано, короткое замыкание пластин и искра недопустимо!!!

Рисунок №4 – Изоляция пластин

На самом деле есть масса разного рода конструкций электролизёра потому я не хочу на нем фокусировать ваше внимание, хотя он и является самой основной и трудоёмкой деталью для водородной горелки, само по себе он не очень важен (вам подойдёт любая его конструкция).

При работе с водородной горелкой следует:

Если вы собрались делать водородную горелку, то будьте осторожны! Водород очень взрывоопасен!!! При сборке и работе с водородной горелкой, есть много жизненно важных тонкостей. Обратите внимание на мои советы – я это реально проделывал и знаю что говорю.

В самодельной водородной горелке обязательно должно быть согласованно давление водорода, и защита от обратного взрыва, хорошая герметичность и изоляция!

Дело в том, что при работе водородной горелкой, для электролиза вы используете блок питания. И пока он включён, водород выделяется примерно с одинаковой интенсивностью (по мере работы она может падать, так как вода испаряется и меняется плотность тока между пластинами электродов), потому не приступайте к работе, не ознакомившись предварительно с устройством горелки.

Как правильно пользоваться водородной горелкой:

Во-первых прежде всего, всегда работайте в средствах индивидуальной защиты (обязательно наденьте на лицо защитный щиток или очки), во-вторых соблюдайте правила пожарной безопасности. В-третьих, следите за уровнем воды в электролизёре, и интенсивностью горения пламени.

Поджигать пламя нужно не сразу, дайте водороду вытеснить остатки кислорода (у меня это занимает около десяти минут, в зависимости от интенсивности выделения и объёма сосудов с водяным затвором и предохранителем А, Б рис.1)

Обязательно держите около себя ёмкость с водою – она вам понадобится, что бы потушить пламя горелки, когда закончите работу. Для этого, вам просто необходимо направить кончик иглы с пламенем под воду и тем самым перекрыть огню кислород. ВСЕГДА СНАЧАЛА ТУШИТЕ ПЛАМЯ А ПОТОМ ВЫКЛЮЧАЙТЕ ПИТАНИЕ ГЕНЕРАТОРА – ИНАЧЕ ВЗРЫВ НЕМЕНУЕМ.

Водяной затвор и предохранитель:

Обратите ваше внимание на рисунок №1 – там есть две ёмкости (Я обозначил их А и Б), ну и иголка от одноразового шприца (В), всё это соединено трубками от капельниц.

В первую емкость (А) необходимо наливать воду, это водяной затвор. Он необходим для того что бы взрыв не добрался до электролизёра (если он рванёт то это будет как осколочная граната).

Рисунок №5 – Водяной затвор

Обратите внимание, в крышке водяного затвора есть два соединителя (я всё это приспособил от медицинской капельницы), оба они герметично вклеены в крышку при помощи эпоксидного клея. Одна трубка длинная, по ней водород с генератора должен поступать под воду, булькать, и через второе отверстие идти по трубке к предохранителю (Б).

Рисунок №6 – Предохранитель

В ёмкость с предохранителем вы можете наливать как воду (для большей надёжности) так и спирт (пары спирта повышают температуру горения пламени).

Сам предохранитель делается так: Вам необходимо проделать в крышке отверстие диаметром 15 мм, и отверстия для винтиков.

Рисунок №7 – Как выглядят отверстия в крышке

Также вам понадобится две толстых шайбы (если потребуется, то надо расширить внутренний диаметр шайбы при помощи круглого напильника) две водопроводных прокладки и фольгу от шоколадки или обыкновенный воздушный шарик.

Рисунок №8 – Эскиз защитного клапана

Собирается он достаточно просто, вам необходимо просверлить четыре соосных отверстия в железных шайбах крышке и прокладках. Сначала необходимо припаять болты к верхней шайбе, это легко можно сделать при помощи мощного паяльника и активного флюса.

Рисунок №9 – Шайба с винтикамиРисунок №10 – Припаянные к шайбе винтики

После того как вы припаяли винтики вам необходимо надеть на шайбу одну резиновую прокладку и непосредственно ваш клапан. Я использовал тонкую резинку от лопнувшего воздушного шарика (это гораздо удобнее чем надевать тонкую фольгу), хотя фольга, тоже подходит довольно удачно, по крайней мере, когда я испытывал свою водородную горелку на предмет взрывоопасности, то в клапане была именно фольга.

Рисунок №11 – Надеваем прокладку и защитную резинку

Потом надеваем вторую прокладку и можно вставлять защиту в отверстия, проделанные в крышке.

Рисунок № 12 – Готовый клапанРисунок №13 – Элементы защиты

Вторая шайба и гайки нужны, что бы герметично и крепко зафиксировать защиту, закручивая гайки (посмотрите на рисунок №6).

Поймите правильно и примите к сведенью, нельзя пренебрегать правилами техники безопасности, особенно когда работаете со взрывоопасными газами. А такое нехитрое приспособление может спасти вас от неприятных неожиданностей. Работает защита по принципу «где тонко – там и рвётся», взрывом выбивает защитную плёнку (фольгу или резинку), и взрывная сила не идёт в электролизёр, к тому же этому препятствует ещё и водяной затвор. Поверьте на слово, если взорвётся электролизер, то мало вам не покажется:)!!!

Рисунок №14 – Взрыв

Следует понимать что аварийная ситуация обязательно неминуема. Дело в том, что пламя горит на выходе форсунки, (в качестве которой достаточно неплохо подходит иголка от одноразового шприца) только потому, что создается давление газа (давление согласовано).

Рисунок № 15 – Форсунка из шприца, на пьедестале

К примеру, вы работаете вашей горелкой и вот вырубило свет, поверьте! Вы не успеете отскочить от горелки, пламя моментально пойдёт обратно по трубке и прогремит взрыв защитного клапана (он и нужен что бы рванул он а не электролизёр) – это вполне нормально, когда горелка самодельная – будьте бдительны и осторожны, держитесь подальше от водородной горелки и надевайте средства индивидуальной защиты!

Лично я не в большом восторге от водородной горелки, я и попробовал её сделать только по тому, что у меня уже был готовый электролизёр. Во-первых, это очень опасно, во-вторых не очень эффективно (я говорю о своей водородной горелке а не о горелках в целом) расплавить ею то что я хотел не удалось. И потому если вам пришла в голову идея сделать такого типа горелку задайте себе вполне рациональный вопрос «а оно того стоит», так как собрать электролизёр с нуля это достаточно хлопотное дело, а ещё нужен мощный блок питания такой что бы хватало для согласования давления водорода и диаметра выходной форсунки. Потому, «лишь бы было» я вам её делать не рекомендую, а только если она вам действительно нужна.

Спасибо что посещаете bip-mip.com

bip-mip.com

Как собрать водородный генератор своими руками

Для отопления частного дома используют разные способы. Они различаются между собой как по способу передачи тепла, так и по типу используемого энергоносителя. При использовании водяного отопления выделяют несколько типов котлов в зависимости от вида топлива:

Водородный генератор для отопления частного дома

  1. Твердотопливные – используют для работы твердое топливо, которое при сгорании выделяет тепло.
  2. Электрические – в таких котлах тепло получают путем преобразования электроэнергии.
  3. Газовые – тепло выделяется при сгорании газа.

Если рассматривать газовые котлы, то они в основном работают на природном газе, хотя есть модели и под сжиженный газ, а в последнее время начинают применять в качестве топлива водород, вырабатываемый из воды в специальных устройствах – водородных генераторах.

Принцип работы

Из школьного курса физики известно, что вода при воздействии на нее электрического тока разлагается на две составляющие: водород и кислород. На основании этого явления построен так называемый генератор водорода. Это устройство представляет собой агрегат, в котором происходит электрохимическая реакция для получения из воды водорода и кислорода. Процесс электролиза воды показан на рисунке ниже.

Процесс электролиза воды

На выходе генератора образуется не водород и кислород в чистом виде, а так называемый газ Брауна, по имени ученого, который впервые получил его. Его еще называют «гремучим газом», так как он при определенных условиях взрывоопасен. Причем при сгорании этого газа можно получить почти в четыре раза больше энергии, чем было затрачено на его производство.

Такая установка для производства водорода изображена на рисунке ниже.

Промышленная установка для производства водорода

Плюсы и минусы

Из достоинств такого вида отопления можно выделить следующие:

  1. Это экологически чистый вид отопления, так как при сгорании водорода в кислородной среде образуется вода в виде пара, и больше нет выброса никаких вредных веществ в атмосферу.
  2. Можно без особых переделок подключить генератор к существующей системе водяного отопления частного дома.
  3. Установка работает бесшумно, поэтому не требует какого-то особого помещения.

Недостатки:

  1. У водорода большая температура горения, которая в среде кислорода может достигать 3200°С, поэтому обычный котел может выйти из строя очень быстро. В современных устройствах ученые добились результата сгорания газа при температуре 300°С, поэтому проблему можно считать практически решенной.
  2. При работе с газом Брауна нужно быть очень осторожным, поскольку он взрывоопасен. Это решается использованием в устройстве различных предохранительных клапанов и автоматики.
  3. Требует использования для работы дистиллированной воды или воды со щелочью.
  4. Большая стоимость оборудования. Для решения этой проблемы многие пытаются собрать установку для получения водорода своими руками.

Генератор водорода своими руками

Самодельное устройство схематически представляет собой емкость с водой, куда помещены электроды для преобразования воды в водород и кислород.

Для того чтобы своими руками сделать подобное устройство, понадобятся:

  1. Лист нержавеющего металла толщиной 0,5-0,7мм. Подойдет нержавейка марки 12Х18Н10Т.
  2. Пластины из оргстекла.
  3. Резиновые трубки для подвода воды и отвода газов.
  4. Листовая бензомаслостойкая резина толщиной 3 мм.
  5. Источник напряжения – ЛАТР с диодным мостом для получения постоянного тока. Он должен обеспечивать ток 5-8 ампер.

Сначала нарезают нержавеющие пластины на прямоугольники 200×200мм. Уголки на пластинах нужно срезать для того, чтобы потом стянуть всю конструкцию болтами. В каждой пластине просверливаем отверстие диаметром 5мм, на расстоянии 3см от низа пластин, для циркуляции воды. Также к каждой пластине припаивают провод для присоединения к источнику питания.

Перед сборкой из резины делают кольца с внешним диаметром 200мм и внутренним – 190мм. Еще нужно приготовить две пластины из оргстекла толщиной 2см и размерами 200×200мм, при этом нужно предварительно сделать в них отверстия по четырем сторонам под стягивающие болты М8.

