Вода плотность кг м3: Плотность воды | Онлайн калькулятор
Анилин | 0…20…40…60…80…100…140…180 | 1037…1023…1007…990…972…952…914…878 |
Антифриз 65 (ГОСТ 159-52) | -60…-40…0…20…40…80…120 | 1143…1129…1102…1089…1076…1048…1011 |
Ацетон C3H6O | 0…20 | 813…791 |
Белок куриного яйца | 20 | 1042 |
Бензин | 20 | 680-800 |
Бензол C6H6 | 7…20…40…60 | 910…879…858…836 |
Бром | 20 | 3120 |
Вода | 0…4…20…60…100…150…200…250…370 | 999,9…1000…998,2…983,2…958,4…917…863…799…450,5 |
Вода морская | 20 | 1010-1050 |
Вода тяжелая | 10…20…50…100…150…200…250 | 1106…1105…1096…1063…1017…957…881 |
Водка | 0…20…40…60…80 | 949…935…920…903…888 |
Вино крепленое | 20 | 1025 |
Вино сухое | 20 | 993 |
Газойль | 20…60…100…160…200…260…300 | 848…826…801…761…733…688…656 |
Глицерин C3H5(OH)3 | 20…60…100…160…200…240 | 1260…1239…1207…1143…1090…1025 |
ГТФ (теплоноситель) | 27…127…227…327 | 980…880…800…750 |
Даутерм | 20…50…100…150…200 | 1060…1036…995…953…912 |
Желток яйца куры | 20 | 1029 |
Карборан | 27 | 1000 |
Керосин | 20 | 802-840 |
Кислота азотная HNO3 (100%-ная) | -10…0…10…20…30…40…50 | 1567…1549…1531…1513…1495…1477…1459 |
Кислота пальмитиновая C16H32O2 (конц. ) | 62 | 853 |
Кислота серная H2SO4 (конц.) | 20 | 1830 |
Кислота соляная HCl (20%-ная) | 20 | 1100 |
Кислота уксусная CH3COOH (конц.) | 20 | 1049 |
Коньяк | 20 | 952 |
Креозот | 15 | 1040-1100 |
Кровь человека | 37 | 1050-1062 |
Ксилол C8H10 | 20 | 880 |
Купорос медный (10%) | 20 | 1107 |
Купорос медный (20%) | 20 | 1230 |
Ликер вишневый | 20 | 1105 |
Мазут | 20 | 890-990 |
Масло арахисовое | 15 | 911-926 |
Масло машинное | 20 | 890-920 |
Масло моторное Т | 20 | 917 |
Масло оливковое | 15 | 914-919 |
Масло подсолнечное (рафинир. ) | -20…20…60…100…150 | 947…926…898…871…836 |
Мед (обезвоженный) | 20 | 1621 |
Метилацетат CH3COOCH3 | 25 | 927 |
Молоко | 20 | 1030 |
Молоко сгущенное с сахаром | 20 | 1290-1310 |
Нафталин | 230…250…270…300…320 | 865…850…835…812…794 |
Нефть | 20 | 730-940 |
Олифа | 20 | 930-950 |
Паста томатная | 20 | 1110 |
Патока вареная | 20 | 1460 |
Патока крахмальная | 20 | 1433 |
ПАБ | 20…80…120…200…260…340…400 | 990…961…939…883…837…769…710 |
Пиво | 20 | 1008-1030 |
ПМС-100 | 20…60…80…100…120…160…180…200 | 967…934…917…901…884…850…834…817 |
ПЭС-5 | 20…60…80…100…120…160…180…200 | 998…971…957…943…929…902…888…874 |
Пюре яблочное | 0 | 1056 |
Раствор поваренной соли в воде (10%-ный) | 20 | 1071 |
Раствор поваренной соли в воде (20%-ный) | 20 | 1148 |
Раствор сахара в воде (насыщенный) | 0…20…40…60…80…100 | 1314…1333…1353…1378…1405…1436 |
Ртуть | 0…20…100…200…300…400 | 13596…13546…13350…13310…12880…12700 |
Сероуглерод | 0 | 1293 |
Силикон (диэтилполисилоксан) | 0…20…60…100…160…200…260…300 | 971…956…928…900…856…825…779…744 |
Сироп яблочный | 20 | 1613 |
Скипидар | 20 | 870 |
Сливки молочные (жирность 30-83%) | 20 | 939-1000 |
Смола | 80 | 1200 |
Смола каменноугольная | 20 | 1050-1250 |
Сок апельсиновый | 15 | 1043 |
Сок виноградный | 20 | 1056-1361 |
Сок грейпфрутовый | 15 | 1062 |
Сок томатный | 20 | 1030-1141 |
Сок яблочный | 20 | 1030-1312 |
Спирт амиловый | 20 | 814 |
Спирт бутиловый | 20 | 810 |
Спирт изобутиловый | 20 | 801 |
Спирт изопропиловый | 20 | 785 |
Спирт метиловый | 20 | 793 |
Спирт пропиловый | 20 | 804 |
Спирт этиловый C2H5OH | 0…20…40…80…100…150…200 | 806…789…772…735…716…649…557 |
Сплав натрий-калий (25%Na) | 20…100…200…300…500…700 | 872…852…828…803…753…704 |
Сплав свинец-висмут (45%Pb) | 130…200…300…400…500. .600…700 | 10570…10490…10360…10240…10120..10000…9880 |
Стекло жидкое | 20 | 1350-1530 |
Сыворотка молочная | 20 | 1027 |
Тетракрезилоксисилан (CH3C6H4O)4Si | 10…20…60…100…160…200…260…300…350 | 1135…1128…1097…1064…1019…987…936…902…858 |
Тетрахлордифенил C12H6Cl4 (арохлор) | 30…60…150…250…300 | 1440…1410…1320…1220…1170 |
Толуол | 0…20…50…80…100…140 | 886…867…839…810…790…744 |
Топливо дизельное | 20…40…60…80…100 | 879…865…852…838…825 |
Топливо карбюраторное | 20 | 768 |
Топливо моторное | 20 | 911 |
Топливо РТ | -60…-40…0…20…40…60…100…140…160…200 | 836…821…792…778…764…749…720…692…677…648 |
Топливо Т-1 | -60…-40…0…20…40…60…100…140…160…200 | 867…853…824…819…808…795…766…736…720…685 |
Топливо Т-2 | -60…-40…0…20…40…60…100…140…160…200 | 824…810…781…766…752…745…709…680…665…637 |
Топливо Т-6 | -60…-40…0…20…40…60…100…140…160…200 | 898…883…855…841…827…813…784…756…742…713 |
Топливо Т-8 | -60…-40…0…20…40…60…100…140…160…200 | 847…833…804…789…775…761…732…703…689…660 |
Топливо ТС-1 | -60…-40…0…20…40…60…100…140…160…200 | 837…823…794…780…765…751…722…693…879…650 |
Углерод четыреххлористый (ЧХУ) | 20 | 1595 |
Уроторопин C6H12N2 | 27 | 1330 |
Фторбензол | 20 | 1024 |
Хлорбензол | 20 | 1066 |
Этилацетат | 20 | 901 |
Этилбромид | 20 | 1430 |
Этилиодид | 20 | 1933 |
Этилхлорид | 0 | 921 |
Эфир | 0…20 | 736…720 |
Эфир Гарпиуса | 27 | 1100 |
Вода Плотность воды составляет 1000 кг/м3.
Вода
Плотность воды составляет 1000 кг/м3. Удельная масса воды составляет 1,0 при температуре 20°C. Значение изменятся в зависимости от температуры.
Шлам
Удельную массу шлама можно определить при использовании номографии (см. стр. 39) или рассчитать (см. стр.38). Для этого должны быть известны два значения SGч, C, и Cоm.
SGшл рассчитывается в ППНФ (FLYPS), исходя из вышеуказанных значений.
Форма частиц
Важно знать форму частиц шлама для определения поведения шлама при откачивании или износе насоса и трубопроводной сети.
Параметр формы обозначает отклонение шламовых частиц от идеальной среды. В ППНФ (FLYPS) можно выбрать между песком (круглой формы) и слюдой (плоской формы).
Типы жидкостей
За исключением плотности характеристики жидкости определяются ее вязкостью.
Жидкости деформируются непрерывно, пока к ним применяется сила. Они считаются текучими. Жидкость при течении, встречается с сопротивлением внутреннего трения, возникающего при сцеплении молекул. Данное внутреннее трение является свойством жидкости, называемое вязкостью.
Вязкость жидкостей резко снижается при повышении температуры.
Ньютоновские жидкости
Ньютоновские жидкости, у которых скорость растет прямо пропорционально прилагаемому усилию. Вода и большинство жидкостей являются Ньютоновскими.
Не-Ньютоновские жидкости
Некоторые жидкости, такие как шлам на водной основе с присутствием мелких частиц, не Касательное напряжение подчиняются простому соотношению прилагаемого усилия и скорости (сравните с неоседающим шламом). Они относятся к не-Ньютоновским жидкостям.
Некоторые не-Ньютоновские жидкости обладают уникальным свойством нетекучести до применения определенного усилия. Данное минимальное касательное напряжение известно как предел текучести.
Конструкция отстойника
Так называемые желобные отстойники большого объема имеют зону отложений твердых частиц до перелива в часть меньшего размера, где устанавливается насос. В зону осаждения имеется доступ для экскаватора для удаления отложений.
Плотность воды 1000 кг/м3, а плотность камня 2500 кг/м3. Если не учитывать
Условие задачи:
Плотность воды 1000 кг/м3, а плотность камня 2500 кг/м3. Если не учитывать сопротивление воды при движении тела, то какую работу следует совершить при медленном подъеме камня массы 100 г в воде на высоту 80 см?
Задача №3.3.54 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
\(\rho_{в}=1000\) кг/м3, \(\rho=2500\) кг/м3, \(m=100\) г, \(h=80\) см, \(A-?\)
Решение задачи:
Чтобы поднять камень, к нему нужно приложить некоторую силу \(F\). Если поднимать камень равномерно, то величину этой силы можно определить из первого закона Ньютона, записанного в проекции на ось \(y\):
\[F + {F_А} – mg = 0\]
\[F = mg – {F_А}\]
Работу \(A\) можно найти как произведение модуля силы \(F\) на модуль перемещения \(h\):
\[A = Fh\]
\[A = \left( {mg – {F_А}} \right)h\;\;\;\;(1)\]
Известно, что выталкивающую силу \(F_{А}\) и массу \(m\) можно определять по таким формулам:
\[{F_А} = {\rho _в}gV\]
\[m = \rho V\]
Тогда формула (1) для определения работы примет вид:
\[A = \left( {\rho Vg – {\rho _в}gV} \right)h = \left( {\rho – {\rho _в}} \right)gVh\]
Неизвестный объем камня \(m\) выразим через известную массу камня \(m\) и его плотность \(\rho\):
\[V = \frac{m}{\rho }\]
В итоге мы получим такую окончательную формулу:
\[A = \left( {\rho – {\rho _в}} \right)g\frac{m}{\rho }h\]
\[A = \left( {1 – \frac{{{\rho _в}}}{\rho }} \right)mgh\]
Переведем массу камня и высоту в систему СИ, а уже потом вычислим ответ:
\[100\;г = 0,1\;кг\]
\[80\;см = 0,8\;м\]
\[A = \left( {1 – \frac{{1000}}{{2500}}} \right) \cdot 0,1 \cdot 10 \cdot 0,8 = 0,48\;Дж\]
Ответ: 0,48 Дж.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.
Калькулятор расчета плотности пресной и соленой воды онлайн
Плотность воды — величина, которая определяется как отношение массы жидкости к ее объему. В зависимости от состава воды ее плотность может значительно различаться.