Сборку начинают так: сначала кладут первую пластину, затем резиновое кольцо, промазанное с обеих сторон герметиком, далее следующую пластину и так до последней пластины. После этого необходимо всю конструкцию стянуть с двух сторон с помощью шпилек М8 и пластин из оргстекла. В пластинах просверливаются отверстия: в одной – внизу для подвода жидкости, в другой – вверху для отвода газа. Туда вставляется штуцер. На эти штуцера одеваются медицинские полихлорвиниловые трубки. В итоге должна получиться конструкция, как на рисунке ниже.

Водородный генератор своими руками

Для того чтобы исключить попадание газа обратно в газогенератор, на пути от генератора к горелке необходимо сделать водяной затвор, а еще лучше два затвора.

Конструкция затвора – это емкость с водой, в которую со стороны генератора трубка опущена в воду, а та трубка, что идет к горелке, выше уровня воды. Схема генератора водорода с затворами изображена на рисунке ниже.

Схема генератора водорода с водяными затворами

В электролизере – герметичной емкости с водой с опущенными электродами при подаче напряжения начинает выделяться газ. По трубке 1 он подается к 1 затвору. Конструкция водяного затвора устроена таким образом, как видно из рисунка, что газ может двигаться только в направлении от электролизера к горелке, а не наоборот. Этому мешает разная плотность воды, которую нужно преодолеть на обратном пути. Далее по трубке 2 газ движется к 2 затвору, который предназначен для большей надежности системы: если вдруг по какой-то причине не сработает первый затвор. После этого газ подается к горелке с помощью трубки 3. Водяные затворы являются очень важной частью устройства, поскольку препятствуют движению газа в обратную сторону.

При попадании газа обратно в электролизер может произойти взрыв устройства. Поэтому ни в коем случае нельзя эксплуатировать прибор без водяных затворов!

Эксплуатация

После сборки можно начинать испытания прибора. Для этого на конце трубки устанавливают горелку из медицинской иглы и начинают заливать воду. В воду нужно добавить KOH или NaOH. Вода должна быть дистиллированная или талая на крайний случай. Для работы устройства достаточно 10% концентрации щелочного раствора. При заливке воды не должно быть никаких подтеков. Лучше всего перед заливкой продуть конструкцию воздухом, давлением до 1атм. Если водородный генератор выдерживает это давление, то можно заливать воду, если нет, нужно устранить протечки.

После этого к электродам по схеме подсоединяют ЛАТР с диодным мостом. В цепь устанавливают амперметр и вольтметр для контроля работы. Начинают с минимального напряжения и потом постоянно увеличивают, наблюдая за газовыделением.

Предварительно работы лучше проводить на открытом воздухе вне дома. Поскольку установка взрывоопасна, все работы следует проводить с особой осторожностью.

При испытаниях наблюдают за работой прибора. Если имеет место маленькое пламя горелки, то может быть или низкое газовыделение в генераторе, или где-то происходит утечка газа. Если раствор помутнел, грязный, его нужно заменить. Также необходимо следить, чтобы прибор не перегревался, а вода не закипела. Для этого регулируют напряжение на источнике тока. И еще одно – пластины при нагревании немного деформируются и могут прилипать одна к одной. Чтобы это исключить, нужно сделать прокладки из резины. Могут также наблюдаться плевки водой – для устранения этого нужно уменьшить уровень воды.

Генератор в системе отопления

После того как проведены испытания можно подсоединять установку к газовому котлу дома. Для этого котел нужно немного переделать, а именно своими руками сделать жиклер с отверстием меньшего диаметра, чем у заводского, рассчитанного на природный газ. Генератор в собранном виде изображен на рисунке ниже.

Генератор водорода в собранном виде

В систему отопления частного дома обязательно должна быть залита вода. Пламя горелки может расплавить котел, если там не будет воды.

После этого регулируют подачу воды в устройство и начинают устранять пробки в системе отопления дома. Затем с помощью регулировки подачи воды и напряжения питания настраивают работу котла.

При эксплуатации установки в течение отопительного сезона проводят окончательное испытание, в ходе которого решаются несколько вопросов:

  1. Хватает ли газа для отопления дома. Если его недостаточно, то можно своими руками сделать установку большей производительности.
  2. Насколько хорошо работает котел на водороде, то есть насколько котел долго прослужит.
  3. Стоимость такого отопления – для этого можно завести журнал, в котором вести подсчеты расходов на отопление и температуры в доме и на улице во время работы котла. На основании этих данных потом можно сделать вывод, насколько выгодно отапливать дом водородом.

На основании этих данных можно к следующему отопительному сезону подготовиться более основательно. Во время эксплуатации можно увидеть, что нуждается в усовершенствовании, может какую-то часть устройства нужно переделать. Возможно, в переделке и модернизации нуждается сам котел, для того чтобы он не вышел быстро из строя. Также если в дальнейшем планируется пользоваться устройством, может, есть смысл приобрести дистиллятор для воды?

Видео про генератор

Как сделать водородный генератор своими руками без электричества, можно узнать из этого видео.

Главный вопрос, который интересует многих, – настолько дорого или дешево обходится такое отопление? Это можно узнать, если вести статистику во время отопительного сезона. Причем необходимо подбивать все затраты, такие как стоимость дистиллированной воды, стоимость щелочи, расходы на электричество, на ремонт котла и на изготовление установки. На основании этого можно принимать решение, подходит такой вид отопления для дома или нет.

Установка насосной станции в частном доме схема

Монтаж системы отопления в частном доме подробная схема

Удорожание энергоносителей стимулирует поиск более эффективных и , в том числе на бытовом уровне. Более всего умельцев–энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения генератора водорода для отопления частного дома, заправки авто и в качестве сварочного аппарата.

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.

Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2H 2 + O 2 → 2H 2 O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2H 2 O → 2H 2 + O 2 — Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Создание опытного образца

Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

Из чего состоит примитивный электролизер:

  • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
  • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
  • второй резервуар играет роль водяного затвора;
  • трубки для отвода газа HHO.

Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

Принцип работы электролизера следующий:

Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:

Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

О водородной ячейке Мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.

Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.

Под ячейку Мейера можно приспособить готовый пластиковый корпус от обычного водопроводного фильтра

Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.

Принципиальная схема включения электролизера

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10-14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.

Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.

Схема водородной установки мокрого типа

Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

  1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7-15% раствор гидроокиси калия в воде.
  2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
  3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

Выгодно ли получать водород в домашних условиях

Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:

  • использовать hydrogen в качестве топлива для автомобилей;
  • бездымно сжигать водород в отопительных котлах и печах;
  • применять для газосварочных работ.

Главная проблема, перечеркивающая все преимущества водородного топлива: затраты электричества на выделение чистого вещества превышают количество энергии, получаемое от его сжигания. Что бы ни утверждали приверженцы утопичных теорий, максимальный КПД электролизера достигает 50%. Это значит, что на 1 кВт полученной теплоты затрачивается 2 кВт электроэнергии. Выгода – нулевая, даже отрицательная.

Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.

Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.

Теперь рассмотрим гремучий газ, полученный электролизом в самодельном водородном генераторе, как топливо для вышеперечисленных нужд:

Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь.

Заключение

Гидроген в составе газа ННО, полученный из самодельного водородного генератора, пригодится для двух целей: экспериментов и газосварки. Даже если отбросить низкий КПД электролизера и затраты на его сборку вместе с потребляемым электричеством, на обогрев здания попросту не хватит производительности. Это касается и бензинового двигателя легковой машины.

В современном обществе бытует мнение, что наиболее доступным по цене топливом является природный газ. На самом деле, ему существует альтернатива — водород. Его можно получить при расщеплении воды. Причем этот вид топлива будет бесплатным, если не учитывать тот факт, что придется собрать водородный генератор, компоненты которого нужно покупать.


Теоретическая основа

Водород является очень легким газообразным веществом. У него высокая химическая активность. Окисляясь, он дает большое количество тепловой энергии и при этом образует воду.

Водород обладает следующими свойствами:

Стоит отметить, что hydrogen и oxygen соединяются очень легко, а вот разделить их непросто. Для этого придется использовать электричество для запуска непростой химической реакции.

Простейший газогенератор для добычи водорода представляет собой емкость с жидкостью, внутри которой располагаются две пластины с подключением к электрической сети. Поскольку вода хорошо проводит ток, электроды вступают в контакт с малым сопротивлением. При прохождении электричества через пластины возникает химическая реакция, сопровождающаяся появлением водорода.

Водород. Учебный фильм для школьников по химии

Лучше всего собирать устройство для получения газа Брауна своими руками по схеме, которую называют классической. Здесь электролизер состоит из нескольких ячеек. В каждой из них находятся контактные пластины. Производительность установки определяется площадью поверхности электродов.

Ячейки следует поместить
в хорошо изолированный корпус с заранее подключенными патрубками для водоснабжения и отведения водорода. Кроме того, на емкость должен иметься разъем для подключения электрической энергии.

Также нужно будет установить водяной затвор и обратный клапан. Они предотвратят поступление газа Брауна назад в резервуар. По такой съеме можно собрать гидролизер как для отопления дома, так и для автомобиля.

Собрать водородный электрогенератор для дома можно, но рентабельной затею назвать сложно. Дело в том, что для получения достаточных объемов газа придется использовать мощную электрическую установку. Она будет потреблять много дорогой энергии. Однако это не останавливает энтузиастов.

Чтобы собрать электролизер для получения водорода своими руками в домашних условиях, понадобится специализированный инструмент. Например, не обойтись без осциллографа и частотомера.

Вооружившись чертежами, первым делом нужно собрать ячейку гидролизера. Ее ширина и длина должны быть чуть меньше габаритов корпуса. Высота — не более 2/3 основной емкости.

🔴Водород в отоплении дома🔴🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥

Ячейку обычно делают из толстого текстолита с помощью эпоксидного клея. При сборке нижняя часть корпуса остается открытой.

На верхней стороне емкости насверливаются отверстия. Через них наружу выводятся хвостовики электродов. Также понадобится 2 дополнительных отверстия. Первое совсем маленькое для датчика уровня жидкости. Второе диаметром в 15 мм для штуцера. Последний следует закрепить механически. Все отверстия для пластин после установки последних заливаются эпоксидной смолой. Модуль размещается внутри корпуса и основательно герметизируется все той же эпоксидной смолой.

Перед установкой ячеек корпус водогенератора следует подготовить:

После загрузки топливных ячеек, подключения питания, соединения штуцера с приемником и установки крышки на корпус, сборку генератора можно считать завершенной. Остается заполнить емкость жидкостью и подключить дополнительные модули.

Собрать генератор кислорода своими руками — половина дела. Нужно подключить к нему дополнительные устройства, без которых он работать не будет. Например, датчик уровня жидкости нужно соединить с помпой для подачи воды через контроллер. Последний отслеживает сигналы датчика и при необходимости запускает подачу жидкости внутрь топливных ячеек.

Не обойтись и без устройства, позволяющего регулировать частоту тока на клеммах ННО генератора. Кроме того, вся электрическая часть должна иметь защиту от перегрузки. Для этого обычно используется стабилизатор напряжения.

Как сделать генератор водорода своими руками/How to make a DIY hydrogen generator

Что касается коллектора оксиводорода, то его простейший вариант представляет собой трубку, на которой закреплены: запорная арматура, обратный клапан и манометр.

По идее газ из коллектора можно сразу закачивать в печь системы отопления. На практике это невозможно, так как водород выделяет слишком много тепла. Поэтому перед использованием его смешивают с другим топливом.

Своими руками собрать такое устройство не так уж и сложно. Помогут в этом чертежи с пошаговыми инструкциями. Также нужно будет приготовить необходимые материалы: контейнер из пластика или корпус от старого аккумулятора, трубку длиной не менее метра, крепежные болты и гайки, герметик, лист нержавеющей стали, несколько штуцеров, фильтры и обратный клапан.

Процесс изготовления водородного генератора для автомобиля выглядит следующим образом:

Простейший гидролизатор для авто готов. Но перед установкой в транспортное средство нужно его проверить. Для этого устройство заполняется водой до уровня крепежных болтов на пластинах. К штуцеру подключается полиэтиленовый шланг. Его свободный конец опускается в заранее подготовленную емкость с жидкостью.

После подачи энергии на электроды поверхность воды во втором контейнере должна покрыться пузырьками газа. Если это произошло, то генератор готов к эксплуатации. Остается жидкость в нем заменить на щелочной электролит для повышения объемов производимого газа.

Следует понимать,что самодельный генератор водорода не является заменой традиционному топливу. Его устанавливают на автомобили в основном для экономии бензина. Она может достигать 50%. Кроме того, при использовании HHO снижаются вредные выхлопы, повышаются эксплуатационные сроки, уменьшается температура силового агрегата. И все это при ощутимом повышении мощности мотора. Всеми любимая нержавейка — доступное, но недолговечное решение. Топливные ячейки на них довольно быстро выйдут из строя.

Также при сборке гидролизатора нужно соблюдать монтажные размеры. Чтобы их получить, нужно произвести сложные расчеты с учетом качества воды, необходимой мощности на выходе и т. д.

При изготовлении устройства значение имеет даже сечение проводов, по которым на электроды подается ток. Речь идет не о производительности генератора, а о безопасности его эксплуатации, но и этот важный нюанс нужно учитывать.

Главная проблема таких приборов
— большие затраты электричества для получения оксиводорода. Они превышают энергию, которую можно получить от сжигания такого топлива.

Из-за низкого КПД цена водородной установки для дома делает производство этого газа и его последующее использование для отопления невыгодным. Чем впустую расходовать электричество, проще установить любой электрокотел. Он будет эффективнее.

Что касается автомобильного транспорта, то здесь картина не сильно отличается. Да, можно сделать гидролизер для экономии топлива, но при этом снижается безопасность и надежность.

Единственное, где водород можно эффективно применять как топливо, — газосварка. Аппараты на hydrogen весят меньше, они компактнее, чем кислородные баллоны, но намного эффективнее. К тому же стоимость получения смеси здесь не играет никакой роли.

Интерес к генераторам водорода, HHO и газа Брауна, продолжает расти как на дрожжах, но самым радостным фактом является огромное количество людей, которые начинают или планируют собирать генераторы водорода своими руками. Причем совершенно не важно, какой генератор человеку нужен, генератор водорода для авто или генератор водорода для котла или сварки, принцип его действия все равно будет одним и тем же. Чтобы помочь практикам, осваивающим эту нелегкую отрасль, мы начинаем готовить ответы на часто задаваемые вопросы по сборке генераторов водорода своими руками.

Предлагаем Вам первую часть ответов на часто задаваемые вопросы по сборке генератора водорода своими руками. Все ответы, приведены «как есть», то есть без какой-либо вуали, подтекста и скрытых целей, нами преследуемых.

Часть 1. Общие вопросы

В данном выпуске:

1.

А зачем это нужно? Можно ведь пойти и купить в магазине генератор водорода, такой, какой нужен
?

2.

А разве существуют способы постройки генератора водорода, который будет работать с КПД выше единицы?

5.

Вы публикуете сверхединичные генераторы водорода от Александра ( ). Он тоже никогда не поделится своими схемами и наработками?
.

7. Какую нужно использовать воду?

8. Какой необходим металл? В различных руководствах говорится о необходимости использовать только очень редкие марки…
.

9

. Насколько хватает пластин электродов?

10.

Как правильно подготовить пластины для электродов?

11

. Каковы температурные режимы электролизера и воды?

12

. Возможен ли полный перевод автомобиля на газ Брауна?

13

. Какие пропорции газа Брауна в топливе безвредны для ДВС?

14

. Сколько литров газа Брауна в минуту нужно для работы ДВС?

1. А зачем это нужно? Можно ведь пойти и купить в магазине генератор водорода, такой, какой нужен.

Пока выбор генераторов водорода в магазинах очень скуден. Цена на них неоправданно высока, КПД их работы редко превышает 50% и никогда не превышает даже 90%. Для того, чтобы получить эффективный генератор водорода, работающий с КПД более единицы, на данный момент существует только один путь: сделать его самому.

2. А разве существуют способы постройки генератора водорода, который будет работать с КПД выше единицы?

Конечно существуют! Причем построенные на совершенно разных принципах работы и КПД которых превышает единицу не на доли процентов, что можно списать на погрешности измерений, а превышает единицу в разы!

3. Я хорошо учился в школе и университете, а потому не верю, что бывают генераторы водорода, работающие с КПД больше единицы, как мне в этом убедиться?

Для начала предлагаем посмотреть на уже для всеобщего обозрения генераторы водорода с проведенными . Также Вы можете воспользоваться нашими , для расчетов КПД водородных генераторов и выделяемой тепловой мощности.

4. Существуют ли на данный момент хорошо описанные и повторяемые схемы для сборки сверхединичных генераторов водорода?

Нет не существует! Абсолютное большинство выложенных в интернете схем для сборки сверхэффективных генераторов водорода нерабочие. Поэтому не получится найти схему, собрать по ней генератор и радоваться. Прежде придется много поэкспериментировать самому.

5. Вы публикуете сверхединичные генераторы водорода от Александра (). Он тоже никогда не поделится своими схемами и наработками?

Александр очень активно помогает на форуме практикам, отвечая на их вопросы. Просто у него есть конкретные и четкие цели по доведению своих разработок до логического завершения, а на это нужны средства. Потому Александр до окончания работ по этой теме не планирует отвечать на определенный круг вопросов, в основном это касается электронной схемы управления электролизером.

6. Где и что можно почитать или посмотреть, а также где задавать вопросы?

7. Какую нужно использовать воду?

Практически любую, от водопроводной до дистиллированной. Наилучшая эффективность достигается при использование раствора гидроксида натрия в дистиллированной воде в пропорциях одна столовая ложка на десять литров воды.

8. Какой необходим металл? В различных руководствах говорится о необходимости использовать только очень редкие марки…

Это одно из заблуждений! Подойдет любая нержавеющая сталь! Наилучшие результаты достигаются со сталью, которая не притягивается постоянным магнитом (не является ферромагнетиком), так как на нее ничего не налипает в процессе работы, но и этот момент непринципиален. Главное, чтобы сталь была нержавеющей и, соответственно, чтобы она не окислялась в воде.

9. Насколько хватает пластин электродов?

В процессе работы пластины не разрушаются, поэтому менять их на новые не нужно.

10. Как правильно подготовить пластины для электродов?

Все пластины необходимо тщательно промыть перед сборкой, сначала в мыльном растворе, потом спиртом или водкой. Потом необходимо «погонять» электролизер определенное время, периодически заменяя воду на чистую, и так в течение нескольких дней, пока не выест всю грязь и железо.
Впоследствии вода будет оставаться чистой. Чем чище вода, тем меньше нагрев установки.

11. Каковы температурные режимы электролизера и воды?

При правильно собранном электролизере, пластины и вода не должны нагреваться.
Также крайне желательно электролизер и пластины не перегревать выше 80 градусов.
Если температура на нечистой воде поднимется выше, чем 65 градусов, то грязь и металы с минералами пристанут к пластинам и Вы уже их не удалите и не сможете очистить от них пластины! Их придется удалять только при помощью абразивной обработки, с помощью наждачной бумаги и т.д.

12. Возможен ли полный перевод автомобиля на газ Брауна?

Да, теоретически возможен. Практически любой ДВС работает на газе Брауна совершенно спокойно и устойчиво без каких-либо переделок. Однако необходимо помнить, что продуктом сгорания газа Брауна, является вода, которая без принятия соответствующих мер будет накапливаться в картере двигателя, превращая масло в эмульсию, что приведет к быстрому износу деталей, которые будут с ней соприкасаться в процессе эксплуатации. Поэтому для долгосрочной работы ДВС на газе Брауна необходимо подобрать специальные присадки и решить проблему с удалением воды из масла.

13. Какие пропорции газа Брауна в топливе безвредны для ДВС?

В случае с бензиновыми двигателями возможно до 90% топлива заменить на газ Брауна, оставив только лишь 10 процентов бензина. В случае с дизельным топливом, количество газа Брауна в топливе не должно превышать 75-80%. При соблюдении приведенных выше пропорций применение газа Брауна не будет наносить ДВС никакого видимого урона, а его мощность видимо возрастет.
.

14. Сколько литров газа Брауна в минуту нужно для работы ДВС?

В первую очередь все зависит от объема двигателя, инжекторный двигатель или карбюраторный, какой год службы автомобиля… Если просто взять за основу к примеру жигули «копейку», то ей достаточно 17-18 литров в минуту на холостых оборотах и 20-24 литра на рабочем ходу. Это с расчетом того, что 90% топлива заменены на газ Брауна. Вес такой установки будет порядка 55-60 килограмм с учетом залитой воды.

Как мы уже писали Выше, это только первая часть вопросов. По мере их поступления, мы будем публиковать новые статьи с ответами на поступившие вопросы.