Морская вода
Морская вода содержит в своем составе разные минералы, в том числе магний, марганец, золото, медь и даже уран. Но не только сама вода отличается таким минерализованным составом. Морские жители — это основной источник минералов для воды. Ламинарии накапливают йод, моллюски — медь, радиолярии — стронций, асцидии — ванадий, а медузы — олово, цинк и свинец. В результате разложения подводных жителей морская вода получает минералы, которые затем накапливают новые поколения ламинарий или радиолярий. Такой дикий минеральный состав делает морскую воду непригодной для питья, ведь для выведения химических элементов из организма потребуется больше воды, чем ее выпитое количество.
Соленость
Если попробовать морскую воду на вкус, то она кажется горько-соленой. На 1 литр морской воды приходится в среднем 25 грамм хлорида натрия, а горечь ей придают 3,8 г хлористого магния и 1,7 г сернокислого магния. В целом в морской воде содержится около 35 г различных солей, благодаря чему ее плотность всегда выше, чем у пресной. Соленость воды выражается в промилле. Фраза «соленость 16 ‰» эквивалентна записи «соленость 16 PSU» или «соленость 1,6%». Это означает, что в одном литре жидкости содержится 16 грамм солей.
Средняя соленость морских вод колеблется от 7 PSU для Балтийского моря до 40 PSU для Красного моря. Мертвое море стоит особняком, так как его соленость зашкаливает и составляет в среднем 265 PSU. Благодаря высокому содержанию солей воды Мертвого моря характеризуются плотностью на уровне 1,3 кг/м³.
Плотность
В целом литр морской воды содержит 2 столовые ложки солей. Благодаря этому плотность такой жидкости всегда больше пресной и в среднем составляет 1,025 грамм на кубический сантиметр. На плотность воды влияет не только состав, но и температура. При охлаждении морская вода сжимается, и ее плотность увеличивается.
Изменчивая плотность воды оказывает большое влияние не только на подводную жизнь, но и на морские перевозки. При переходе кораблей из океанических вод в пресные реки или переходе из тропических вод в холодные воды Атлантики, осадка судна может изменяться до 30 см, что является большой проблемой для судов, заходящих в порт. На современных грузовых судах на корпусе выполняются отметки осадки судна, которая зависит от температуры и солености воды. При прочих равных такие отметки позволяют легко определить, насколько изменилась плотность морской воды.
Пресная вода
В отличие от морской воды, пресная в своем составе практически не имеет примесей, и содержание солей в такой жидкости не превышает 0,1%. Пресная вода занимает всего 3% от общего объема воды на планете и содержится в ледниках, айсбергах, реках, подземных водах, пресных озерах и даже облаках. В целом подавляющая часть пресной воды существует на Земле в виде льда.
Интересно, что пресные айсберги курсируют по соленому океану, и возникает вопрос, как они туда попадают? Все дело в том, что морская вода испаряется, при этом теряя все соли и преснея, и скапливается в виде облаков. После этого пресная вода выпадает в виде осадков, а снег уплотняется под собственным весом и образует ледник. Айсберги — не что иное, как отколовшиеся куски ледника. Более интересно то, что когда морская вода замерзает, а это происходит при температуре минус 2 градуса, то в ней образуются тонкие ледяные кристаллы, не содержащие соль. Если выбрать эти кристаллы из океанской воды и растопить, то можно получить чистую пресную воду.
Плотность пресной воды
Плотность пресной воды зависит только от температуры. При нуле градусов по Цельсию плотность пресного льда составляет 999,8000 кг/м3, а при 100 градусов плотность пара снижается до 958,4000 кг/м3. Это табличные значения, полученные в идеальных условиях. Для определения плотности речных или озерных вод, ученые используют стандарты IPTS-68 и ITS-90. Шкала температур ITS-90 пришла на смену IPTS-68 в 1990 году в связи с пересчетом ключевых точек замерзания пресных вод. Плотность пресной воды по разным стандартам легко выражается одна через другую по формуле:
IPTS-68 = 1,00024 × ITS-90
Разница небольшая, но именно ITS-90 используется в современных гидрологических расчетах.
Калькулятор плотности воды
Наша программа позволяет определить плотность пресной воды в зависимости от ее температуры тремя способами:
- найти табличное значение;
- рассчитать по формуле, использующей стандарт IPTS-68;
- вычислить по формуле ITS-90.
Температуру в калькуляторе вы можете задать в Кельвинах, Цельсиях или градусах Фаренгейта.
Плотность соленой воды зависит и от температуры, и от ее солености, которая в нашем калькуляторе указывается в PSU (Practical Salinity Units), что идентично понятию промилле. Рассмотрим пример.
Вычисление плотности при помощи калькулятора
Давайте вычислим плотность питьевой дистиллированной воды при комнатной температуре 20 градусов по шкале Цельсия. Для определения плотности требуется выбрать шкалу температуры и метод вычисления. Используем все три метода и получим:
- табличное значение — 998,2000 кг/м3;
- стандарт IPTS-68 — 997,9355 кг/м3;
- стандарт ITS-90 — 997,6699 кг/м3.
Как видите, различия минимальны, но при точных расчетах неверный выбор значения может привести к ошибкам.
Теперь подсчитаем плотность воды Красного моря, соленость которого составляет 40 PSU при температуре 30 градусов Цельсия. Введите эти данные в соответствующие ячейки и вычислите результат: 1 028,5825 кг/м3.
Заключение
Плотность воды — важный параметр, который используется в химии, физике, гидрологии и мореплавании. Используйте наш калькулятор для быстрого вычисления плотности воды в зависимости от ее температуры и солености.
В молоко добавлена вода – как проверить?
Добавление в молоко воды является известным с давних пор простейшим приемом фальсификации его состава. В сыром молоке содержится 86–88 % воды. Остальное приходится на жир, белок, углеводы, соли и минорные компоненты (ферменты, витамины, гормоны, пигменты и др.), которые в сумме составляют сухое вещество молока. Массовая доля сухого вещества в сыром коровьем молоке должна быть не менее 11,0 % (в том числе не менее 8,2 % сухого обезжиренного вещества).
При добавлении к молоку воды уменьшается массовая доля сухого вещества, что влечет за собой понижение плотности. Наиболее распространенным и простым методом определения плотности молока является ареометрический метод [3]. Плотность молока складывается из плотностей каждого из составных компонентов и зависит от их количественного соотношения. Вода имеет плотность 998 кг/м3, жир – около 931, белки – около 1451, лактоза – 1545 кг/м3, минеральные вещества, соли и другие составные части молока – около 1850 кг/м3 [4]. Увеличение содержания белков, углеводов и минеральных веществ повышает общую плотность молока, а увеличение мас- совой доли воды и жира, напротив, понижает.
Плотность принимаемого молока должна быть не менее 1027 кг/м3 [1, 2]. Если она меньше, то это может быть признаком фальсификации водой. Следует убедиться в этом точно, используя криоскопический метод, основанный на измерении температуры замерзания молока.
Температура замерзания молока обусловлена только его истинно растворимыми составными частями: лактозой и солями, количественное содержание которых практически постоянно. Разбавление молока понижает концентрацию растворимых в воде веществ, что влечет за собой повышение температуры замерзания. Чем больше добавлено воды, тем выше температура замерзания молока, тем ближе она к температуре замерзания чистой воды (к 0 °С).
Криоскопический метод реализуется с помощью специальных приборов – термисторных криоскопов. Он стандартизован и регламентирован в ГОСТ 25101–2015 «Молоко. Метод определения точки замерзания» и ГОСТ 30562–97 (ИСО 5764–87) «Молоко. Определение точки замерзания. Термисторный криоскопический метод». Термисторный криоскопический метод предполагает переохлаждение молока ниже температуры замерзания с последующим созданием в нем центров кристаллизации, приводящих к мгновенному образованию большого количества кристаллов льда по всему объему. Фазовый переход воды в лед сопровождается выделением теплоты, которая повышает температуру пробы до истинной температуры замерзания (до криоскопической точки) и поддерживает ее постоянной до тех пор, пока одновременно существуют твердая и жидкая фазы (до полного перехода воды в лед). Этот момент фиксируется прибором, который затем сравнивает измеренную температуру замерзания молока с контрольным значением и в случае его превышения рассчитывает количество добавленной воды.
Температура замерзания не является постоянной величиной и зависит от состава молока, который меняется под влиянием многих факторов (географический регион, сезон года, порода скота, период лактации, кормовой рацион, состояние здоровья и индивидуальные особенности животного и др. ). Исследованиями ученых Литовского филиала ВНИИМС установлен широкий диапазон изменения температуры замерзания молока по всем территориям бывшего Советского Союза: от минус 0,505 °С (наибольшая) до минус 0,575 °С (наименьшая). Среднее значение температуры замерзания молока в отдельных регионах колебалось от минус 0,528 °С (наибольшая) до минус 0,541 °С (наименьшая). В качестве контрольной величины была установлена температура замерзания молока минус 0,520 °С – наибольшая из диапазона средних значений по отдельным регионам с учетом ошибки метода.
Это значение контрольной температуры замерзания (минус 0,520 °С) включено в ГОСТ 31449–2013 «Молоко коровье сырое. Технические условия» и ГОСТ Р 52054– 2003 «Молоко коровье сырое. Технические условия». Но в Техническом регламенте Таможенного союза «О безопасности молока и молочной продукции» в качестве контрольной обозначена температура замерзания молока минус 0,505 °С – наибольшая из диапазона, установленного для всех территорий СССР. Требования ТР ТС 033/2013 являются менее жесткими и по периодичности контроля температуры замерзания молока. Так, если в национальном стандарте ГОСТ Р 52054–2003 регламентирован контроль этого показателя в каждой партии принимаемого молока, в межгосударственном стандарте ГОСТ 31449–2013 – согласно Программе производственного контроля, то в ТР ТС 033/2013 – при подозрении на фальсификацию.
Технический регламент Таможенного союза является приоритетным нормативным актом, обязательным для выполнения, в отличие от ГОСТов, которые теперь носят рекомендательный и даже добровольный характер. В ГОСТах могут содержаться отличающиеся по значениям параметры контролируемых показателей, но они не должны противоречить требованиям, обозначенным в ТР ТС 033/2013.