А теперь подарок для студентов вузов, которые слишком сильно увлеклись поиском свободной энергии и совсем забыли про учебу. Есть место, где Вам помогут, а при желание даже сделают

18.03.2018

Подробнее Как сделать ГЕНЕРАТОР ВОДОРОДА в домашних условиях (Инструкция + Схемы)

Постоянное удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне. Более всего умельцев – энтузиастов создания Генераторов Свободной Энергии в домашних условиях привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. Но есть и другие пути более дешевого и простого – высокочастотного электролиза…

А для начала предлагаю ознакомиться с коротким видеороликом, который дает понимание того, ПОЧЕМУ подобные разработки (коих уже превеликое множество!) так и не нашли своего применения в нашей повседневной жизни:

Статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения установки для отопления частного дома, заправки авто и в качестве сварочного аппарата.
  • Краткая теоретическая часть
  • Создание опытного образца
  • О водородной ячейке Мейера
  • Реактор из пластин
  • Заключение

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.

Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2H 2 + O 2 → 2H 2 O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2H 2 O → 2H 2 + O 2 — Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Создание опытного образца

Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

Из чего состоит примитивный электролизер:

  • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
  • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
  • второй резервуар играет роль водяного затвора;
  • трубки для отвода газа HHO.

Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

Принцип работы электролизера следующий:

Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:

Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

О водородной ячейке Мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.

Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.

Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.

Принципиальная схема включения электролизера

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10-14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.

Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.

Схема генератора мокрого типа

Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

  1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7-15% раствор гидроокиси калия в воде.
  2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
  3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

Выгодно ли получать водород в домашних условиях

Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все , публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:

  • использовать hydrogen в качестве топлива для автомобилей;
  • бездымно сжигать водород в отопительных котлах и печах;
  • применять для газосварочных работ.

Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.

Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.

Что такое водород? | National Grid Group

Здесь, на Земле, огромное количество атомов водорода содержится в воде, растениях, животных и, конечно же, в людях. Но хотя он присутствует почти во всех молекулах живых существ, в виде газа его очень мало — менее одной части на миллион по объему.

Водород можно производить из различных ресурсов, таких как природный газ, ядерная энергия, биогаз и возобновляемые источники энергии, такие как солнечная и ветровая. Задача состоит в том, чтобы в больших масштабах использовать водород в качестве газа для заправки наших домов и предприятий.

Почему водород важен как источник чистой энергии будущего?

Топливо — это химическое вещество, которое можно «сжигать» для получения полезной энергии. Горение обычно означает, что химические связи между элементами в топливе разрушаются, и элементы химически соединяются с кислородом (часто из воздуха).

На протяжении многих лет мы использовали природный газ для обогрева наших домов и предприятий, а также на электростанциях для выработки электроэнергии; в настоящее время 85% домов и 40% электроэнергии в Великобритании работают на газе.Метан — основная составляющая «природного газа» нефтяных и газовых месторождений.

Мы продолжаем использовать природный газ, потому что это легкодоступный ресурс, он экономически эффективен и является более чистой альтернативой углю — самому грязному ископаемому топливу, которое мы исторически использовали для отопления и выработки электроэнергии.

При сжигании природного газа выделяется тепловая энергия. Но отходами наряду с водой является углекислый газ, который при выбросе в атмосферу способствует изменению климата .Когда мы сжигаем водород, единственным отходом является водяной пар.

В чем разница между синим водородом и зеленым водородом?

Голубой водород получают из невозобновляемых источников энергии одним из двух основных методов. Реформирование метана с водяным паром — наиболее распространенный метод производства водорода в больших объемах, на который приходится большая часть мирового производства. В этом методе используется установка риформинга, которая реагирует паром при высокой температуре и давлении с метаном и никелевым катализатором с образованием водорода и окиси углерода.

В качестве альтернативы автотермический риформинг использует кислород и диоксид углерода или водяной пар для реакции с метаном с образованием водорода. Обратной стороной этих двух методов является то, что они производят углерод в качестве побочного продукта, поэтому улавливание и хранение углерода (CCS) имеет важное значение для улавливания и хранения этого углерода.

Зеленый водород получают путем использования электричества для питания электролизера, который отделяет водород от молекул воды. Этот процесс производит чистый водород без вредных побочных продуктов.Дополнительным преимуществом является то, что, поскольку в этом методе используется электричество, он также дает возможность направить любое избыточное электричество, которое трудно хранить (например, излишки энергии ветра), на электролиз, используя его для создания газообразного водорода, который можно хранить в будущем. энергетические потребности.

Водород уже используется в качестве топлива?

Да. Уже существует автомобилей , которые работают на водородных топливных элементах. В Японии есть 96 общественных заправочных станций водородом, что позволяет заправляться так же, как бензином или дизельным топливом, и в те же сроки, что и традиционный автомобиль на топливе.В Германии 80 таких водородных станций, а Соединенные Штаты занимают третье место с 42 станциями.

Водород также является прекрасным легким топливом для автомобильных, воздушных и морских перевозок. У международной транспортной компании DHL уже есть парк из 100 панельных фургонов h3, способных проехать 500 км без дозаправки.

Каковы потенциальные препятствия на пути ускорения использования водорода в качестве чистой энергии?

Чтобы водород стал жизнеспособной альтернативой метану, его необходимо производить в больших масштабах, экономично, а существующую инфраструктуру необходимо адаптировать.

Хорошая новость заключается в том, что водород можно транспортировать по газопроводам, сводя к минимуму сбои и уменьшая количество дорогостоящей инфраструктуры, необходимой для строительства новой сети передачи водорода. Также не было бы необходимости в изменении культуры в нашей домашней жизни, поскольку люди привыкли использовать природный газ для приготовления пищи и обогрева, и появляются аналоги водорода.

Что делает National Grid для продвижения водорода в качестве альтернативного зеленого топлива?

Мы взяли на себя обязательство достичь чистого нуля к 2050 году, что означает, что нам нужно начать подготовку к изменению нашего использования газа в ближайшие годы.Один из предлагаемых нами способов сделать это — использовать водород.

Текущая Национальная система передачи (NTS) транспортирует природный газ по всей Великобритании, и люди, предприятия и промышленность полагаются на нашу сеть.

NTS — это уникальная и сложная сеть, в которой используются стальные трубы для транспортировки природного газа под высоким давлением. Нам необходимо полностью понять влияние, которое воздействие водорода под высоким давлением может оказать на трубы, прежде чем сеть сможет быть преобразована. Необходимы обширные испытания и подробные испытания, чтобы установить, какие модификации могут потребоваться для безопасной транспортировки водорода.

Под лозунгом HyNTS — Hydrogen in the NTS — мы уже реализовали несколько проектов, изучающих физические возможности NTS по транспортировке водорода. В этих проектах изучается не только влияние водорода на наши трубопроводы, но и все сопутствующее оборудование, такое как компрессоры и клапаны, а также то, каким образом водородная сеть может работать по-другому в будущем.

Водород — ключевой фактор энергетического перехода

h3morrow Steel, Германия:

Один из крупнейших водородных проектов в Европе для будущего развития отрасли

Equinor, Open Grid Europe (OGE) и Thyssenkrupp Steel Europe (tkSE) работают над подходящей концепцией для производства и транспортировки голубого водорода на крупнейший немецкий металлургический завод в Дуйсбурге с 2019 года.

Водород из природного газа и комбинированного улавливания и хранения углерода, так называемый «голубой водород», будет ключевым в декарбонизации труднодоступных секторов, таких как цементная, сталелитейная и других видов тяжелой промышленности и транспорта. С потенциалом производства 800 000 Нм3 / ч (~ 2,7 ГВт) водорода проект h3morrow является одним из крупнейших проектов декарбонизации в Европе.

Проект h3morrow был начат еще в 2018 году в результате совместного исследования Equinor и Open Grid Europe (OGE), крупнейших операторов сетей передачи данных в Германии.Он подчеркнул высокий потенциал производства и транспортировки голубого водорода в промышленные кластеры Германии, такие как Северный Рейн-Вестфалия. Через год после того, как вместе с производителем стали Thyssenkrupp Steel Europe (tkSE) было проведено технико-экономическое обоснование, для разработки подходящей концепции поставки голубого водорода на крупнейший немецкий сталелитейный завод в Дуйсбурге. Оператор по транспортировке газа Thyssengas также присоединился к консорциуму в качестве ассоциированного члена, чтобы дополнить свой опыт в области планирования инфраструктуры в Рурской области.

Проект может быть запущен к 2027 году и будет поставлять голубой водород на крупнейший сталелитейный завод Германии, что позволит сократить выбросы CO2 до 11 миллионов тонн в год при ежегодном производстве до 7 миллионов тонн стали, не влияющей на климат.

В настоящее время проект и все партнеры сосредоточены вместе на разработке соответствующей политики и нормативно-правовой базы, чтобы довести ее до надежного экономического обоснования.

Синий водород можно производить в больших количествах сравнительно быстро, а это означает, что потребность в водороде, ожидаемая промышленностью, может быть быстро удовлетворена.

«h3morrow Steel» в настоящее время планирует транспортировать природный газ из Норвегии по существующей транспортной сети на завод автотермического риформинга (ATR) на немецком или голландском побережье Северного моря. Мощность станции должна составлять около 2,7 ГВт, из которых около 0,6 ГВт могут быть переданы третьим сторонам. Остальные 2,1 ГВт используются для производства стали Thyssenkrupp Steel Europe и обеспечивают электроэнергией до 7 миллионов метрических тонн декарбонизированной стали в год.

Технология производства водорода на месте ускоряется с выходом на рынок

RICHLAND, Wash.- Новая технология, которая генерирует водород из обычного природного газа или возобновляемого природного газа, сделанного из биомассы, может стать следующим большим шагом в развитии Калифорнийской водородной магистрали, транспортных средств и грузовиков на топливных элементах, а также для создания других ценных продуктов.

Крошечные каналы размером с кредитную карту, передающие тепло, лежат в основе технологии, разработанной в Тихоокеанской северо-западной национальной лаборатории Министерства энергетики США. Эти микроканалы имеют решающее значение для эффективного ввода энергии в химические реакции, в результате которых производится водород для транспорта, производства электроэнергии и других промышленных целей.

Покадровая видеозапись показывает трехмерную «печать» реактора парового риформинга метана, используемого для производства водорода. Усовершенствованная производственная технология экономична и может улучшить использование транспортных средств на водородных топливных элементах. (Видео: P.S. Media)

Водородный генератор, разработанный PNNL, был лицензирован для начинающей компании STARS Technology Corporation в Ричленде, Вашингтон. В водородном генераторе есть две недавние инновации, которые могут снизить стоимость водорода.Первый — это новый процесс аддитивного производства, лицензию на который получили STARS TC и SoCalGas — газораспределительная компания из Лос-Анджелеса, обслуживающая 22 миллиона человек в Центральной и Южной Калифорнии. Второй — это новая конструкция спирального реактора, которая более точно распределяет тепло и повышает эффективность реактора. Эта конструкция, лицензированная исключительно для SoCalGas, сводит к минимуму энергию, необходимую для производства водорода, одновременно увеличивая долговечность и безопасность реактора.