Д-р техн. наук О.В.ЛЕПИЛКИНА
ВНИИ маслоделия и сыроделия – филиал ФГБНУ «Федеральный
научный центр пищевых систем им. В.М.Горбатова» РАН, Углич
Абс-пластик | 1030…1060 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) | 1100…1200 |
Альфоль | 20…40 |
Алюмель | 8480 |
Алюминий | 2700 |
Аминопласт | 1450…1500 |
Арболит на портландцементе | 300…800 |
Асбест в засыпке | 300…800 |
Асбест волокнистый | 470 |
Асбестобетон | 2100 |
Асбестобумага | 800…900 |
Асбестовойлок | 200…300 |
Асбестоцемент | 1500…1900 |
Асбестоцементный лист | 1600 |
Асбозурит | 400…650 |
Асбокартон | 900…1250 |
Асбослюда | 450…620 |
Асботекстолит Г | 1500…1700 |
Асботермит | 500 |
Асбофанера жесткая | 1700…1900 |
Асбофанера мягкая | 1400 |
Асбоцемент войлочный | 144 |
Асбошифер | 1700…2100 |
Асбошифер с 10-50% асбеста | 1800 |
Асфальт | 1100…2110 |
Асфальт в полах и стяжках | 1800 |
Асфальт литой | 1500 |
Асфальтобетон | 2000…2450 |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 |
Аэрогель Aspen aerogels | 110…200 |
Базальт | 2600…3000 |
Бакелит | 1250 |
Бальза | 110…140 |
Бемит (кровельный материал) | 570 |
Береза | 510…770 |
Береза свежесрубленная | 880…1000 |
Бериллий | 1840 |
Бетон крупнопористый беспесчаный | 1600…1900 |
Бетон крупнопористый беспесчаный огнеупорный | 1450…1750 |
Бетон легкий на керамзите | 500…1800 |
Бетон легкий на коксе | 1200 |
Бетон легкий с природной пемзой | 500…1200 |
Бетон на вулканическом шлаке | 800…1600 |
Бетон на гравии или щебне из природного камня | 2400 |
Бетон на доменных гранулированных шлаках | 1200…1800 |
Бетон на зольном гравии | 1000…1400 |
Бетон на каменном щебне | 2200…2500 |
Бетон на котельном шлаке | 1400 |
Бетон на песке | 1800…2500 |
Бетон на топливных шлаках | 1000…1800 |
Бетон особо тяжелый лимонитовый | 2800…3000 |
Бетон особо тяжелый магнетитовый | 2800…4000 |
Бетон рентгенозащитный на естественном кусковом барите | 3000…3100 |
Бетон рентгенозащитный на пылевидном барите | 2500…2600 |
Бетон силикатный плотный | 1800 |
Бетон термоизоляционный | 500 |
Битумоперлит | 300…400 |
Битумы нефтяные строительные и кровельные | 1000…1400 |
Блок газобетонный | 400…800 |
Блок известково-песчаный | 1450…1600 |
Болты стальные навалом | 1430…1670 |
Брикеты угольные | 1050 |
Бронза | 7500…9300 |
Брюква навалом | 650…850 |
Бук | 600…700 |
Бук свежесрубленный | 970…1000 |
Бумага | 700…1150 |
Бут | 1800…2000 |
Ванадий | 6500…7100 |
Вата минеральная легкая | 50 |
Вата минеральная тяжелая | 100…150 |
Вата стеклянная | 155…200 |
Вата хлопковая | 30…100 |
Вата хлопчатобумажная | 50…80 |
Вата шлаковая | 200 |
Вермикулит (в виде насыпных гранул) | 100…200 |
Вермикулитобетон | 250…1200 |
Винипласт | 1350…1400 |
Винипор жесткий | 200 |
Плотность воды | 1000 кг/м3 |
Войлок строительный в кипах | 300 |
Войлок шерстяной | 150…330 |
Волокно ацетатное (ацетилцеллюлоза) | 1300…1350 |
Волокно вискозное (гидроцеллюлоза) | 1500…1540 |
Вольфрам | 19250 |
Воск пчелиный | 950 |
Вяз свежесрубленный | 1000 |
Газ природный плотность | 0,68 — 0,85 |
Газобетон конструкционный | 1100…1200 |
Газобетон теплоизоляционный | 400…700 |
Газогипс | 400…600 |
Газосиликат | 280…1000 |
Газостекло | 200…400 |
Галька | 1800…1900 |
Гетинакс | 1350 |
Гипс формованный сухой | 1100…1800 |
Гипсобетон на доменном гранулированном шлаке | 1000 |
Гипсобетон на котельном шлаке | 1300 |
Гипсокартон | 500…900 |
Гипсолит (плиты) | 1400…1600 |
Гипсошлак | 1000…1300 |
Глина в виде теста | 1600…2900 |
Глина огнеупорная | 1800 |
Глиногипс | 800…1800 |
Глинозем | 3100…3900 |
Гнейс (облицовка) | 2800 |
Граб свежесрубленный | 995 |
Гравий (наполнитель) | 1850 |
Гравий керамзитовый (засыпка) | 200…800 |
Гравий шунгизитовый (засыпка) | 400…800 |
Гранит (облицовка) | 2600…3000 |
Графит порошкообразный | 445 |
Грунт 20% воды | 1700 |
Грунт в насыпях | 1600…1800 |
Грунт илистый сухой | 1600 |
Грунт мергелистый | 1700 |
Грунт сухой | 1500 |
Груша (древесина) | 730 |
Гудрон | 950…1030 |
Гуммигут | 1200 |
Дакрил | 1190 |
Динас в огнеупорных изделиях | 1700…1900 |
Доломит плотный сухой | 2800 |
Дрова березовые | 500 |
Дрова хвойных пород | 350…450 |
Дуб | 700 |
Дуб свежесрубленный | 1000…1030 |
Дюралюминий | 2600…2900 |
Ель свежесрубленная | 800…850 |
Железо | 7870 |
Железобетон | 2500 |
Железобетон на известняковом щебне вибрированный | 2450 |
Железобетон на керамзите | 1500…1800 |
Железобетон на пемзе | 1100…1500 |
Железобетон набивной | 2400 |
Желуди в мешках | 470…520 |
Жом сухой навалом | 200…260 |
Засыпка песчаная из гидрофобного песка | 1500 |
Засыпка торфяная | 150 |
Засыпка шлаковая | 700…1000 |
Зола древесная | 780 |
Зола коксовая | 750 |
Золото | 19320 |
Известняк (облицовка) | 1400…2000 |
Известняк плотный | 2400…2900 |
Известняк пористый | 2000…2100 |
Изделия вулканитовые | 350…400 |
Изделия диатомитовые | 500…600 |
Изделия из вспученного перлита на битумном связующем | 300…400 |
Изделия ньювелитовые | 160…370 |
Изделия пенобетонные | 400…500 |
Изделия перлитофосфогелевые | 200…300 |
Изделия совелитовые | 230…450 |
Инвар | 7900 |
Ипорка (вспененная смола) | 15 |
Какао-бобы в мешках | 250…340 |
Каменноугольная пыль | 730 |
Камень бордюрный из твердых пород | 2000…2300 |
Камень керамический поризованный Braer | 810…840 |
Камень строительный | 2200 |
Камни гипсобетонные | 1100…1500 |
Камни многопустотные из легкого бетона | 500…1200 |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 |
Камни полнотелые из природного туфа или вспученной глины | 500…2000 |
Канифоль | 1070 |
Каолин в порошке | 520 |
Капролит | 1200 |
Капролон | 1150 |
Капрон (поликапролактам) | 1140 |
Карболит черный | 1100 |
Картон асбестовый изолирующий | 720…900 |
Картон бумажный волнистый | 150 |
Картон гофрированный | 700 |
Картон облицовочный | 1000 |
Картон плотный | 600…900 |
Картон пробковый | 145 |
Картон строительный многослойный | 650 |
Картон термоизоляционный | 500 |
Каучук вспененный | 82 |
Каучук вулканизированный мягкий серый | 920 |
Каучук натуральный | 910 |
Каучук фторированный | 180 |
Кварц дробленый | 1450…1600 |
Кедр красный | 500…570 |
Керамзит | 800…1000 |
Керамзитобетон легкий | 500…1200 |
Керамзитобетон на кварцевом песке с поризацией | 800…1200 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 |
Керамзитобетон на перлитовом песке | 800…1000 |
Керамзитовый горох | 900…1500 |
Керамика | 1700…2300 |
Кирпич асбозуритовый | 900 |
Кирпич диатомовый | 500 |
Кирпич доменный (огнеупорный) | 1000…2000 |
Кирпич карборундовый | 1000…1300 |
Кирпич клинкерный | 1800…2000 |
Кирпич красный плотный | 1700…2100 |
Кирпич красный пористый | 1500 |
Кирпич облицовочный | 1800 |
Кирпич силикатный | 1000…2200 |
Кирпич строительный | 800…1500 |
Кирпич трепельный | 700…1300 |
Кирпич шлаковый | 1100…1400 |
Плотность серной кислоты | 1835 кг/м3 |
Плотность азотной кислоты | 1513 кг/м3 |
Кладка «Поротон» | 800 |
Кладка бутовая из камней средней плотности | 2000 |
Кладка газосиликатная | 630…820 |
Кладка из газосиликатных теплоизоляционных плит | 540 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 1700 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 |
Кладка из малоразмерного кирпича | 1730 |
Кладка из пустотелых стеновых блоков | 1220…1460 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 |
Кладка из силикатного кирпича на цементно-песчаном растворе | 1800 |
Кладка из трепельного кирпича на цементно-песчаном растворе | 1000…1200 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 |
Кладка из ячеистого кирпича | 1300 |
Клен | 620…750 |
Клен в свежесрубленном состоянии | 1000 |
Кобальт | 8900 |
Кожа искусственная в рулонах | 1300 |
Кожа натуральная | 800…1000 |
Кокс рудничный | 380…530 |
Кокс торфяной | 275…400 |
Копель | 8900 |
Костра | 100…200 |
Кость слоновая | 1830…1920 |
Кофе в зернах сырой в мешках | 440…670 |
Краска масляная (эмаль) | 1030…2045 |
Крахмал фасованный в мешках | 590…750 |
Кремний | 2000…2330 |
Кремнийорганический полимер КМ-9 | 1160 |
Крупа гречневая | 720 |
Крупа перловая | 810…830 |
Крупа пшенная 1-го сорта | 825 |
Крупа рисовая | 830 |
Крупа ячневая | 670 |
Ксилолит (магнолит) | 1000…1800 |
Лавсан (полиэтилентерефталат, ПЭТ) | 1380 |
Латунь | 8100…8850 |
Лед 0°С | 917 |
Лед -20°С | 920 |
Лед -60°С | 924 |
Линолеум поливинилхлоридный многослойный | 1600…1800 |
Линолеум поливинилхлоридный на тканевой подоснове | 1400…1800 |
Липа (15% влажности) | 320…650 |
Липа свежесрубленная | 795 |
Лиственница | 670 |
Лиственница в свежесрубленном состоянии | 840 |
Листы асбестоцементные плоские | 1600…1800 |
Листы гипсовые обшивочные (сухая штукатурка) | 800 |
Листы пробковые легкие | 220 |
Листы пробковые тяжелые | 260 |
Литий | 530 |
Лук в мешках | 400…480 |
Магнезит каустический | 800…900 |
Магнезия в форме сегментов для изоляции труб | 220…300 |
Магний | 1740 |
Манганин | 8400 |
Марганец | 7400 |
Мастика асфальтовая | 2000 |
Мастика битумная | 1350…1890 |
Маты и полосы из стеклянного волокна прошивные | 150 |
Маты минераловатные прошивные и на синтетическом связующем | 50…125 |
Маты, холсты базальтовые | 25…80 |
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 | 100…150 |
Медь | 8940 |
Мел | 1800…2800 |
Мел порошкообразный (молотый) | 950…1200 |
Миканит | 2000…2200 |
Мипора | 16…20 |
Молибден | 10300 |
Морозин | 100…400 |
Мрамор (облицовка) | 2800 |
Мука пшеничная высшего сорта | 680…900 |
Накипь котельная (богатая известью) | 1000…2500 |
Накипь котельная (богатая силикатом) | 300…1200 |
Настил палубный | 630 |
Натрий | 967 |
Нейлон | 1300 |
Никель | 8900 |
Ниплон | 1320 |
Нихром | 8400 |
Олово | 7300 |
Ольха свежесрубленная | 800…830 |
Опилки древесные | 200…400 |
Пакля | 120…160 |
Панели стеновые из гипса по DIN 1863 | 600…900 |
Парафин | 870…920 |
Паркет дубовый | 1800 |