«Одним из ближайших вариантов использования этой микроканальной технологии будет производство водорода для электромобилей на топливных элементах», — сказал Юрий Фридман, старший директор по исследованиям и разработкам SoCalGas.«Поскольку эта технология занимает мало места и существенно повышает эффективность процесса преобразования природного газа в водород, она делает водород намного чище и проще в доставке — вы можете производить водород в любом месте, где есть трубопровод для природного газа. Для нас в SoCalGas это важный шаг на пути к достижению нашей цели по достижению чистых нулевых выбросов парниковых газов в наших операциях и доставке энергии к 2045 году. Эта технология может радикально изменить производство и использование водорода в Калифорнии, продвигая усилия SoCalGas по удовлетворению требований климатические цели Калифорнии и наших клиентов.”

Заправка водородной инфраструктуры

Поскольку технология STARS может генерировать водород везде, где есть природный газ, разработчики говорят, что эта технология может значительно снизить потребность в транспортировке водорода в специальных прицепах с трубами высокого давления. Отказ от транзита по дорогам повышает общественную безопасность, сокращает выбросы парниковых газов и помогает сделать производство водорода в месте потребления конкурентоспособным по сравнению с обычным топливом.

«Думайте об этих небольших, эффективных, серийно производимых генераторах как о« химических трансформаторах », похожих на электрические трансформаторы в электрической сети», — сказал Боб Вегенг, президент STARS TC и изобретатель технологии.«Их можно разместить в любом месте системы распределения природного газа, так что она становится« водородной сетью », обеспечивая недорогой водород для заправочных станций в количествах, соответствующих потребностям на месте».

Получение водорода из метана

Самый распространенный элемент во Вселенной, водород, обычно входит в состав других соединений, таких как вода или метан. Природный газ состоит в основном из метана, одного из наиболее эффективных природных переносчиков водорода. Обычные процессы производства водорода с использованием природного газа могут иногда выделять углекислый газ и использовать много энергии, большая часть которой вырабатывается из источников, выделяющих углерод.Но с новым водородным генератором для нагрева природного газа и воды с целью разрыва химических связей, выделяя на 30% меньше углекислого газа, чем другие распространенные, можно использовать множество более эффективных подходов к нагреву, включая концентрированное солнечное тепловое и индуктивное солнечно-электрическое нагревание. метан в водородные процессы.

Конструкция спирального микроканального реактора, разработанная в PNNL, позволяет эффективно генерировать водород из природного газа . (Фото Ричарда Чжэна | Тихоокеанская северо-западная национальная лаборатория)

Лицензированные процессы производства водорода очень эффективны, сокращая тепловую энергию, необходимую для производства ценных химикатов.Метан и пар проходят через компактные спиральные микроканалы толщиной не более нескольких миллиметров, которые быстро и равномерно подвергают газовую смесь воздействию тепла, которое запускает химические реакции и высвобождает водород из природного газа и воды.

Поскольку водород можно производить экономичным и экологически чистым способом, он имеет все возможности для поддержки Закона о сборке 8 Калифорнии, в котором выделяется до 20 миллионов долларов в год на поддержку продолжающегося строительства по крайней мере 100 водородных заправочных станций в штате.

Этой весной SoCalGas получит водородный генератор от STARS TC, который будет включать шесть небольших модульных реакторов — каждый диаметром около 10 дюймов. STARS TC в основном состоит из бывших сотрудников PNNL, один из которых был изобретателем микроканальной технологии в PNNL.

3D-печать для снижения затрат на производство водорода

Недавно PNNL, STARS TC и SoCalGas совместно работали над усовершенствованием системы производства водорода, включая конструкцию спирального микроканала.Эта команда также разработала новый процесс, который использует методы 3D-печати для создания химических реакторов, производящих водород.

«Этот процесс аддитивного производства снижает производственные затраты за счет уменьшения количества деталей, формирования геометрических форм, которые практически невозможно создать с помощью процессов литья или механической обработки, и устранения трудоемких этапов изготовления», — сказала Сара Хант, менеджер по коммерциализации технологий в PNNL. «Запатентованная технология включает уникальные подходы к построению конструкций внутри устройства для улучшения теплопередачи.Это также позволяет покрывать или пропитывать материал катализаторами, которые ускоряют скорость химического преобразования в энергию ».

Отдельно PNNL, SoCalGas и другие также сотрудничают в разработке новых новых химических реакторов, которые совместно производят водород и твердые углеродные материалы, такие как продукты из углеродного волокна и углеродные нанотрубки, что может еще больше компенсировать затраты на производство водорода без выбросов парниковых газов. Это в сочетании с дополнительным использованием возобновляемого природного газа означает, что эти реакторные системы могут помочь SoCalGas, поскольку он стремится к нулевым выбросам к 2045 году.

Разработка микроканального генератора водорода была поддержана Институтом RAPID и офисами Управления энергоэффективности и возобновляемых источников энергии Министерства энергетики США, включая технологии водорода и топливных элементов, технологии солнечной энергии и передовые производственные предприятия.

SoCalGas® со штаб-квартирой в Лос-Анджелесе является крупнейшей газораспределительной компанией в США. SoCalGas предоставляет доступный, надежный, чистый и все более возобновляемый газ для 21.8 миллионов потребителей в 24 000 квадратных миль Центральной и Южной Калифорнии. Газ, поставляемый по трубопроводам компании, по-прежнему будет играть ключевую роль в переходе Калифорнии к чистой энергии, обеспечивая надежность электрических сетей и поддерживая развертывание ветровой и солнечной энергии.

Миссия

SoCalGas — построить самую чистую, безопасную и самую инновационную энергетическую компанию в Америке. В поддержку этой миссии SoCalGas стремится к достижению нулевых выбросов парниковых газов в своей деятельности и поставке энергии к 2045 году и замене 20 процентов своих традиционных поставок природного газа возобновляемым природным газом (ГСЧ) к 2030 году.Возобновляемый природный газ производится из отходов молочных ферм, свалок и очистных сооружений. SoCalGas также стремится инвестировать в свою инфраструктуру доставки газа, сохраняя при этом доступность счетов для клиентов. За последние пять лет компания инвестировала почти 7,5 миллиардов долларов в модернизацию своей трубопроводной системы для повышения безопасности и надежности. SoCalGas является дочерней компанией Sempra Energy (NYSE: SRE), холдинговой компании по оказанию энергетических услуг, базирующейся в Сан-Диего. Для получения дополнительной информации посетите socalgas.com / newsroom или свяжитесь с SoCalGas в Twitter (@SoCalGas), Instagram (@SoCalGas) и Facebook.

# #

Тихоокеанская северо-западная национальная лаборатория опирается на свои сильные стороны в области химии, наук о Земле, биологии и науки о данных для развития научных знаний и решения проблем в области устойчивой энергетики и национальной безопасности. Основанная в 1965 году, PNNL управляется Battelle для Управления науки Министерства энергетики США, которое является крупнейшим спонсором фундаментальных исследований в области физических наук в Соединенных Штатах.Управление науки Министерства энергетики США работает над решением некоторых из самых насущных проблем современности. Для получения дополнительной информации посетите Центр новостей PNNL. Следуйте за нами в Twitter, Facebook, LinkedIn и Instagram.

Итак, что же такое зеленый водород?

Компании и отраслевые группы часто объединяются для продвижения своей продукции. Гораздо более необычным был шаг, предпринятый в прошлом месяце 10 крупными европейскими энергетическими компаниями и двумя ведущими отраслевыми организациями континента, объединившимися для запуска кампании, рекламирующей продукт, который ни одна из них на самом деле не продает.

Этот продукт является возобновляемым или «зеленым» водородом. И хотя сегодня это не является основной проблемой для этих компаний (Enel, EDP, BayWa и другие) или отраслевых групп (SolarPower Europe и WindEurope), все видят, что зеленый водород играет жизненно важную роль в достижении глубокой декарбонизации энергетической системы.

Интерес к экологически чистому водороду стремительно растет среди крупных нефтегазовых компаний. Европа планирует сделать водород важной частью своего пакета Green Deal стоимостью триллион долларов, при этом ожидается, что в июле будет опубликована общеевропейская стратегия «зеленого» водорода.

«Мы не можем электрифицировать все», — сказал генеральный директор WindEurope Джайлс Диксон. «Некоторые производственные процессы и тяжелый транспорт должны будут работать на газе. А возобновляемый водород — лучший газ. Он полностью чистый. Это будет доступно, поскольку возобновляемые источники энергии сейчас настолько дешевы ».

Что такое зеленый водород? Введение в цветовую палитру водорода

Для бесцветного газа водород очень красочен.

Согласно номенклатуре, используемой исследовательской фирмой Wood Mackenzie, большая часть газа, который уже широко используется в качестве промышленного химического вещества, является коричневым, если он производится путем газификации угля или лигнита; или серый, если он производится путем паровой конверсии метана, при котором в качестве сырья обычно используется природный газ.Ни один из этих процессов не является экологически безопасным.

Якобы более чистый вариант известен как голубой водород, где газ производится путем паровой конверсии метана, но выбросы сокращаются за счет улавливания и хранения углерода. Этот процесс может примерно вдвое сократить количество производимого углерода, но до сих пор далеко не без выбросов.

Зеленый водород, напротив, может почти устранить выбросы за счет использования возобновляемых источников энергии, которые становятся все более распространенными и часто вырабатываются не в идеальное время, для обеспечения электролиза воды.

Бирюзовый цвет стал еще одним дополнением к палитре производства водорода. Его получают путем разложения метана на водород и твердый углерод с помощью процесса, называемого пиролизом. Бирюзовый водород может показаться относительно низким с точки зрения выбросов, потому что углерод можно либо захоронить, либо использовать в промышленных процессах, таких как производство стали или аккумуляторов, поэтому он не улетучивается в атмосферу.

Однако недавние исследования показывают, что водород бирюзового цвета на самом деле, вероятно, будет не более безуглеродным, чем синий вариант, из-за выбросов от источников природного газа и необходимого технологического тепла.

Как получить зеленый водород?

При электролизе все, что вам нужно для производства большого количества водорода, — это вода, большой электролизер и много электроэнергии.

Если электричество поступает из возобновляемых источников, таких как ветер, солнце или гидроэнергетика, то водород фактически зеленый; единственные выбросы углерода — это выбросы, воплощенные в инфраструктуре генерации.

Проблема сейчас в том, что не хватает больших электролизеров, а обильные поставки возобновляемой электроэнергии по-прежнему обходятся недешево.