Паркет штучный | 1150 |
Паркет щитовой | 700 |
Паронит (прокладочный материал) | 1200 |
Пемза | 400…700 |
Пемзобетон | 800…1600 |
Пенобетон строительный | 600…1200 |
Пенобетон теплоизоляционный | 300…500 |
Пеногипс | 300…600 |
Пенозолобетон | 800…1200 |
Пенопласт МФП-1 | 40 |
Пенопласт ПС-1 | 100 |
Пенопласт ПС-4 | 70 |
Пенопласт ПХВ-1 и ПВ-1 | 65…125 |
Пенопласт резопен ФРП-1 | 65…110 |
Пенополистирол | 40…150 |
Пенополистирол «Пеноплекс» | 35…43 |
Пенополиуретан | 40…80 |
Пенополиуретановые листы | 150 |
Пеносиликальцит | 400…1200 |
Пеносиликат | 280…1000 |
Пеностекло | 200…400 |
Пеностекло легкое | 100. .200 |
Пенофол | 44…74 |
Пергамин | 600 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 |
Перекрытие монолитное плоское железобетонное | 2400 |
Перлит | 200 |
Перлит вспученный | 100 |
Перлитобетон | 600…1200 |
Перлитопласт-бетон | 100…200 |
Перлитофосфогелевые изделия | 200…300 |
Песок горный | 1500…1600 |
Песок для строительных работ | 1600 |
Песок кварцевый молотый | 1450 |
Песок перлитовый | 50…250 |
Песок речной мелкий | 1500 |
Песок речной мелкий (влажный) | 1650 |
Песок сухой | 1500 |
Песок туфовый | 700…1000 |
Песок формовочный утрамбованный | 1650 |
Песок шлаковый | 800…900 |
Песчаник | 2200…2700 |
Песчаник обожженный | 1900…2700 |
Пихта | 450…550 |
Пластобетон (фурфуролбетон) | 2000…2500 |
Платина | 21450 |
Плита бумажная прессованная | 600 |
Плита огнеупорная теплоизоляционная Avantex марки Board | 200…500 |
Плита пробковая | 80…500 |
Плитка облицовочная, кафельная | 2000 |
Плиты древесно-волокнистые и древесно-стружечные | 200…1000 |
Плиты из гипса | 1000…1200 |
Плиты из керамзитобетона | 400…600 |
Плиты из полистиролбетона | 200…300 |
Плиты из резольноформальдегидного пенопласта | 40…100 |
Плиты из стеклянного штапельного волокна на синтетическом связующем | 50 |
Плиты из ячеистого бетона | 350…400 |
Плиты камышитовые | 200…300 |
Плиты льнокостричные изоляционные | 250 |
Плиты минераловатные на битумной связке марки 200 | 150…200 |
Плиты минераловатные на синтетической связке фирмы «Партек» | 170…230 |
Плиты минераловатные на синтетическом связующем марки 200 | 225 |
Плиты минераловатные повышенной жесткости | 200 |
Плиты минераловатные полужесткие на крахмальном связующем | 125…200 |
Плиты мягкие и жесткие минераловатные на синтетическом и битумном связующих | 50…350 |
Плиты пенопластовые на основе резольных фенолформальдегидных смол | 80…100 |
Плиты пенополистирольные (экструзионные) | 32 |
Плиты перлито-битумные | 300 |
Плиты перлито-волокнистые | 150 |
Плиты перлито-фосфогелевые | 250 |
Плиты строительный из пористого бетона | 500…800 |
Плиты термобитумные теплоизоляционные | 200…300 |
Плиты торфяные теплоизоляционные | 200…300 |
Плиты фибролитовые | 300…800 |
Покрытие ковровое | 630 |
Покрытие синтетическое (ПВХ) | 1500 |
Пол гипсовый бесшовный | 750 |
Полиамид | 1020…1130 |
Поливинилхлорид (ПВХ) | 1400…1600 |
Полиизобутилен листовой | 1320…1430 |
Поликарбонат (дифлон) | 1200 |
Полипропилен | 900…910 |
Полистирол УПП1, ППС | 1025 |
Полистиролбетон | 150…600 |
Полистиролбетон модифицированный | 200…500 |
Полиуретан | 1200 |
Полихлорвинил | 1290…1650 |
Полиэтилен высокой плотности | 955 |
Полиэтилен низкой плотности | 920 |
Полотно (текстиль) в кусках | 600 |
Полуэбонит М-1751 и М1814 | 1320…1330 |
Поролон | 34 |
Порох (прессованный) | 1750 |
Порох (сыпучий) | 900 |
Прессшпан | 1000…1500 |
Пробка гранулированная техническая | 45 |
Пробка минеральная на битумной основе | 270…350 |
Пробковое покрытие для полов | 540 |
Пыль асбестовая | 400…600 |
Пыль угольная | 540…680 |
Ракушечник | 1000…1800 |
Раствор гипсовый затирочный | 1200 |
Раствор гипсоперлитовый | 600 |
Раствор гипсоперлитовый поризованный | 400…500 |
Раствор известково-песчаный | 1400…1600 |
Раствор известковый | 1650 |
Раствор легкий LM21, LM36 | 700…1000 |
Раствор сложный (песок, известь, цемент) | 1700 |
Раствор цементно-перлитовый | 800…1000 |
Раствор цементно-песчаный | 1800…2000 |
Раствор цементно-шлаковый | 1200…1400 |
Раствор цементный, цементная стяжка | 2000 |
Резина пористая | 160…580 |
Резина твердая обыкновенная | 900…1200 |
Репа | 570…650 |
Рогожа | 200 |
Рубероид | 600 |
Рубракс | 1050 |
Сажа ламповая порошкообразная | 1900 |
Сало | 930 |
Саман | 1200…1500 |
Самшит (10% влажности) | 1000 |
Сахар-песок в мешках | 730…800 |
Свинец | 11370 |
Семена конопли насыпью | 520…580 |
Семечки подсолнечника в мешках | 400…440 |
Сера в порошке | 780 |
Сера ромбическая | 2085 |
Серебро | 10500 |
Ситалл | 2500 |
Сланец | 2600…3300 |
Сланец глинистый вспученный | 400 |
Сланец кровельный | 1500 |
Слюда вдоль слоев | 2700…3200 |
Слюда вспученная | 100 |
Слюда поперек слоев | 2600…3200 |
Смола эпоксидная | 1260…1390 |
Снег лежалый при 0°С | 400…560 |
Снег свежевыпавший | 120…200 |
Солома | 50…120 |
Солома прессованная | 250…280 |
Соломит | 150…400 |
Соль поваренная | 2200 |
Сосна | 500 |
Сосна смолистая 15% влажности | 600…750 |
Сталь нержавеющая, жаростойкая и жаропрочная | 7900…8200 |
Сталь стержневая арматурная | 7850 |
Стальное литье | 7800 |
Стеарин | 900 |
Стекло кварцевое | 2200 |
Стекло оконное | 2420…2590 |
Стекло термостойкое | 2200…2400 |
Стекло флинт | 3860 |
Стекловата | 155…200 |
Стекловолокно | 1700…2000 |
Стеклопластик | 1800…2000 |
Стеклотекстолит | 1600…1900 |
Стружка древесная прессованная | 800 |
Стяжка ангидритовая | 2100 |
Стяжка из литого асфальта | 2300 |
Суглинок | 1600…1700 |
Супесок мокрый | 1800…2000 |
Сургуч | 1800 |
Тальк в порошке | 870 |
Текстолит листовой | 1300…1400 |
Термозит | 300…500 |
Тефлон | 2120 |
Тик (древесина 10% влажности) | 730 |
Тисс | 750…940 |
Титан | 4500 |
Толь | 500…600 |
Тополь | 350…500 |
Торф сырой | 550…800 |
Торфоплиты | 275…350 |
Торфяная крошка | 300 |
Туф (облицовка) | 1000…2000 |
Туф известковый | 1000…1500 |
Туфобетон | 1200…1800 |
Уголь древесный кусковой | 190 |
Уголь каменный газовый | 1420 |
Уголь каменный обыкновенный | 1200…1350 |
Фанера бакелитовая водостойкая | 780…850 |
Фанера клееная | 600…700 |
Фаолит формованный | 1500…1700 |
Фарфор | 2300…2500 |
Фасоль в мешках | 500…560 |
Фаянс | 1940 |
Фенолит | 1550 |
Фибра красная | 1450 |
Фибролит (серый) | 1100 |
Фибролит гипсовый | 500…700 |
Фибролит цементный | 250…600 |
Фосфор желтый (воскообразная масса) | 1820 |
Фосфор красный (порошок) | 2200 |
Фосфорит | 1270…1600 |
Фторопласт | 1650…1800 |
Хром | 7140 |
Хромель | 8700 |
Целлулоид | 1400 |
Цемент глиноземистый рыхлый | 1000…1350 |
Цемент глиноземистый уплотненный | 1600…1900 |
Цемент затвердевший | 2600…3200 |
Цемент шлакопортландский | 1100…1250 |
Цинк | 7130 |
Черепица бетонная | 2100 |
Черепица глиняная | 1900 |
Черепица из ПВХ асбеста | 2000 |
Черепица кровельная | 1800…2000 |
Чугун антифрикционный | 7400…7600 |
Чугун белый | 7600…7800 |
Чугун ковкий и высокопрочный | 7200…7400 |
Чугун серый | 7000…7200 |
Шамотный порошок | 1350…1500 |
Шевелин | 100…260 |
Шелк | 100 |
Шифер | 2700…2800 |
Шлак гранулированный | 500 |
Шлак доменный | 2600…3000 |
Шлак коксовый | 600 |
Шлак котельный | 1000 |
Шлак мартеновский | 1700…1800 |
Шлак торфяной | 600…1000 |
Шлакобетон | 1120…1500 |
Шлаковата уплотненная | 400 |
Шлакопемзобетон (термозитобетон) | 1000…1800 |
Шлакопемзогазобетон | 800…1600 |
Штукатурка гипсовая | 800 |
Штукатурка из полистирольного раствора | 300 |
Штукатурка из синтетической смолы | 1100 |
Штукатурка известковая | 1600 |
Штукатурка известковая с каменной пылью | 1700 |
Штукатурка перлитовая | 350…800 |
Штукатурка утепляющая | 500 |
Штукатурка фасадная с полимерными добавками | 1800 |
Штукатурка цементно-песчаная | 1800 |
Шунгизитобетон | 1000…1400 |
Щебень гранитный | 1700…1800 |
Щебень и песок из перлита вспученного (засыпка) | 200…600 |
Щебень из доменного шлака, шлаковой пемзы и аглопорита (засыпка) | 400…800 |
Щебень кирпичный | 1200…1500 |
Щебень туфовый | 700…1000 |
Эбонит | 1140…1210 |
Эбонит вспученный | 640 |
Эковата | 35…60 |
Энант (полиэнантолактам) | 1140 |
Энсонит (прессованный картон) | 400…500 |
Яблоня | 670 |
Янтарь | 1100 |
Ясень (влажность 10%) | 700…750 |
Строительные материалы.
Основные понятия
ЧАСТЬ 1.
Физико-механические и механические свойства строительных материалов.
Механические свойства строительных материалов
В строительстве при возведении зданий и сооружений применяются различные строительные материалы и изделия из них. Основными строительными материалами в промышленном и гражданском строительстве являются цемент, бетон, кирпич, камень, дерево, известь, песок, черные металлы, стекло, кровельные материалы, пластик и другие.
В настоящее время строительная индустрия развивается в направлении создания теплосберегающих строительных материалов. Наиболее перспективными энергосберегающими материалами считаются ячеистые бетоны и бетоны на легких заполнителях.
Материалы, которые не требуют дальних перевозок, добываются или вырабатываются вблизи района строительства, называются местными строительными материалами. К таким материалам обычно относятся песок, гравий, щебень, известь и т. д.
Источником производства строительных материалов служат природные ресурсы страны, которые в качестве строительных материалов могут использоваться в природном состоянии (камень, песок, древесина) или в виде сырья, перерабатываемого на предприятиях промышленности строительных материалов (полистирол, керамзит).
При изучении строительных материалов их можно классифицировать на такие виды: природные каменные материалы, вяжущие материалы, строительные растворы, бетоны и бетонные изделия, железобетонные изделия, искусственные каменные материалы, лесные материалы, металлы, синтетические материалы и т. д.
Все строительные материалы имеют ряд общих свойств, но качественные показатели этих свойств различны.
Физико-механические и механические свойства строительных материалов
Данную группу свойств составляют, во-первых, параметры физического состояния материалов и, во-вторых, свойства, определяющие отношение материалов к различным физическим процессам. К первым относят плотность и пористость материала, степень измельчения порошков, ко вторым — гидрофизические свойства (водопоглощение, влажность, водопроницаемость, водостойкость, морозостойкость), теплофизические (теплопроводность, теплоемкость, температурное расширение) и некоторые другие. Технические требования на строительные материалы приведены в Строительных нормах и правилах (СНиП).
Истинной плотностью, puназывается масса единицы объема материала, взятого в плотном состоянии. Для определения удельного веса необходимо вес сухого материала разделить на объем, занимаемый его веществом, не считая пор. Вычисляется она по формуле:
p
u=m/Va
где m — масса материала, Va — объем материала в плотном состоянии.
Истинная плотность каждого материала — постоянная физическая характеристика, которая не может быть изменена без изменения его химического состава или молекулярной структуры.
Истинная плотность гранита 2,9 г/см3, стали — 7,85 г/см3, древесины — в среднем 1,6 г/см3. Так как большинство строительных материалов являются пористыми, то истинная плотность имеет для их оценки вспомогательное значение. Чаще пользуются другой характеристикой — средней плотностью.
Средней плотностью, pc называется масса единицы объема материала в естественном состоянии, т. е. вместе с порами и содержащейся в них влагой. Средняя плотность пористого материала, как правило, меньше истинной. Отдельные материалы, такие как сталь, стекло, битум, а также жидкие, имеют практически одинаковые истинную и среднюю плотности. Среднюю плотность вычисляют по формуле:
Средняя плотность ячеистого бетона (пенобетона) находится в пределах от 300 кг/м3 до 1200 кг/м3 (ГОСТ 25485 — 89), а полистиролбетона от 150 кг/м3 до 600 кг/м3 (ГОСТ Р 51263 — 99). Изделия (блоки) из этих строительных материалов легки в обращении (штабелировании, транспортировке, кладке).
p
c=m/Ve
где m — масса материала, Ve — объем материала.
Среднюю плотность сыпучих материалов — щебня, гравия, песка, цемента и др. — называют насыпной плотностью. В объем входят поры непосредственно в материале и пустоты между зернами.
Эту характеристику необходимо знать при расчетах прочности конструкций с учетом их собственного веса, а также для выбора транспортных средств при перевозках строительных материалов.
Относительная плотность, d — отношение средней плотности материала к плотности стандартного вещества. За стандартное вещество принята вода при температуре 4оС, имеющая плотность 1000 кг/м3.
Пористостью, П называется отношение объема пор к общему объему материала. Пористость вычисляется по формуле
Современные энергосберегающие строительные материалы обладают высокими показателями пористости (до 95%) и, соответственно, низкой теплопроводностью. Это связано с тем, что воздух имеет наименьшую теплопроводность.
П=(1 — p
c/pu)*100
где pc, pu — средняя и истинная плотности материала.
Пористость строительных материалов колеблется в широких пределах, начиная от 0 (сталь, стекло) до 95% (пенобетон).
Для сыпучих материалов определяется пустотность (межзерновая пористость). Истинная, средняя плотности и пористость материалов — взаимосвязанные величины. От них зависят прочность, теплопроводность, морозостойкость и другие свойства материалов. Примерные значения их для наиболее распространенных материалов приведены в таблице 1.
Наименование | Плотность, кг/м3 | Пористость, % | Теплопроводность, Вт / (м * оС) | |
---|---|---|---|---|
истинная | средняя | |||
Гранит | 2700 | 2500 | 7,4 | 2,8 |
Вулканический туф | 2700 | 1400 | 52 | 0,5 |
Керамический кирпич | ||||
— обыкновенный | 2650 | 1800 | 32 | 0,8 |
— пустотелый | 2650 | 1300 | 51 | 0,55 |
Тяжелый бетон | 2600 | 2400 | 10 | 1,16 |
Пенобетон | 2600 | 700 | 85 | 0,18 |
Полистиролбетон | 2100 | 400 | 91 | 0,1 |
Сосна | 1530 | 500 | 67 | 0,17 |
Пенополистирол | 1050 | 40 | 96 | 0,03 |
Водопоглощением материала называется его способность впитывать и удерживать в своих порах воду. Оно определяется как разность весов образца материала в насыщенном водой и сухом состояниях и выражается в процентах от веса сухого материала (водопоглощение по массе) или от объема образца (водопоглащение по объему).
Водопоглощение определяют по следующим формулам:
Ячеистые бетоны (пенобетон, газобетон), как и бетоны на легких заполнителях (полистиролбетон, керамзитобетон) обладают невысокими показателями водопоглощения 6 — 8 %.
W
M=(mв— mc)/mc и Wo=(mв— mc)/V
где mв — масса образца, насыщенного водой, mc — масса образца, высушенного до постоянной массы, V — объем образца.
Между водопоглощением по массе и объему существует следующая зависимость:
W
o=WM*pc
Водопоглощение всегда меньше пористости, так как поры не полностью заполняются водой.
В результате насыщения материала водой его свойства существенно изменяются: уменьшается прочность, увеличивается теплопроводность, средняя плотность и т. п.
Влажность материала W определяется содержанием воды в материале в данный момент, поэтому процент влажности ниже, чем полное водопоглощение. Она определяется отношением воды, содержащейся в материале в момент взятия пробы для испытания, к массе сухого материала. Влажность вычисляется по формуле:
W=(m
вл— mc)/mc*100
где, mвл, mс— масса влажного и сухого материала.
Водопроницаемостью называется способность материала пропускать воду под давлением. Водопроницаемость материала зависит от его пористости и характера пор. С водопроницаемостью сталкиваются при возведении гидротехнических сооружений, резервуаров для воды.
Обратной характеристикой водопроницаемости является водонепроницаемость — способность материала не пропускать воду под давлением. Очень плотные материалы (сталь, битум, стекло) водонепроницаемы.
Морозостойкостью называется способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и без значительного понижения прочности.
Разрушение происходит из-за того, что объем воды при переходе в лед увеличивается на 9%. Давление льда на стенки пор вызывает растягивающие усилия в материале.
Морозостойкость материалов зависит от их плотности и степени заполнения водой.
Образцы испытываемого материала, в зависимости от назначения, должны выдержать от 15 до 50 и более циклов замораживания и оттаивания. При этом испытание считается выдержанным, если на образцах нет видимых повреждений, потеря в весе не превышает 5%, а снижение прочности не превосходит 25%.
Морозостойкость имеет большое значение для стеновых материалов, которые подвергаются попеременному воздействию положительной и отрицательной температуры, и измеряется в циклах замораживания и оттаивания.
Теплопроводностью называется способность материала проводить тепло. Теплопередача происходит в результате перепада температур между поверхностями, ограничивающими материал.
Чем больше пористость и меньше средняя плотность, тем ниже коэффициент теплопроводности. Такой материал имеет большее термическое сопротивление, что очень существенно для наружных ограждающих конструкций (стен и покрытий). Материалы с малым коэффициентом теплопроводности называются теплоизоляционными материалами (минеральная вата, полистирол, пенобетон, полистиролбетон и др.) Они применяются для утепления стен и покрытий. Наиболее теплопроводными материалами являются металлы.
Значительно возрастает теплопроводность материалов с увлажнением. Это объясняется тем, что коэффициент теплопроводности воды составляет 0,58 Вт/(м*оС), а воздуха 0,023 Вт/(м*оС), т.е. превышает его в 25 раз. Коэффициенты теплопроводности отдельных материалов приведены в таблице 1.
Огнестойкостью называется способность материалов сохранять свою прочность под действием высоких температур. Сопротивление воспламенению определяется степенью возгораемости. По степени возгораемости строительные материалы делятся на несгораемые, трудносгораемые и сгораемые.
Полистиролбетон относится к слабогорючим материалам и имеет группу горючести Г1. Ячеистые бетоны не горючие материалы.
Несгораемые материалы не воспламеняются, не тлеют и не обугливаются. К ним относятся каменные материалы (бетон, кирпич, гранит) и металлы.
Трудносгораемые воспламеняются с большим трудом, тлеют или обугливаются только при наличии источника огня, например фибролитовые плиты, гипсовые изделия с органическим заполнением в виде камыша или опилок, войлок, смоченный в глиняном растворе, и т. п. При удалении источника огня эти процессы прекращаются.
Сгораемые материалы способны воспламеняться и гореть или тлеть после удаления огня. Такие свойства имеют все незащищенные органические материалы (лесоматериалы, камыш, битумные материалы, войлок и другие).
Огнеупорностью называют свойство материала противостоять длительному воздействию высоких температур, не расплавляясь и не размягчаясь. По степени огнеупорности материалы подразделяют на следующие группы: огнеупорные, тугоплавкие и легкоплавкие. Огнеупорные выдерживают температуру 1580оС и выше, тугоплавкие — 1350 — 1580оС, легкоплавкие — менее 1350оС. Огнеупорные материалы используются при сооружении промышленных печей, для обмуровки котлов и тепловых трубопроводов (огнеупорный кирпич, жаростойкий бетон и т. п.).
Механические свойства строительных материалов
К основным механическим свойствам материалов относят прочность, упругость, пластичность, релаксацию, хрупкость, твердость, истираемость и др.
Прочностью называется свойство материала сопротивляться разрушению и деформации от внутренних напряжений под действием внешних сил или других факторов (неравномерная осадка, нагревание и т.д.). Прочность материала характеризуют пределом прочности или напряжением при разрушении образца. При сжатии это напряжение определяется делением разрушающей силы на первоначальную площадь образца.
Различают пределы прочности материалов при сжатии, растяжении, изгибе, срезе и пр. Они определяются испытанием стандартных образцов на испытательных машинах.
Современные энергосберегающие конструкционные материалы, как правило, обладают достаточной прочностью на сжатие для возведения жилых помещений. Так, например, полистиролбетон плотностью 600 кг/м3 соответствует классу прочности В2. Ячеистый бетон плотностью 700 кг/м3 соответствует классу В2,5.
Важнейшим свойством бетона является прочность. Лучше всего он сопротивляется сжатию. Поэтому конструкции проектируют таким образом, чтобы бетон воспринимал сжимающие нагрузки. И только в отдельных конструкциях учитывается прочность на растяжение или на растяжение при изгибе.
Прочность при сжатии. Прочность бетона при сжатии характеризуется классом или маркой (которые определяют чаще всего в возрасте 28 суток). В зависимости от времени нагружения конструкций прочность бетона может назначаться и в другом возрасте, например 3; 7; 60; 90; 180 суток.
В целях экономии цемента, полученные значения предела прочности не должны превышать предел прочности, соответствующей классу или марке, более чем на 15%. Класс представляет собой гарантированную прочность бетона в МПа с обеспеченностью 0,95 и имеет следующие значения: Bb1 — Bb60, с шагом значений 0,5. Маркой называется нормируемое значение средней прочности бетона в кгс/см2 (МПа*10).
При проектировании конструкции чаще всего назначают класс бетона, в отдельных случаях — марку. Соотношения классов и марок для тяжелого бетона по прочности на сжатие приведены в таблице 2.
Класс | Bb, МПа | Марка | Класс | Bb, МПа | Марка |
---|---|---|---|---|---|
Bb3,5 | 4,5 | Mb50 | Bb30 | 39,2 | Mb400 |
Bb5 | 6,5 | Mb75 | Bb35 | 45,7 | Mb450 |
Bb7,5 | 9,8 | Mb100 | Bb40 | 52,4 | Mb500 |
Bb10 | 13 | Mb150 | Bb45 | 58,9 | Mb600 |
Bb12,5 | 16,5 | Mb150 | Bb50 | 65,4 | Mb700 |
Bb15 | 19,6 | Mb200 | Bb55 | 72 | Mb700 |
Bb20 | 26,2 | Mb250 | Bb60 | 78,6 | Mb800 |
Bb25 | 32,7 | Mb300 |
На прочность бетона влияет ряд факторов: активность цемента, содержание цемента, отношение воды к цементу по массе (В/Ц), качество заполнителей, качество перемешивания и степень уплотнения, возраст и условия твердения бетона, повторное вибрирование.