По сравнению с более устоявшимися производственными процессами, электролиз очень дорог, поэтому рынок электролизеров невелик.

И хотя производство возобновляемой энергии в настоящее время достаточно велико, чтобы вызвать изгибы кривой в Калифорнии и проблемы с сетью в Германии, перепроизводство — явление относительно недавнее. Большинство энергетических рынков по-прежнему нуждаются в большом количестве возобновляемых источников энергии только для обслуживания энергосистемы.

Как вы храните и используете эти вещи?

Теоретически есть много полезных вещей, которые можно сделать с зеленым водородом.Вы можете добавить его в природный газ и сжечь на тепловых электростанциях или в теплоцентралях. Вы можете использовать его в качестве прекурсора для других энергоносителей, от аммиака до синтетических углеводородов, или, например, для непосредственного питания топливных элементов в автомобилях и кораблях.

Начнем с того, что вы можете использовать его просто для замены промышленного водорода, который вырабатывается каждый год из природного газа и который составляет около 10 миллионов метрических тонн только в США.

Основная проблема удовлетворения всех этих потенциальных рынков заключается в доставке зеленого водорода туда, где он необходим.Хранить и транспортировать легковоспламеняющийся газ непросто; он занимает много места и делает стальные трубы и сварные швы хрупкими и склонными к выходу из строя.

Из-за этого для транспортировки водорода в больших объемах потребуются специальные трубопроводы, строительство которых было бы дорогостоящим, нагнетая газ под давлением или охлаждая его до жидкости. Эти два последних процесса являются энергоемкими и еще больше снизят и без того невысокую эффективность использования зеленого водорода в оба конца (см. Ниже).

Почему зеленый водород вдруг стал такой большой проблемой?

Один из путей к почти полной декарбонизации — это электрификация всей энергетической системы и использование экологически чистых возобновляемых источников энергии.Но электрифицировать всю энергетическую систему будет сложно или, по крайней мере, намного дороже, чем объединение возобновляемой генерации с низкоуглеродным топливом. Зеленый водород — одно из нескольких потенциальных низкоуглеродных видов топлива, которое могло бы заменить сегодняшние ископаемые углеводороды.

По общему признанию, водород в качестве топлива далек от идеала. Его низкая плотность затрудняет хранение и перемещение. И его воспламеняемость может быть проблемой, как отмечалось в июне 2019 года на норвежской водородной заправочной станции.

Но и у других видов низкоуглеродного топлива есть проблемы, не в последнюю очередь из-за стоимости. И поскольку большинство из них требует производства зеленого водорода в качестве прекурсора, почему бы просто не придерживаться исходного продукта?

Сторонники указывают, что водород уже широко используется в промышленности, поэтому технические проблемы, связанные с хранением и транспортировкой, вряд ли будут непреодолимыми. Кроме того, газ потенциально очень универсален и может применяться в самых разных областях, от отопления и долгосрочного хранения энергии до транспортировки.

Возможность применения экологически чистого водорода в широком спектре секторов означает, что существует соответственно большое количество компаний, которые могут извлечь выгоду из растущей экономии водородного топлива. Из них, пожалуй, наиболее значительными являются нефтегазовые компании, которые все чаще сталкиваются с призывами сократить производство ископаемого топлива.

Несколько крупных нефтяных компаний входят в число игроков, борющихся за поул-позицию в разработке экологически чистого водорода. Shell Nederland, например, подтвердила в мае, что она объединила усилия с энергетической компанией Eneco для участия в последнем тендере голландского морского ветроэнергетического комплекса, чтобы создать рекордный водородный кластер в Нидерландах.Несколько дней спустя компания-разработчик солнечной энергии Lightsource BP сообщила, что обдумывает разработку австралийской электростанции по производству зеленого водорода, работающей на ветровой и солнечной энергии мощностью 1,5 гигаватта.

Заинтересованность Big Oil в экологически чистом водороде может иметь решающее значение для обеспечения коммерческой жизнеспособности топлива. Снижение затрат на производство экологически чистого водорода потребует огромных инвестиций и масштабов, что могут обеспечить крупнейшие нефтяные компании.

Сколько стоит производство зеленого водорода?

Производство зеленого водорода по-прежнему обходится дорого.В отчете, опубликованном в прошлом году (с использованием данных за 2018 год), Международное энергетическое агентство оценило стоимость зеленого водорода от 3 до 7,50 долларов за килограмм по сравнению с 0,90 до 3,20 доллара за производство с использованием паровой конверсии метана.

Снижение стоимости электролизеров будет иметь решающее значение для снижения цены на зеленый водород, но это потребует времени и масштабов. Стоимость электролизера может упасть вдвое к 2040 году с примерно 840 долларов за киловатт мощности на сегодняшний день, заявило в прошлом году МЭА.

Экономическое обоснование экологически чистого водорода требует очень большого количества дешевой возобновляемой электроэнергии, поскольку значительная часть теряется при электролизе.По данным Shell, КПД электролизера колеблется от 60 до 80 процентов. Проблема эффективности усугубляется тем фактом, что для многих приложений может потребоваться экологически чистый водород для питания топливного элемента, что приведет к дополнительным потерям.

Некоторые наблюдатели предположили, что производство экологически чистого водорода может вытеснить избыточные мощности возобновляемых источников энергии в крупных производственных центрах, таких как морские ветряные электростанции в Европе. Однако, учитывая все еще высокую стоимость электролизеров, сомнительно, захотят ли разработчики проектов по производству зеленого водорода оставить свои электролизеры без дела до тех пор, пока цены на возобновляемые источники энергии не упадут ниже определенного уровня.

Более вероятно, как это уже рассматривается Lightsource BP и Shell, девелоперы построят экологически чистые заводы по производству водорода со специальными активами по производству возобновляемой энергии в местах с высоким уровнем ресурсов.

Сколько производится зеленого водорода?

По большому счету, немного. По данным Wood Mackenzie, в настоящее время на зеленый водород приходится менее 1 процента от общего годового производства водорода.

Но WoodMac прогнозирует рост производства в ближайшие годы.Количество проектов экологичных водородных электролизеров почти утроилось за пять месяцев, предшествующих апрелю 2020 года, до 8,2 гигаватт. Всплеск в основном был вызван увеличением масштабов развертывания электролизеров, при этом запланировано 17 проектов с мощностью 100 мегаватт или более.

И дело не только в том, что разрабатывается больше проектов. К 2027 году средний размер электролизеров, вероятно, превысит 600 мегаватт, сообщает WoodMac.

Кто руководит разработкой экологически чистого водорода?

Зеленый водород, кажется, сейчас у всех на уме, и как минимум 10 стран обращаются к газу для обеспечения энергетической безопасности в будущем и возможного экспорта.Последней страной, которая присоединилась к этой группе, является Португалия, которая в мае представила национальную водородную стратегию, которая, как сообщается, оценивается в 7 миллиардов евро (7,7 миллиарда долларов) до 2030 года. В прошлом месяце лидер оффшорной ветроэнергетики Ørsted провозгласил первый крупный проект, нацеленный исключительно на транспортный сектор.

Помимо таких громких имен, множество небольших компаний надеются отхватить кусок растущего зеленого водородного пирога.Такие компании, как ITM Power, могут быть не так хорошо известны сегодня, но если зеленый водород оправдает хотя бы часть своих обещаний, однажды он может стать огромным.

А водородные автомобили?

А, да. Привлекающая внимание Toyota Mirai помогла зародить ранние надежды на то, что автомобили на водородных топливных элементах могут соперничать с электромобилями за замену двигателя внутреннего сгорания. Но по мере роста рынка электромобилей перспектива того, что водород станет серьезным соперником, исчезла из поля зрения, по крайней мере, в сегменте легковых автомобилей.

Сегодня на дорогах США находится примерно 7600 автомобилей с водородными топливными элементами, по сравнению с более чем 326 400 электромобилей, проданных в США только в прошлом году.

Тем не менее, эксперты по-прежнему ожидают, что водород будет играть определенную роль в обезуглероживании некоторых сегментов транспортных средств, причем вилочные погрузчики и большегрузные грузовики будут среди тех, кто, скорее всего, выиграет.

***

Дополнительная литература Wood Mackenzie, The Future for Green Hydrogen

Чистое топливо: водородное топливо | Климат сейчас

0:06

Водородное топливо, что это такое? Как он используется и как он может помочь нам двигаться к будущему с нулевым выбросом углерода? В другом эпизоде ​​(Нетто-ноль к 2050 году) мы обсудили потенциальные пути к достижению Америки с нулевым нулевым показателем к 2050 году.В этом отчете водород упоминается как средство хранения энергии, не полагаясь на батареи. Но что это значит? В этом выпуске мы собираемся более подробно рассказать о водороде, о том, как он производится, как он используется, о некоторых последних достижениях, а также о текущих ограничениях этой технологии.

0:40

Так что же такого особенного в водороде? Что ж, водород можно использовать не только как энергию, но также как сырье и средство для хранения энергии.На этой диаграмме [1,7] мы видим, что водород можно использовать для питания транспортных средств, создания удобрений и обработки металлов, таких как железо и сталь. Еще одним дополнительным преимуществом водородной технологии является то, что ее теоретически можно использовать для энергоснабжения секторов экономики, которые труднее электрифицировать, таких как дальние перевозки [2], авиация [3] и различные промышленные процессы [4]. .

1:14

Но почему водород? Водород — самый распространенный элемент во Вселенной.Однако на Земле он не может быть найден сам по себе. Обычно он присоединяется к другим элементам, таким как кислород, который создает воду, или углерод для создания углеводородов, таких как метан. Поскольку водород не существует в природе один, его нужно извлекать. Эта круговая диаграмма, составленная на основе данных Международного энергетического агентства [4,7], показывает, что в настоящее время 99% извлекаемого нами водорода является побочным продуктом ископаемого топлива, природного газа и угля.

1:54

ПРОИЗВОДСТВО ВОДОРОДА

Чтобы различать каждый источник производства водорода, ученые используют систему классификации цветов: коричневый, серый, синий и зеленый.Водород, полученный из угля, известен как коричневый водород и производится в процессе, известном как газификация [5]. Серый водород, на который приходится около 80% мирового производства водорода, производится путем паровой конверсии метана и получается из природного газа и других ископаемых видов топлива [5]. Как коричневый, так и серый водород выделяют CO2 в качестве побочных продуктов, что еще больше влияет на изменение климата. Однако синий водород включает улавливание и хранение этого побочного продукта CO2 [5]. Но если цель состоит в том, чтобы удалить вредные парниковые газы из атмосферы, чистое водородное топливо не может быть создано за счет сжигания ископаемого топлива.