Истираемость — способность материалов разрушаться под действием истирающих усилий. Эта характеристика учитывается при назначении материалов для пола, лестничных ступеней и площадок дорог.
перейти к второй части
Авторы статей «Строительная Лоция» сотрудники МП «ТЕХПРИБОР»
Векслер М.В.
Липилин А.Б.
С использованием материалов
Основы строительного дела.
Е.В. Платонов, Б.Ф. Драченко
ГОССТРОЙИЗДАТ УССР, Киев 1963.
Плотность, удельный вес и удельный вес
Плотность определяется как массы на единицу объема . Масса — это свойство, и единица измерения плотности в системе СИ составляет [ кг / м 3 ].
Плотность может быть выражена как
ρ = м / В = 1 / ν [1]
, где
ρ = плотность [кг / м 3 ], [снарядов / фут 3 ]
м = масса [кг], [снаряды]
V = объем [м 3 ], [фут 3 ]
ν = удельный объем [м 3 / кг], [фут 3 / снаряд]
Империал (U.S.) единицами измерения плотности являются снарядов / фут 3 , но фунт-масса на кубический фут — фунтов м / фут 3 — . Обратите внимание, что существует разница между фунтами силы ( фунтов ) и фунтами силы ( фунтов ) . Пули могут быть умножены на 32,2 , что дает приблизительное значение в фунтах массы (фунт м ) .
- 1 снаряд = 32,174 фунта м = 14,594 кг
- 1 кг = 2.2046 фунтов м = 6,8521×10 -2 пробок
- Плотность воды: 1000 кг / м 3 , 1,938 пробок / фут 3
См. Также Конвертер единиц — масса и Конвертер единиц — плотность
На атомном уровне частицы плотнее упакованы внутри вещества с большей плотностью. Плотность — это физическое свойство, постоянное при данной температуре и давлении, которое может быть полезно для идентификации веществ.
Ниже на этой странице: Удельный вес (относительная плотность), Удельный вес для газов, Удельный вес, Примеры расчетов
См. Также: Плотности для некоторых распространенных материалов
Вода — Плотность, Удельный вес и Коэффициент теплового расширения — изменение температуры при 1, 68 и 680 атм, единицы СИ и британские единицы
Воздух — плотность, удельный вес и коэффициент теплового расширения — изменение температуры и давления, единицы СИ и британские единицы
Как измерить плотность жидких нефтепродуктов
Пример 1: Плотность мяч для гольфа
Пример 2: Использование плотности для определения материала
Пример 3: Плотность для расчета объемной массы
Удельный вес (относительная плотность) — SG — это безразмерная единица , определяемая как отношение плотности вещества к плотности воды — при заданной температуре e и может быть выражено как
SG = ρ вещество / ρ h3O [2]
, где
SG = удельный вес вещества
ρ вещество = плотность жидкости или вещества [кг / м 3 ]
ρ h3O = плотность воды — обычно при температуре 4 o C [кг / м 3 ]
Обычно используют плотность воды при температуре 4 o C (39 o F) в качестве ориентира, поскольку вода в этой точке имеет самую высокую плотность 1000 кг / м 3 или 1.940 снарядов / фут 3 .
Поскольку удельный вес — SG — безразмерен, он имеет то же значение в системе СИ и британской имперской системе (BG). Удельная плотность жидкости имеет то же числовое значение, что и ее плотность, выраженная в г / мл или мг / м 3 . Вода обычно также используется в качестве эталона при расчете удельного веса твердых веществ.
См. Также Теплофизические свойства воды — плотность, температура замерзания, температура кипения, скрытая теплота плавления, скрытая теплота испарения, критическая температура…
Пример 4: Удельный вес железа
Удельный вес для некоторых распространенных материалов
Вещество | Удельный вес — SG — | ||||
---|---|---|---|---|---|
Ацетилен 0,003 | , сухой | 0,0013 | |||
Спирт | 0,82 | ||||
Алюминий | 2,72 | ||||
Латунь | 8.48 | ||||
Кадмий | 8,57 | ||||
Хром | 7,03 | ||||
Медь | 8,79 | ||||
Углекислый газ | 9018 9018 9018 9018 9018 9018 9018 9018 Углерод | 7,20 | |||
Водород | 0,00009 | ||||
Свинец | 11,35 | ||||
Ртуть | 13.59 | ||||
Никель | 8,73 | ||||
Азот | 0,00125 | ||||
Нейлон | 1,12 | ||||
Кислород | 0,00182 9018 9018 9018 9018 9018 9018 9018 | ||||
ПВХ | 1,36 | ||||
Резина | 0,96 | ||||
Сталь | 7,82 | ||||
Олово | 7.28 | ||||
Цинк | 7,12 | ||||
Вода (4 o C) | 1.00 | ||||
Вода, море | 1.027 |
Вернуться к началу
Удельный вес газов обычно рассчитывается по отношению к воздуху — и определяется как отношение плотности газа к плотности воздуха — при указанной температуре и давлении.
Удельный вес можно рассчитать как
SG = ρ газ / ρ воздух [3]
где
SG = удельный вес газа
ρ газ = плотность газа [кг / м 3 ]
ρ воздух = плотность воздуха (обычно при NTP — 1,204 [кг / м 3 ])
Молекулярные веса могут использоваться для расчета удельного веса, если плотности газа и воздуха оцениваются при такое же давление и температура.
См. Также Теплофизические свойства воздуха — плотность, вязкость, критическая температура и давление, тройная точка, энтальпии и энтропии, теплопроводность и диффузность, ……
Наверх
Определен удельный вес как вес на единицу объема . Масса , сила . Единица измерения удельного веса в системе СИ — [Н / м 3 ]. Британская система мер — [фунт / фут 3 ].
Удельный вес (или усилие на единицу объема) можно выразить как
γ = ρ a г [4]
, где
γ = удельный вес (Н / м 3 ], [фунт / фут 3 ]
ρ = плотность [кг / м 3 ], [снаряды / фут 3 ]
a g = ускорение свободного падения (9.807 [м / с 2 ], 32,174 [фут / с 2 ] при нормальных условиях)
Пример 5: Удельный вес воды
Удельный вес для некоторых распространенных материалов
Продукт | Удельный вес — γ — | ||||
---|---|---|---|---|---|
Имперские единицы (фунт / фут 3 ) | Единицы СИ (кН / м 3 ) | Алюминий | 172 | 27 | |
Латунь | 540 | 84.5 | |||
Тетрахлорид углерода | 99,4 | 15,6 | |||
Медь | 570 | 89 | |||
Этиловый спирт | 49,3 | 9018 9018 9018 9018 9018 9018 9018 9018 9018 9018 6 бензин | Глицерин | 78,6 | 12,4 |
Керосин | 50 | 7,9 | |||
Ртуть | 847 | 133.7 | |||
Моторное масло SAE 20 | 57 | 8,95 | |||
Морская вода | 63,9 | 10,03 | |||
Нерж. | 9,81 | ||||
Кованое железо | 474 — 499 | 74 — 78 |
В начало
Примеры
Пример 1: Плотность мяча для гольфа
A диаметром 42 мм и массой 45 г.Объем мяча для гольфа можно рассчитать как
V = (4/3) π (42 [мм] * 0,001 [м / мм] / 2) 3 = 3,8 10 -5 [м 3 ] ]
Плотность мяча для гольфа можно рассчитать как
ρ = 45 [г] * 0,001 [кг / г] / 3,8 10 -5 [м 3 ] = 1184 [кг / м 3 ]
Вернуться к началу
Пример 2: Использование плотности для идентификации материала
Неизвестное жидкое вещество имеет массу 18.5 г и занимает объем 23,4 мл (миллилитр).
Плотность вещества можно рассчитать как
ρ = (18,5 [г] / 1000 [г / кг]) / (23,4 [мл] / (1000 [мл / л] * 1000 [л / м] ) 3 ]))
= 18,5 10 -3 [кг] / 23,4 10 -6 [м 3 ] = 790 [кг / м 3 ]
Если мы посмотрим на плотность В некоторых распространенных жидкостях мы обнаруживаем, что этиловый спирт — или этанол — имеет плотность 789 кг / м 3 .Жидкость может быть этиловым спиртом!
Пример 3: Плотность для расчета объемной массы
Плотность титана 4507 кг / м 3 . Масса 0,17 м 3 объем титана можно рассчитать как
м = 0,17 [м 3 ] * 4507 [кг / м 3 ] = 766,2 [кг]
Примечание! — имейте в виду, что существует разница между «насыпной плотностью» и фактической «плотностью твердого тела или материала». Это может быть неясно в описании товаров.Перед важными расчетами всегда перепроверяйте значения с другими источниками.
Вернуться к началу
Пример 4: Удельный вес железа
Плотность железа составляет 7850 кг / м 3 . Удельный вес железа относительно воды с плотностью 1000 кг / м 3 составляет
SG (железо) = 7850 [кг / м 3 ] / 1000 [кг / м 3 ] = 7,85
Пример 5: Удельный вес воды
Плотность воды составляет 1000 кг / м3 при 4 ° C (39 ° F).
Удельный вес в единицах СИ составляет
γ = 1000 [кг / м 3 ] * 9,81 [м / с 2 ] = 9810 [Н / м 3 ] = 9,81 [кН / м 3 ]
Плотность воды составляет 1,940 пробок / фут3 при 39 ° F (4 ° C).
Удельный вес в британских единицах измерения:
γ = 1,940 [снаряды / фут 3 ] * 32,174 [фут / с 2 ] = 62,4 [фунт / фут 3 ]
К началу
Что Плотность воды? По температуре и единицам измерения
Какая плотность воды? Имеет значение какая температура? Как определить плотность других предметов и жидкостей?
В этом руководстве мы объясняем плотность воды, предоставляем диаграмму, которую вы можете использовать для определения плотности воды при различных температурах, и объясняем три различных способа вычисления плотности.
Какова плотность воды?
Плотность — это масса единицы объема вещества. Плотность воды чаще всего дается как 1 г / см. 3 , , но ниже плотность воды в различных единицах измерения.
Шт. | Плотность воды |
Плотность воды г / см 3 | 1 г / см 3 |
Плотность воды г / мл | 1 г / мл |
Плотность воды кг / м 3 | 1000 кг / м 3 |
Плотность воды фунт / фут 3 | 62.4 фунта / фут 3 |
Не случайно вода имеет плотность 1. Плотность — это масса, деленная на объем (ρ = m / v), и вода использовалась в качестве основы для установления метрической единицы массы, что означает кубический сантиметр (1 см 3 ) воды весит один грамм (1 г).
Итак, 1 г / 1 см 3 = 1 г / см 3 , что придает воде легко запоминающуюся плотность. Однако точная плотность воды зависит как от давления воздуха, так и от температуры в помещении. Эти изменения плотности очень незначительны, поэтому, если вам не нужны очень точные вычисления или если эксперимент проводится в области с экстремальной температурой / давлением, вы можете продолжать использовать 1 г / см 3 для плотности воды. Вы можете посмотреть на диаграмму в следующем разделе, чтобы увидеть, как плотность воды изменяется в зависимости от температуры.
Обратите внимание, что эти значения плотности воды действительны только для чистой воды. Морская вода (как и океаны) имеет разную плотность, которая зависит от того, сколько соли растворено в воде.Плотность морской воды обычно немного выше плотности чистой воды, примерно от 1,02 г / см 3 до 1,03 г / см 3 .