2:50

Стремясь исключить ископаемое топливо, зеленый водород продвигает все это на шаг вперед с помощью процесса, известного как электролиз, также известного как расщепление воды.Здесь электролизер разделяет частицы пресной воды на водород и кислород с помощью электрического тока. Если в качестве источника электроэнергии используется возобновляемая энергия, такая как ветер или солнце, то полученный водород известен как зеленый водород [5]. Другая форма зеленого водорода связана с газификацией биомассы. Это включает в себя выращивание высокоэнергетических растений с последующим их преобразованием при температуре более 700 градусов Цельсия в водород, окись углерода и двуокись углерода [6]. Хотя этот метод действительно производит некоторое количество углекислого газа, поскольку растение поглощает углекислый газ во время выращивания, он приводит к более низким выбросам углерода по сравнению с коричневым и серым водородом.

3:51

ВОДОРОДНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ

Итак, теперь, когда мы знаем различные способы производства водорода, давайте поговорим о том, как водород можно преобразовать в электричество с помощью топливных элементов, а также о плюсах и минусах этих процессов.Из-за того, что водород сам по себе может только накапливать энергию, он должен обрабатываться через топливный элемент, чтобы использоваться для выработки энергии. В основе этой технологии мы видим, что атомы водорода и кислорода связаны с образованием энергии и воды в качестве побочного продукта [7]. Когда мы заглядываем внутрь топливного элемента, мы видим, что у нас есть ввод водорода на катодной стороне и ввод кислорода на анодной стороне [8]. Катализатор используется для разделения водорода на электроны и протоны. Катод — это то, что удерживает и притягивает электроны водорода, в то время как протоны проходят через мембрану, поскольку они притягиваются к аноду, где находится кислород.Затем электроны проталкиваются через цепь, чтобы произвести электрический ток и тепло. Затем электроны водорода воссоединяются с протонами и кислородом с образованием воды. Такие элементы можно затем сложить и использовать в качестве источника энергии в транспортных средствах или в качестве энергии для электростанций.

Водородный топливный элемент:

5:13

ХРАНЕНИЕ

Но что нам делать с водородом, когда он нам еще совсем не нужен? Самый дорогой вариант — хранить его в резервуарах под давлением.Его даже можно сжижать и хранить в криогенных резервуарах [1]. Но вы, вероятно, не знали, что мы также можем брать водород и хранить его под землей в соляных пещерах [1]. Этот метод оказался безопасным и надежным, учитывая, что он не требует высокого давления, а также является самым дешевым способом хранения водорода в течение длительного времени.

5:44

ОГРАНИЧЕНИЯ

Однако использование водорода в качестве источника топлива имеет ряд недостатков.

  1. Пресная вода — ограниченный ресурс. Можем ли мы позволить себе использовать наши ресурсы пресной воды для электролиза и производства водорода? [7]
  2. Процесс извлечения водорода, его транспортировки и потребления очень неэффективен. Между добычей и потреблением теряется около 70% энергии. Основная причина, по которой водород остается относительно реальной альтернативой ископаемому топливу, заключается в его высокой энергоемкости. Это означает, что он может хранить много энергии в небольшом объеме [5].
  3. Кроме того, водород является легковоспламеняющимся газом без запаха. Если утечка останется незамеченной в потенциально взрывоопасной среде, результаты могут быть катастрофическими [5].
  4. Когда дело доходит до газификации биомассы, этот процесс по-прежнему приводит к образованию парниковых газов, таких как углекислый газ и окись углерода [6].
  5. В настоящее время у нас также нет достаточной инфраструктуры, такой как заправочные станции или трубопроводы, для распределения водорода по стране [4].
  6. И, наконец, в настоящее время это просто невыгодно.Использование водорода имеет смысл только в больших масштабах, и для этого по-прежнему требуется дополнительная финансовая поддержка [4].

7:08

РАСХОДЫ

Еще больше усложняет ситуацию то, что стоимость замены ископаемого топлива на водород во многом зависит от того, кто его производит и где. Региональные различия в затратах на производство водорода зависят от таких факторов, как цены на ископаемое топливо, электроэнергию и углерод.Фактически, согласно отчету, опубликованному Международным энергетическим агентством в 2019 году, природный газ без улавливания и хранения углерода в настоящее время является наиболее экономичным вариантом для производства водорода в большинстве частей мира при стоимости всего 1 доллар США за килограмм водорода. на среднем Западе. На этой диаграмме мы видим, что самым дорогим вариантом в мире является зеленый водород, по цене от 3 до 7,5 долларов за килограмм [4]. Однако зеленый водород может быть более привлекательным в регионах, которые уже сильно зависят от возобновляемых ресурсов или атомных электростанций, особенно если ваши текущие затраты на природный газ относительно высоки.Хотя это не означает, что инвестиции не делаются для снижения стоимости водородного топлива.

8:19

ПРОДВИЖЕНИЯ

Правительства и университеты по всему миру вкладывают все больше и больше в повышение эффективности водорода.В мае 2020 года Бен Уайли, профессор химии в Университете Дьюка, и его коллеги опубликовали исследование, демонстрирующее потенциал использования никелевой микропроволочной сетки в качестве более производительного электрода в процессе расщепления воды [9]. Более производительный электрод означает более низкие общие затраты на электролиз. Давайте послушаем Бена, как им удалось это сделать.

Бен Уайли:

Если вы попытаетесь запустить эту штуку по-настоящему интенсивно, очень скоро ваш анод или катод, тот или иной, покроется газом, и вы больше не сможете пропускать через него электричество.Итак, мы подумали, а как насчет того, чтобы запустить поток электрода, как поток жидкости, чтобы отогнать газ, а затем вы можете представить, хорошо, металлическая пластина — это хорошо, но что, если я сделаю площадь поверхности из той металлической пластины, вы знаете, намного больше, разделив ее на крошечные нанопроволоки? Итак, вы можете представить себе кусок стальной ваты, у которого будет гораздо большая площадь поверхности, чем у куска стали, верно? А это означает, что чем больше площадь поверхности, тем больше площадь поверхности для передачи электричества атомам кислорода или водорода в воде.

Мы рассмотрели три различных шкалы длины этих пористых материалов из никеля. В этом случае, поскольку никель довольно хорошо расщепляет воду, мы используем пенопласт, никелевую микропроволочную сетку и никелевую нанопроволоку или войлок. И мы думали, что фетр из нанопроволоки будет лучшим, потому что у него самая большая площадь поверхности, но это не так, он был очень плотным и задерживал пузырьки от расщепления воды. Итак, это была сетка из микропровода, по которой мы могли вытекать пузыри.Так что в итоге получился лучший электрод.

10:14

На сегодняшний день самый дешевый способ производства водорода в промышленных количествах — это паровая реформулировка метана, при которой метан расщепляется с использованием очень горячего пара [10]. Основываясь на результатах Wiley, за счет улучшения материалов, используемых для изготовления электролизеров, разбрызгивание воды может стать жизнеспособной альтернативой производству огромного количества водорода благодаря более высокой производительности, что означает более низкие затраты [10].Но как насчет литий-ионных аккумуляторов? Зачем вообще возиться с водородом, если мы можем использовать батареи для электрификации наших транспортных средств и хранения энергии? Что ж, ответы довольно простые.

Бен Уайли:

Для длительного хранения имеет смысл хранить энергию в водороде, потому что вы можете просто хранить ее в большом стальном резервуаре, а не в гигантской батарее. И затем вы можете запускать свой топливный элемент, в котором хранится водород в течение очень долгого времени. Батареи обычно разряжаются за считанные часы.

11:15

Еще одно дополнительное преимущество заключается в том, что автомобили, работающие на водороде, могут заправляться гораздо быстрее, чем электромобили [11]. В среднем электромобиль может полностью заправиться от 45 минут до нескольких часов. С другой стороны, автомобили на водороде можно заправить за пять минут [5].Что еще лучше, так это то, что вы можете преодолевать большие расстояния на водородном топливе, он легкий и занимает значительно меньше места, чем аккумулятор. Это делает водород особенно привлекательным для дальних перевозок и авиации. Фактически, чем больше транспортное средство, тем больше смысла в водороде с точки зрения затрат и энергии.

12:03

Согласно этой карте, взятой из отчета Мирового энергетического совета за 2020 год, Германия [12], 42 страны в настоящее время движутся в направлении создания национальных стратегий поддержки производства зеленого водорода, а 9 стран уже действуют.Ожидается, что к 2025 году эти стратегии охватят страны, на которые приходится более 80% мирового ВВП. Таким образом, с политической точки зрения, зеленый водород уверенно движется к тому, чтобы сыграть важную роль в электрификации нашего будущего и достичь нулевого уровня к 2050 году. Двигаясь вперед, важно будет следить за тем, как прогресс в технологиях продолжает снижаться. стоимость для этого энергетического сектора. Как политика поддерживает этот переход и как быстро можно построить или преобразовать инфраструктуру для поддержки расширения производства водорода [13].

12:54

Посмотрите наш полнометражный подкаст с Беном Вили, где мы более подробно расскажем о текущем состоянии водородных технологий, или ознакомьтесь с нашим информационным бюллетенем. Чтобы подписаться на новые выпуски и многое другое, посетите Climatenow.com. Спасибо и увидимся в следующий раз.

Источники

[1] 00:51 и 5:21 Брюс С., Теммингхофф М., Хейворд Дж., Шмидт Э., Маннингс К., Палфрейман Д., Хартли П. (2018) Национальная дорожная карта по водороду.CSIRO, Австралия.