Плотность воды при разных температурах
Ниже приведена диаграмма, показывающая плотность воды (в граммах / см 3 ) при различных температурах, от точки ниже точки замерзания воды (-22 ° F / -30 ° C) до точки кипения (212 ° F / 100 ° С).
Как вы можете видеть на диаграмме, вода имеет точную плотность только 1 г / см 3 при 39.2 ° F или 4,0 ° C. Как только вы опускаетесь ниже точки замерзания воды (32 ° F / 0 ° C), плотность воды уменьшается, потому что лед менее плотен, чем вода. Вот почему лед плавает над водой, и когда вы кладете кубики льда в стакан с водой, они не просто опускаются на дно.
График также показывает, что для диапазона температур, типичных для внутренних научных лабораторий (от 50 ° F / 10 ° C до 70 ° F / 21 ° C), плотность воды очень близка к 1 г / см 3 , поэтому это значение используется во всех расчетах плотности, кроме самых точных.Только когда температура станет очень экстремальной в том или ином направлении (близкой к температуре замерзания или кипения), температура воды изменится настолько, что 1 г / см 3 больше не будет приемлемо точным.
Температура (° F / ° C) | Плотность воды (грамм / см 3 ) |
-22 ° / -30 ° | 0,98385 |
-4 ° / -20 ° | 0,99355 |
14 ° / -10 ° | 0.99817 |
32 ° / 0 ° | 0,99987 |
39,2 ° / 4,0 ° | 1,00000 |
40 ° / 4,4 ° | 0,99999 |
50 ° / 10 ° | 0,99975 |
60 ° / 15,6 ° | 0,99907 |
70 ° / 21 ° | 0,99802 |
80 ° / 26,7 ° | 0,99669 |
90 ° / 32,2 ° | 0,99510 |
100 ° / 37.8 ° | 0,99318 |
120 ° / 48,9 ° | 0,98870 |
140 ° / 60 ° | 0,98338 |
160 ° / 71,1 ° | 0,97729 |
180 ° / 82,2 ° | 0,97056 |
200 ° / 93,3 ° | 0,96333 |
212 ° / 100 ° | 0,95865 |
Источник: USGS
Как рассчитать плотность вещества
Итак, вы знаете, какова плотность воды при разных температурах, но что, если вы хотите найти плотность чего-то, кроме воды? На самом деле это довольно просто!
Плотность любого вещества можно найти, разделив его массу на его объем.Формула плотности: ρ = m / v , где плотность обозначается символом ρ (произносится как «ро»).
Существует три основных способа вычисления плотности, в зависимости от того, пытаетесь ли вы определить плотность объекта правильной формы, объекта неправильной формы или жидкости, а также от наличия каких-либо специальных инструментов, таких как ареометр.
Расчет плотности обычного объекта
Для обычных объектов (тех, чьи грани являются стандартными многоугольниками, такими как квадраты, прямоугольники, треугольники и т. Д.) вы можете довольно легко вычислить массу и объем. Масса объекта — это просто его вес, и у всех правильных многоугольников есть уравнение для определения их объема на основе их длины, ширины и высоты.
Например, у вас есть прямоугольный кусок алюминия весом 865 г и размерами 10 x 8 x 4 см. Сначала вы должны найти объем куска алюминия, умножив длину, ширину и высоту (что является уравнением для объема прямоугольника).
V = 10 см x 8 см x 4 см = 320 см 3
Затем вы разделите массу на объем, чтобы получить плотность (ρ = m / v).
865 г / 320 см 3 = 2,7 г / см 3
Таким образом, плотность алюминия составляет 2,7 г / см. 3 , и это верно для любого куска (чистого и твердого) алюминия, независимо от его размера.
Расчет плотности жидкости или объекта неправильной формы
Если объект имеет неправильную форму и вы не можете легко рассчитать его объем, вы можете определить его объем, поместив его в градуированный цилиндр, наполненный водой, и измерив объем воды, который он вытесняет. Принцип Архимеда гласит, что объект вытесняет объем жидкости, равный его собственному объему. Как только вы найдете объем, вы должны использовать стандартное уравнение ρ = m / v.
Итак, если бы у вас был другой кусок алюминия неправильной формы, который весил 550 г и вытеснил 204 мл воды в градуированном цилиндре, тогда ваше уравнение было бы ρ = 550 г / 204 мл = 2,7 г / мл.
Если вещество, плотность которого вы пытаетесь определить, является жидкостью, вы можете просто налить жидкость в мерный цилиндр и посмотреть, каков его объем, а затем вычислить оттуда плотность.
Расчет плотности жидкости с помощью ареометра
Если вы пытаетесь рассчитать плотность жидкости, вы также можете сделать это с помощью прибора, известного как ареометр. Ареометр выглядит как термометр с большой грушей на одном конце, чтобы он плавал.
Чтобы использовать его, просто осторожно опустите ареометр в жидкость, пока ареометр не начнет плавать самостоятельно. Найдите, какая часть ареометра находится прямо у поверхности жидкости, и прочтите число на боковой стороне ареометра.Это будет плотность. Ареометры плавают ниже в менее плотных жидкостях и выше в более плотных жидкостях.
Резюме: Какова плотность воды?
Плотность воды обычно округляется до 1 г / см 3 или 1000 кг / м 3 , , если вы не выполняете очень точные вычисления или не проводите эксперимент при экстремальных температурах. Плотность воды изменяется в зависимости от температуры, поэтому, если вы проводите эксперимент, близкий к точке кипения или замерзания воды или превышающий ее, вам нужно будет использовать другое значение, чтобы учесть изменение плотности.И пар, и лед менее плотны, чем вода.
Уравнение плотности: ρ = m / v.
Чтобы измерить плотность вещества, вы можете рассчитать объем объекта правильной формы и, исходя из этого, измерить объем жидкости или то, сколько жидкости неправильный объект вытесняет в градуированном цилиндре, или использовать ареометр для измерения плотность жидкости.
Что дальше?
Теперь, когда вы знаете, почему плотность воды уникальна, но как насчет других ее характеристик? Узнайте, почему у воды особенная теплоемкость.
Ищете другие темы, связанные с физикой? Мы научим вас вычислять ускорение с помощью этих трех основных формул и дадим вам два простых примера закона сохранения массы.
Хотите узнать о самых быстрых и простых способах конвертации между градусами Фаренгейта и Цельсия? Мы вас прикрыли! Ознакомьтесь с нашим руководством по лучшим способам преобразования Цельсия в градусы Фаренгейта (или наоборот).
Вы изучаете облака в своем классе естественных наук? Получите помощь в определении различных типов облаков с помощью нашего экспертного руководства.
Пишете исследовательскую работу для школы, но не знаете, о чем писать? В нашем справочнике по темам исследовательских работ более 100 тем в десяти категориях, так что вы можете быть уверены, что найдете идеальную тему для себя.
Масса, вес, плотность или удельный вес воды при различных температурах
Масса, вес, плотность или удельный вес воды при различных температурах
Резюме: —
Масса, вес, плотность или удельный вес воды при различных температурах
C и тепловой коэффициент расширения воды
| ||||||||||
Таблица плотности чистой и водопроводной воды и удельного веса
* Это для средней чистой питьевой воды.Он будет отличаться от региона к району. |
|
Для использования таблицы ниже , бегите вниз по левому столбцу на целые градусы, затем переходите на десятые доли градуса. Например, строка / столбец, заштрихованные желтым цветом, показывают плотность чистой воды при 17,7 ° C = 0,998650 г / см 3 Плотность воды (г / см3 ) при температуре от 0 ° C (жидкое состояние) до 30,9 ° C на 0,1 ° C вкл. спасибо
Расширение воды при различных температурах
В
|
: -:
последняя
модифицировано: 28 тыс.февраль 2015
Плотность воды
• Школа наук о воде ГЛАВНАЯ • Темы о свойствах воды •
Плотность воды
Если вы еще учитесь в школе, вы, вероятно, слышали это утверждение на уроке естествознания: « Плотность — это масса на единицу объема вещества». На Земле вы можете считать, что масса равна весу, если это упрощает задачу.
Если вы еще не ходите в школу, вы, вероятно, забыли, что когда-либо слышали это.Определение плотности становится более понятным после небольшого пояснения. Пока объект состоит из молекул и, следовательно, имеет размер или массу, он имеет плотность. Плотность — это просто вес для выбранного количества (объема) материала. Обычной единицей измерения плотности воды является грамм на миллилитр (1 г / мл) или 1 грамм на кубический сантиметр (1 г / см 3 ).
На самом деле, точная плотность воды на самом деле не 1 г / мл, а немного меньше (очень, очень немного меньше), на 0.9998395 г / мл при 4,0 ° Цельсия (39,2 ° Фаренгейта). Однако чаще всего вы увидите округленное значение 1 г / мл.
Плотность воды зависит от температуры
Расти со старшим братом было трудно, особенно когда к нему приходили друзья, потому что их любимым занятием было придумывать способы разозлить меня. Однако однажды мне удалось использовать плотность воды, чтобы хотя бы подшутить над ними. В один жаркий летний день они поднялись на огромный холм рядом с нашим домом, чтобы выкопать яму, чтобы спрятать свою коллекцию крышек от бутылок.Они захотели пить и заставили меня вернуться домой и принести им галлон воды. Этот галлон водопроводной воды при температуре 70 ° F весил 8,329 фунта, что было много для 70-фунтового ребенка, который поднялся на огромный холм.
Итак, когда они потребовали еще один галлон воды, я заглянул в «Интернет» того дня — энциклопедию — и обнаружил, что галлон воды при температуре кипения весил всего 7,996 фунтов! Я побежал на холм, неся свой галлон воды, который весил на 0,333 фунта меньше; и побежали вниз еще быстрее, их сердитые голоса стихли позади меня.
Температура (° F / ° C) | Плотность (грамм / см 3 | Вес (фунты / футы 3 |
---|---|---|
32 ° F / 0 ° C | 0,99987 | 62,416 |
4,0 ° C / 39,2 ° F | 1,00000 | 62,424 |
4,4 ° C / 40 ° F | 0,99999 | 62,423 |
10 ° C / 50 ° F | 0,99975 | 62.408 |
15,6 ° C / 60 ° F | 0,99907 | 62,366 |
70 ° F / 21 ° C | 0,99802 | 62,300 |
80 ° F / 26,7 ° C | 0,99669 | 62,217 |
90 ° F / 32,2 ° C | 0,99510 | 62.118 |
100 ° F / 37,8 ° C | 0,99318 | 61,998 |
120 ° F / 48,9 ° C | 0,98870 | 61,719 |
140 ° F / 60 ° C | 0.98338 | 61,386 |
71,1 ° C / 160 ° F | 0,97729 | 61.006 |
82,2 ° C / 180 ° F | 0,97056 | 60,586 |
93,3 ° C / 200 ° F | 0,96333 | 60,135 |
212 ° F / 100 ° C | 0,95865 | 59,843 |
Источник: Министерство внутренних дел США, Бюро мелиорации, 1977, Руководство по грунтовым водам , из
Водная энциклопедия, третье издание, гидрологические данные и Интернет-ресурсы, под редакцией Педро Фиерро-младшего.
и Эван К. Найлер, 2007 г.
Лед менее плотен, чем вода
Если вы посмотрите на это изображение, то увидите, что часть айсберга находится ниже уровня воды. Это не удивительно, но на самом деле почти весь объем айсберга находится ниже ватерлинии, а не над ней. Это связано с тем, что плотность льда меньше плотности жидкой воды. При замерзании плотность льда уменьшается примерно на 9 процентов.
Большая часть айсберга находится под поверхностью воды.
Лучший способ представить себе, как вода может иметь разную плотность, — это посмотреть на замерзшую форму воды.Лед на самом деле имеет совершенно другую структуру, чем жидкая вода, в том смысле, что молекулы выстраиваются в регулярную решетку, а не более хаотично, как в жидкой форме. Бывает, что структура решетки позволяет молекулам воды распространяться больше, чем в жидкости, и, таким образом, лед менее плотен, чем вода. Опять же, к счастью для нас, так как мы не услышали бы восхитительного звонка кубиков льда о стенку стакана, если бы лед в нашем холодном чае опустился на дно. Плотность льда составляет около 90 процентов от плотности воды, но она может варьироваться, потому что лед также может содержать воздух.Это означает, что около 10 процентов кубика льда (или айсберга) будет выше ватерлинии.
Это свойство воды имеет решающее значение для всего живого на Земле. Поскольку вода с температурой около 4 ° C (39 ° F) более плотная, чем вода с температурой 32 ° F (0 ° C), в озерах и других водоемах более плотная вода опускается ниже менее плотной. Если бы вода была наиболее плотной в точке замерзания, то зимой очень холодная вода на поверхности озер тонула, озеро могло промерзать снизу вверх. И, учитывая, что вода является таким хорошим изолятором (из-за ее теплоемкости ), некоторые замерзшие озера летом могут не полностью оттаивать.
Реальное объяснение плотности воды на самом деле более сложно, поскольку плотность воды также зависит от количества растворенного в ней вещества. Вода в природе содержит минералы, газы, соли и даже пестициды и бактерии, некоторые из которых растворены. Чем больше материала растворяется в галлоне воды, тем больше этот галлон будет весить больше и быть более плотным — океанская вода плотнее чистой воды.
Тяжелые кубики льда опускаются на дно стакана с водой, а обычные кубики плавают.
Кредит: Майк Уокер
Мы сказали, что лед плавает по воде, но как насчет «тяжелого льда»?
Мы уже говорили, что лед плавает по воде, потому что он менее плотный, но лед особого вида может быть плотнее, чем обычная вода. «Тяжелый лед» на 10,6% плотнее обычной воды, потому что он состоит из «тяжелой воды». Тяжелая вода, D 2 O вместо H 2 O, представляет собой воду, в которой оба атома водорода заменены дейтерием, изотопом водорода, содержащим один протон и один нейтрон.Тяжелая вода действительно тяжелее обычной воды (которая в природе содержит небольшое количество молекул тяжелой воды), а тяжелый лед тонет в обычной воде.
Измерение плотности
Ареометр используется для измерения плотности жидкости.
Прибор для измерения плотности жидкости называется ареометром. Это один из простейших научно-измерительных приборов, и вы даже можете сделать его самостоятельно из пластиковой соломки (см. Ссылки ниже).Однако чаще всего он сделан из стекла и очень похож на градусник. Он состоит из цилиндрического стержня и утяжеленной луковицы внизу, чтобы он плавал вертикально. Ареометр осторожно опускают в измеряемую жидкость до тех пор, пока ареометр не будет свободно плавать. На устройстве есть вытравленные или отмеченные линии, чтобы пользователь мог видеть, насколько высоко или низко плывет ареометр. В менее плотных жидкостях ареометр будет плавать ниже, в то время как в более плотных жидкостях он будет плавать выше. Поскольку вода является «эталоном», по которому измеряются другие жидкости, отметка для воды, вероятно, обозначена как «1.000 «; следовательно, удельный вес воды при температуре около 4 ° C равен 1.000.
У гидрометров
есть много применений, не в последнюю очередь для измерения солености воды на уроках естествознания в школах. Они также используются в молочной промышленности для оценки жирности молока, поскольку молоко с более высоким содержанием жира будет менее плотным, чем молоко с низким содержанием жира. Ареометры часто используются людьми, которые делают пиво и вино в домашних условиях, так как они показывают, сколько сахара в жидкости, и позволяют пивовару узнать, как далеко продвинулся процесс брожения.
Сделайте свой ареометр:
Вы думаете, что хорошо разбираетесь в свойствах воды?
Пройдите нашу интерактивную викторину «Истина / ложь» и проверьте свои знания о воде.
материал | плотность (кг / м 3 ) | материал | плотность (кг / м 3 ) | |
---|---|---|---|---|
ацетон | 790 | керосин | 810 | |
кислота уксусная (CH 3 COOH) | 1 050 90 188 | сало | 919 | |
кислота соляная (HCl) | ???? | свинец | 11350 | |
кислота серная (H 2 SO 4 ) | 1,390 | литий | 534 | |
воздух, 100 К | 3.556 | дейтерид лития 6 | 820 | |
воздух, 200 К | 1,746 | легкие | 400 | |
воздух, 293 К | 1,207 | майонез традиционный | 910 | |
воздух, 300 К | 1,161 | майонез светлый | 1 000 90 188 | |
воздух, 500 К | 0.696 | метан, газ, +25 ° C | 0,656 | |
воздух, 1000 К | 0,340 | метан жидкий, −90 ° C | 162 | |
спирт этиловый (зерновой) | 789,2 | молоко коровье, жирные сливки | 994 | |
спирт изопропиловый (для растирания) | 785,4 | молоко коровье, легкие сливки | 1,012 | |
спирт метиловый (древесный) | 791.3 | молоко коровье, цельное | 1,030 | |
аммиак | 771 | молоко коровье обезжиренное | 1,033 | |
алюминий | 2,700 | ртуть | 13 594 | |
аргон, газ, ~ 300 К | 1.449 | глутамат натрия | 1,620 | |
аргон, жидкость, 87 К | 1,430 | никель | 8 900 90 188 | |
пиво, pilsner, 4 ° C | 1 008 | азот (N 2 ), газ, ~ 300 К | 1.145 | |
бензол | 870 | азот (N 2 ), жидкий, 74 К | 808 | |
кровь | 1,035 | масло растительное кокосовое | 924 | |
телесный жир | 918 | масло растительное кукурузное | 922 | |
кость | 1 900 | масло растительное, оливковое | 918 | |
бутан | 551 | масло растительное пальмовое | 915 | |
масло сливочное | 911 | масло растительное арахисовое | 914 | |
углерод | 2,250 | масло растительное соевое | 927 | |
карбон, алмаз | 3,539 | осмий | 22 500 | |
диоксид углерода, газ, +25 ° C | 1.799 | кислород (O 2 ), газ, ~ 300 К | 1,308 | |
диоксид углерода твердый, −78 ° C | 1,562 | кислород (O 2 ), жидкость, 87 К | 1,155 | |
медь | 8 960 | перхлорэтилен | 1,600 | |
кукурузный крахмал, насыпной | 540 | платина | 21 450 | |
кукурузный крахмал, плотно упакованный | 630 | плутоний, α | 19 860 | |
кукурузный сироп | 1,380 | соль (хлорид натрия) | 2165 | |
дизель | 800 | кремний | 2330 | |
формальдегид | 1,130 | диоксид кремния (кварц) | 2,600 | |
фреон 12 жидкий | 1,311 | силикон | 993 | |
фреон 12 пар | 36.83 | серебро | 10 490 | |
бензин | 803 | скин | 1 050 90 188 | |
глицерин | 1,260 | бикарбонат натрия | 2200 | |
золото | 19 300 | сахар, сахароза | 1,550 | |
зерно, ячмень | 620 | титан | 4500 | |
зерно кукуруза лущеная | 720 | вольфрам | 19 300 | |
зерно, кукуруза, початок | 900 | карбид вольфрама (WC) | 15,630 | |
зерно, лен | 770 | уран | 19 050 | |
зерно просо | 640 | вода, жидкость, 100 ° C | 958.40 | |
зерно, овес | 410 | вода, жидкость, 50 ° C | 988,03 | |
зерно, рис грубое | 580 | вода, жидкость, 30 ° C | 995,65 | |
зерно, рис, лущеный | 750 | вода, жидкость, 20 ° C | 998,21 | |
зерно рожь | 720 | вода, жидкость, 10 ° C | 999.70 | |
зерно, пшеница | 770 | вода, жидкость, 3,984 ° C | 999.972 | |
гелий, газ, ~ 300 К | 0,164 | вода, жидкость, 0 ° C | 999,84 | |
гелий, жидкий, 4 К | 147 | вода, лед, 0 ° C | 916 | |
водород (H 2 ), газ, 300 К | 0.082 | вода, лед, -50 ° C | 922 | |
водород (H 2 ), жидкость, 17 К | 71 | вода, лед, −100 ° C | 927 | |
мед | 1,420 | вода, море | 1,025 | |
утюг | 7 870 | вода, физиологический раствор (0.9% NaCl) | 1 004 | |
иридий | 22 400 | цинк | 7,140 |
Без воды на нашей Земле нет жизни. В приведенной ниже информации вы найдете некоторые интересные общие данные о воде. Мы настоятельно просим вас беречь все наши природные ресурсы, но особенно воду.Тратить воду впустую — смертельная ошибка. См. Другие ссылки на воду внизу этой информационной страницы.
Чтобы использовать приведенную ниже таблицу, бегите вниз по левому столбцу на целые градусы, затем переходите на десятые доли степень. при 17,7 ° C = 0,998650 г / см 3 ПлотностьВода (г / см 3 ) при температуре от 0C (жидкое состояние) до 30,9C на 0.1C inc.
Калькулятор аварийной очистки воды |
Калькулятор плотности
Укажите любые два значения в полях ниже, чтобы вычислить третье значение в уравнении плотности
.»;
gObj («topmenuout»). innerHTML = htmlVal;
вернуть ложь;
}
Плотность материала, обычно обозначаемая греческим символом ρ, определяется как его масса на единицу объема.
ρ = | где: ρ — плотность |
Расчет плотности довольно прост. Однако важно уделять особое внимание единицам, используемым для расчета плотности.Есть много разных способов выразить плотность, и неиспользование или преобразование в правильные единицы приведет к неверному значению. Полезно тщательно записать все значения, с которыми работаете, включая единицы, и выполнить анализ размеров, чтобы убедиться, что конечный результат имеет единицы
. Обратите внимание, что на плотность также влияют давление и температура. В случае твердых тел и жидкостей изменение плотности обычно невелико. Однако, что касается газов, на плотность в значительной степени влияют температура и давление.Увеличение давления уменьшает объем и всегда увеличивает плотность. Повышение температуры приводит к уменьшению плотности, так как объем обычно увеличивается. Однако есть исключения, например, плотность воды увеличивается от 0 ° C до 4 ° C.
Ниже приводится таблица единиц, в которых обычно выражается плотность, а также плотности некоторых распространенных материалов.
Единицы общей плотности
Единица | кг / м 3 | |
килограмм / кубический метр | SI Единица | |
килограмм / кубический сантиметр | 1,000,000 | |
0.001 | ||
грамм / кубический сантиметр | 1000 | |
килограмм / литр [кг / л] | 1000 | |
грамм / литр [г / л] | 1 | 27,680 |
фунт / кубический фут [фунт / фут 3 ] | 16,02 | |
фунт / кубический ярд [фунт / ярд 3 ] 0,59338 | ||
фунт / галлон (США) | 119.83 | |
фунт / галлон (Великобритания) | 99,78 | |
унция / кубический дюйм [унция / дюйм 3 ] | 1,730 | |
унция / кубический фут [унция / фут] 88 3 | 1,001 | |
унция / галлон (США) | 7,489 | |
унция / галлон (Великобритания) | 6,236 | |
тонна (короткая) / кубический ярд | 1,1183,6 | 1328.9 |
psi / 1000 футов | 2,3067 |
Плотность обычных материалов
Материал | Плотность в кг / м 3 | |
Атмосфера Земли на уровне моря | 1,2 | |
Вода при стандартной температуре и давлении | 1,000 | |
Земля | ||
Железо | 7,874 | |
Медь | 8,950 | |
Вольфрам | 19,250 | |
Золото | 19,300 | 9018 9018 9018 Platinum 9018 Platinum 9018 9018 Platinum |
Черная дыра | сверху 1 × 10 18 |
.