[2] 1:10 Navistar. (2021, 27 января). Navistar в сотрудничестве с General Motors и Oneh3 запускает экосистему грузовиков с водородом [Пресс-релиз] . https://www.internationaltrucks.com/-/media/Project/International-Trucks/International-Trucks/USA/Alternate-Fuel/Hydrogen-Fuel-Cell/HydrogenNR-1-25-21FINAL.pdf

[3] 1:11 ZeroAvia. (2020, 25 сентября). ZeroAvia совершила первый в мире рейс водородно-электрического пассажирского самолета [пресс-релиз].https://www.zeroavia.com/press-release-25-09-2020

[4] 1:13 и 1:41 и 6:54, 7:34 IEA (2019), The Future of Hydrogen, IEA, Paris https://www.iea.org/reports/the-future-of- водород

[5] 2:08 и 6:24, 11: 34CNBC (директор). (2020, 03 декабря). Что такое зеленый водород и будет ли он питать будущее? [Видео файл]. https://www.youtube.com/watch?v=aYBGSfzaa4c

[6] 3:35 и 6:46 Производство водорода: газификация биомассы. (нет данных). Energy.gov. https://www.energy.gov/eere/fuelcells/hydrogen-production-biomass-gasification

[7] 4:20 и 5:59 BofA Global Investing.(24 сентября 2020 г.) The Special 1 — Hydrogen Primer. https://www.bofaml.com/content/dam/boamlimages/documents/articles/ID20_1005/hydrogen_final.pdf

[8] 4:31 Давайте расти (15 октября 2020 г.). Как работает водородный топливный элемент? | что такое водородный топливный элемент | объяснение водородной ячейки [Видео файл]. https://www.youtube.com/watch?v=a4pXAmljdUA

[9] 8:43 Ян, Ф., Ким, М. Дж., Браун, М., Уайли, Б. Дж. (2020). Электролиз щелочной воды при 25 А / см2 с проточным электродом из микроволокна.Современные энергетические материалы. https://doi.org/10.1002/aenm.202001174

[10] 10:27 Университет Дьюка. (2020, 26 мая). Проточные электроды делают водород в 50 раз быстрее. Eurekalert.org. https://www.eurekalert.org/pub_releases/2020-05/du-fem052620.php

[11] 11:23 Bmw. (2020, 22 сентября). Водородные автомобили, топливные элементы и т. Д .: что вам нужно знать. https://www.bmw.com/en/innovation/how-hydrogen-fuel-cell-cars-work.html

[12] 12:03 Альбрехт У., Бюнгер У., Михальски Дж., Raksha, T., Wurster, R., & Zerhusen, J. (2020, сентябрь) Международные водородные стратегии — weltenergierat. https://www.weltenergierat.de/wp-content/uploads/2020/10/WEC_h3_Strategies_finalreport.pdf

[13] 12:53 Водородный совет. (2020, 20 января). Путь к водородной конкурентоспособности: перспективы затрат. https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf Копенгагенский центр энергоэффективности.

«Синий» водород в конце концов не может быть очень «зеленым» источником энергии | Умные новости

На снимке: знак водородной заправочной станции в Оснабрюке, Нижняя Саксония, Германия.Фото Фризо Генч / picture alliance via Getty Images

Водород часто рассматривается как топливо будущего. Ученые изначально предсказывали, что он будет чистым, возобновляемым и эффективным. Однако заставить его работать может быть проблемой. Некоторые из современных технологий, включая процесс, известный как «голубой» водород, могут загрязнять больше, чем традиционные ископаемые виды топлива.

Голубой водород получают из метана в природном газе. Ранее его рекламировали как лучшую альтернативу, поскольку производственные выбросы улавливаются и хранятся глубоко под землей.Однако новое исследование показывает, что эта альтернатива энергии может быть хуже сжигания угля.

В рецензируемом исследовании, опубликованном в журнале с открытым исходным кодом Energy Science & Engineering, делается вывод, что «выброс парникового газа от голубого водорода более чем на 20 процентов больше, чем при сжигании природного газа или угля для тепла, и примерно на 60 процентов больше, чем при сжигании дизельного топлива. масло для тепла », — говорится в сообщении.

Кроме того, двуокись углерода является побочным продуктом производства голубого водорода.Хотя план заключается в улавливании и хранении газа, остается вопрос, что делать с этим запасом в будущем. Есть также опасения по поводу долгосрочной жизнеспособности его содержания под землей, сообщает Лоз Блейн из New Atlas .

Климатологи Роберт Ховарт и Марк Джейкобсон, авторы нового исследования, отмечают, что этот процесс хранения, вероятно, не такой «чистый», как считалось ранее. Исследователи из Корнелла и Стэнфорда, соответственно, сообщают, что значительное количество метана улетучивается в атмосферу, поскольку природный газ добывается с Земли.Основываясь на отраслевых стандартах, они оценивают уровень утечки в 3,5 процента от потребления для этих «неконтролируемых выбросов» или непреднамеренно просочившихся газов.

Всего за 20 лет одна тонна выбросов метана может согреть воздух в 86 раз больше, чем углекислый газ, сообщает Тим ​​Де Чант из Ars Technica .

«Наш анализ предполагает, что захваченный углекислый газ может храниться бесконечно, оптимистичное и недоказанное предположение», — пишут авторы исследования в статье. «Даже если это правда, использование голубого водорода трудно оправдать с точки зрения климата.”

Нефтегазовые компании надеются перейти на водород в ближайшем будущем. Однако производство водорода дорогое удовольствие и, вероятно, останется таковым в течение следующих нескольких десятилетий.

Пакет инфраструктуры стоимостью 1 триллион долларов, который только что был одобрен Сенатом США, направлен на то, чтобы сделать водород более доступным ресурсом. Законопроект включает 8 миллиардов долларов на развитие четырех региональных центров «чистого водорода», чтобы обеспечить источник топлива с низким уровнем выбросов для транспорта и отопления домов, сообщает Оливер Миллман из Guardian .

В качестве временной меры производители энергии предлагают использовать процессы с «серым» водородом, которые менее затратны, но производят больше метана и углекислого газа. Этот процесс включает в себя воздействие на природный газ высокой температуры, давления и пара, которые выделяют парниковые газы в атмосферу, сообщает Ars Technica .

«Комбинированные выбросы углекислого газа и метана больше для серого водорода и голубого водорода (независимо от того, обрабатываются ли выхлопные газы для улавливания углерода), чем для любого из ископаемых видов топлива», — пишут авторы исследования в статье.«Выбросы метана являются основным фактором этого, а выбросы метана как от серого, так и от голубого водорода больше, чем от любого из ископаемых видов топлива».

Энергия

Среда

Загрязнение

Рекомендованные видео

Мы должны сообщить людям, что водородная технология готова — Барт Бибуйк

Водородные топливные элементы рекламировались как источник энергии с нулевым уровнем выбросов, поскольку они преобразуют водород в электричество, а единственным побочным продуктом является вода.Как вы думаете, какую роль они будут играть в нашем будущем?

«Водород будет играть несколько ролей в нашем будущем. Что касается транспорта, то сейчас мы видим, как несколько производителей запускают автомобили, работающие на электричестве, произведенном в водородных топливных элементах, и в ближайшем будущем это произойдет еще больше. Автобусы на топливных элементах также являются привлекательным решением для общественного транспорта. Довольно интересно видеть, что в Европе на дорогах находится около 100 водородных автобусов, что по сравнению с США и Японией остается довольно значительным количеством.Кроме того, существуют другие приложения для транспорта, такие как вилочные погрузчики и лодки, и теперь инженеры даже начинают рассматривать возможность использования топливных элементов и водорода для силовых агрегатов.

«Водородные топливные элементы предлагают множество других возможностей, а также представляют большой потенциал для применения в энергетике. Например, так называемые микрокомбинированные теплоэнергетические системы (ТЭЦ), представляющие собой топливные элементы, которые можно использовать в жилых помещениях, могут снизить выбросы CO2 по сравнению с газовыми конденсационными котлами.

«Водород также будет играть все более важную роль в хранении энергии. Например, ветряная мельница может вырабатывать слишком много электроэнергии при сильном ветре, и ее необходимо отключить. Вместо того, чтобы отключать его, избыток энергии можно было бы использовать для производства водорода, пропуская его через воду. Затем это можно было бы использовать для транспорта или других целей ».

Где мы сейчас находимся?

«Сейчас мы видим первые продукты, поступающие на рынок. Машины и автобусы были готовы уже несколько лет, и микро-ТЭЦ становятся все более популярными.Конечно, это все еще дорогая технология, требующая дальнейшего развития. Следовательно, в ближайшие годы нам все равно придется вкладывать средства, чтобы найти способы снижения затрат, чтобы эта технология могла конкурировать с обычными технологиями ».

Каковы основные препятствия, которые необходимо преодолеть, прежде чем технология водородных топливных элементов станет выкатили на массовый рынок?

«Я чувствую, что топливные элементы и водородная технология малоизвестны большинству людей, и мы должны убедиться, что это сообщение доходит до многих людей.Когда я разговариваю с людьми на улице, они все еще думают об этом как о чем-то, что произойдет через 10 или 20 лет, и это неправильно. Он есть сегодня, и они могут его купить, если захотят. Я думаю, что автобусный проект — очень хороший пример, чтобы продемонстрировать это. У нас есть отзывы людей, которые часто используют водородные автобусы, и пассажиры в восторге от низкого уровня шума и защиты окружающей среды. Это послы, и они нужны нам, чтобы распространять информацию ».

Есть ли еще какие-то проблемы, которые нужно решить?

«Стоимость очень высока, и это в основном касается таких товаров, как автомобили, автобусы и микро-ТЭЦ.Существует потребность в увеличении объемов, должно быть больше автомобилей, больше автобусов, чтобы создать эффект масштаба. Кроме того, существует также необходимость в стандартизации, поскольку это также является ключом к сокращению затрат ».

« Преимущества очевидны: нулевые выбросы и большая дальность действия ».

Барт Бибайк, топливные элементы и водородный узел Предприятие

Как бы вы продали кому-нибудь водородный автомобиль?

«Преимущества очевидны: нулевые выбросы и большой радиус действия.Автомобили, работающие на водороде, сравнимы с обычными автомобилями по пробегу и времени дозаправки. Однако самым большим преимуществом является отсутствие выбросов, единственным побочным продуктом является вода. Людям нравится их комфорт, им нравится их образ жизни, поэтому они не хотят это менять. Но одновременно растет осознание необходимости решения экологических проблем. Что ж, эта машина может делать и то, и другое. Я думаю, что это прекрасная особенность автомобилей на топливных элементах ».

Водород часто производится из природного газа. Вы также смотрите на возобновляемые источники?

«Конечно, водород должен быть экологически чистым, нам нужно сосредоточиться на водороде из возобновляемых источников энергии.Это правда, что водорода, который сейчас производится из возобновляемых источников энергии, все еще очень мало, около 4%. Одна из причин заключается в том, что необходимо снизить стоимость и повысить эффективность. Благодаря работе Совместного предприятия по топливным элементам и водороду можно разработать новые технологии для дальнейшего снижения затрат, повышения эффективности и, следовательно, оптимизации использования возобновляемых источников энергии.

«Мы поддерживаем очень интересный проект здесь, в Бельгии, под названием Don Quichote, который включает водородную установку, расположенную в распределительном центре компании-супермаркета Colruyt Group.Завод включает солнечные батареи и ветряные мельницы и таким образом вырабатывает электроэнергию. Затем это электричество преобразуется в водород и используется для вилочных погрузчиков Colruyt в его распределительном центре. Это также означает, что люди могут заправлять свои машины в центре. Это прекрасный пример того, как интегрированная водородная установка обеспечивает полный цикл производства и распределения энергии с использованием водорода.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *